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ABSTRACT
1. INTRODUCTION

Forests, trees and urban greenery play a critical role for
people and the environment - not merely as an aesthetic
addition to the urban landscape, but the presence of trees
has been demonstrated in a number of studies to improve
the physical and mental well-being of people [30]. For in-
stance, trees remove fine particles from the air and conse-
quently improve air quality [20]. Furthermore, trees can
counter the negative impacts of urbanization, by providing
shade and help in cooling down cities, and as a result re-
duce energy consumption [13, 17], as well as increase bio-
diversity and dim unpleasant traffic noise with sounds of
birds chirping and rustling leaves [21, 26]. Forest conser-
vation and restoration is broadly supported as an effective
mean to fight climate-change [9] since forests can substan-
tially contribute to counterbalancing the increase of carbon
found in the atmosphere as a result of human activities [4].
In its recently adopted Biodiversity Strategy, the European
Union has pledged to plant nearly 3 billion trees by 2030 [3].
Within the European union, some countries have taken con-
crete steps to increase tree cover; For instance, the Nether-
lands has implemented a law to support reforestation by
requiring to report tree felling and obligatory reforestation
[2], meaning that for every tree being cut down another tree
must be planted to offset the loss.

Consequently, cities around the world are pursuing tree
planting as a way to increase tree cover. Tree planting pro-
grams have been implemented in cities such as New York,
Los Angeles, and Chicago [22, 0].

Municipalities often use dedicated systems to manage and
keep track of their green infrastructure, and trees in par-
ticular are kept in dedicated tree cadasters, which contain
information such as position, height, health, and species of
the individual trees [27]. However, these databases are often
incomplete, as cities do not have information of trees found
in private areas such as domestic gardens which make a sig-
nificant component of the urban green infrastructure, yet
are largely unaccounted for and their impact not quantified
[5]. Another contributing factor for the incompleteness of
such municipal tree cadasters can be attributed to the fact
that information is traditionally acquired by field-based sur-
veys which are both time consuming and costly activities,
thus some of the information can potentially be missing or
outdated [27].
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Therefore, a complete and automatic mapping of trees in
remote sensing data would be of particular scientific and
practical interest [27, 14].

The contents of the paper are as follows: In section 2, an
overview of methods related to tree detection will be given.
Then, in section 3 the research question will be formulated,
and followed by section 4.1 where the project setup, data
used, processing steps, modelling approach and the visuali-
sation will be outlined. Finally, the results will be given in
section 5 followed by a discussion in 6.

2. RELATED WORK

Tree detection and delineation from airborne laser scan-
ning is a widely studied task in forestry[27]. Numerous
methods have been developed to identify individual trees.
There are a variety of methods used for analyzing and pro-
cessing point cloud data in the context of tree detection.
These methods usually consist of a number of tasks, such as
height measuring and object detection.

The task of identifying individual trees in urban areas is
particularly challenging due to fact that trees can be ar-
ranged in close proximity to each other, as groups, or indi-
vidually.

While simple methods that could for instance consider
height, and detect local maxima generally performed well,
there has been a shift towards using deep learning methods,
which became the golden standard in computer-vision- re-
lated tasks and was also applied to individual tree detection.
As pointed by Strimbu et al. [29], many sophisticated tech-
niques are often overly fine-tuned by hand and are tailored
to work in certain data conditions, and rely on assumptions
made for the structure of the tree. While in contrast to
that, deep learning techniques which are more data driven
can be more generalised in the sense that once a basic neural
network methodology is found, adaption to new data distri-
butions is straightforward by labeling and re-training on new
reference data [27]. As a result of that, deep learning meth-
ods have recently became popular for vegetation mapping
[10] and could be applied for tree detection as well.

In 2017, Qi et al. [24] introduced PointNet, a deep learn-
ing network architecture that can be used to perform a num-
ber of tasks on point cloud data, such as instance segmenta-
tion and object classification. This model was then further
improved with PointNet++ to be able to process more fine-
grained patterns [23].

In 2018, Windrim et al applied a region based CNN and
3D CNN deep learning algorithms on a volumetric model of
the Australian Tumut pine forest derived from point cloud
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data[31]. In their approach, which involves the removal
of ground points, object detection and segmentation, they
found that it is beneficial to transfer and fine-tune a seg-
mentation network learnt on a different site in cases where
the training examples are insufficient.

Schmohl et al. investigated the use of a deep 3D single-
shot detector for individual urban tree identification in ALS
point clouds[27]. Their model showed promising results and
was able to outperform a variety of baseline models.

A number of papers have also been applied on the AHN
dataset. For example, Meijer et al. [18] used aerial images
from AHNZ2 to identify trees. Additionally, Lucas et al. [15]
used the point cloud data from AHN3 to detect trees in
rural areas by classifying single points, which were then seg-
mented. Soildn et al. [28] attempted to reproduce the AHN
classification by using the PointNet model, which showed
promising accuracy after training on a single tile, but the
model had difficulty distinguishing trees with other type of
vegetation. And more recently, Kippers et al. [11] created a
tree map using the PointNet model, which was then followed
by segmentation, which is the process of grouping multiple
points that belong the same object, using the watershed al-
gorithm. While the authors report an accuracy of 0.92, they
noted that their model can be further improved by introduc-
ing additional data such as infrared.

3. RESEARCH QUESTION

The first step of testing the effect of the deforestation law
is to be able to count the number of trees. It may be possible
to do this using the Actueel Hoogtebestand Nederland point
cloud data and an algorithm to detect trees. Therefore, the
main question of this project is:

e [s it possible to make a probable estimate the num-
ber of trees in the Netherlands using a deep learning
algorithm on Point Cloud Data?

A subquestion of this would be:

e [sit possible to make a probable estimate the change in
the number of trees over time using different versions
of the point cloud data?

4. METHOD
4.1 Project Setup
4.1.1 AHN dataset

The focus of this project is on two datasets of the Actueel
Hoogtebestand Nederland (AHN), which is a collection of
detailed and precise data on the height of the Netherlands
[3]. The two point cloud datasets that will be used for the
time comparison are AHN2 (2007 - 2012) and AHN3 (2014
- 2019). Both datasets are comprised of LiDAR point cloud
data stored in LAZ files, which are compressed LAS files [7].
Each LAZ file consists of points with attributes, from which
the ones relevant to this project are described in Table 1.
Every point has an X, Y and Z variable. The AHN3 dataset
has an intensity for every point, while AHN2 doesn’t. This
intensity difference is the reason AHN2 and AHN3 use dif-
ferent pre-trained models, as shown in Section 4.1.3. Besides
intensity, the AHN3 dataset also provides the number of re-
turns and the return number per point. This is the amount

of pulses that are emitted and returned from one point. If
the number of returns of one point is equal to the return
number, then that point is expected to be a ground point.
This is an import attribute for the data processing of AHN3,
as shown in Section 4.1.2. All other attributes are not used
in this model.

The two datasets AHN2 and AHN3 are mounted to the
Databricks file system DBFS. The AHN2 dataset is 1.6 ter-
abyte, consisting of approximately 41.000 LAZ files. The
AHN3 dataset is 2.6 terabyte, consisting of approximately
1370 LAZ files.

Every LAZ file consists of a certain amount of points.
A single LAZ file has a minimum and maximum X and
Y value in rijksdriehoekcoordinaten format, which is ex-
pressed in meters, and have a maximum X and Y range.
The point cloud only creates points for robust objects or
surfaces. Therefore not every LAZ file has the same amount
of points, as for example a lake in a tile’s range can reduce
the amount of points compared to a LAZ file which rep-
resent a part of the Netherlands with only robust objects
or surfaces. The maximum X and Y range are respectively
1000 and 1000 meter for the AHN2 dataset and respectively
5000 by 6250 meter for the AHN3 dataset.

4.1.2 Data processing

The processing of the data will be done on the Databricks
cluster. To read a LAZ file, the Python package LasPy is
used [19].

The original datasets are processed, such that the result-
ing sizes of the datasets are smaller than the original dataset,
which will improve the loading and computational time of
the detection model. The processing consists of the follow-
ing steps:

1. Reading the LAZ file;

2. AHN3 only: Remove the ground points using the num-
ber of returns;

3. Extracting the X, Y and Z coordinates;
4. AHN3 only: Extract the intensity of the points;

5. Split the original tile into subtiles of 1000 by 1000 me-
ter;

6. Save the subtiles as separate parquet tables.

The LAZ files of the AHN2 dataset are already tiles of
1000 by 1000 meter. Therefore, these won’t be split up.
The tile’s points’ coordinates X, Y and Z will be extracted
and saved in a parquet file.

The LAZ files of the AHN3 dataset can be up to 2.6 gi-
gabytes. The processing is done parallel, by making use of
Resilient Distributed Datasets (RDD’s) in Apache PySpark
[34]. When loading LAZ files parallel, the RAM overloads
and crashes the workers. Therefore, to reduce the RAM
load, the processing steps shown above are done on chunks
of a LAZ file. This is done by using LasPy’s chunk_iterator
function. The LAZ file’s points are loaded per 1/8th of the
total points. To reduce the RAM load even more, the pro-
cessing is done on one column of subtiles instead of all sub-
tiles at once. If one would do this process on all subtiles at
once, the total amount of points will saved on the RAM at
the end of the chunk iterator, which would create the same



Variable name

Description \hl{ref where descriptions are from} Note

X X coordinate in ”Rijksdriehoek” coordinate system \hl{ref}

Y Y coordinate

Z Z coordinate

Intensity Return strength of the laser Only in AHN3

Number of returns | Number of pulses returned

Return number Number of returns

Only in AHN3
Only in AHN3

Table 1: Used attributes and description of the LAZ point format.

problem as loading all LAZ file’s points at once. The pro-
cessing steps of an AHN3 LAZ file are shown in Algorithm
1.

Algorithm 1 Pre-processing an AHN3 LAZ file

1: Calculate the x and y boundaries of the subtiles based
on the x and y range of d,,
: for x range =1,2,...,N do
for chunki,...chunks do
4. Remove points from chunk; for which the number
of returns is equal to the return number
5: Divide the non-ground points in chunk; over the
subtiles within the z range and the y ranges
end for
Save the subtiles as parquet files
8: end for

W N

The ground points removal, only applicable to the AHN3
dataset, causes the biggest reduction of filesizes. On average,
the amount of points reduces approximately five times by
removing the points for which the number of returns is equal
to the return number. In Figure 1, a visualization of an
AHNS3 point cloud before and after ground removal is shown.
The amount of points after the ground removal is 3.5 times
smaller than before the removal.

In attempts to further reduce the data, more methods for
points removal are evaluated, but none have been proven
to be efficient enough. One of those is removing the points
that represent buildings. These points can be found using
the Basisregistratie Adressen en Gebouwen (BAG) dataset
[1]. The BAG dataset is loaded in using Web Feature Ser-
vice (WFS), which only loads the building within the X and
Y range of the LAZ file. The points in the LAZ file are
then extracted and saved in a GeoDataFrame, which can
overlay the geometrical data of the buildings over the points
to remove those points that are within buildings. However,
the total computational time of the processing induces sig-
nificantly, while the reduction of the data is not significant.
Therefore the building removal is not efficient enough and
will not be used.

4.1.3 Modelling

To detect the cluster of points in the point cloud that rep-
resent a tree, a detection model must be chosen. The used
model is the Forest 3D app, publicly available on Github,
made by Windrim et al. [33, 32]. This model uses the
YoloV3 architecture to detect trees in a LIDAR point cloud.
The model detects trees as a cluster of points and gives that
cluster a label. Therefore, the amount of unique labels will
be the amount of trees detected.

Publicly available weights that are trained on trees of the
types that are common in the Netherlands in a LiDAR point

(b) After ground points removal, total of 9.90 million points.

Figure 1: A visualization of a subtile from AHN3 before
and after the ground points are removed with the number
of returns attribute.



cloud such as AHN2 or AHN3 have not been found. There-
fore, training such a model seems the best approach. As
stated by Windrim et al., this can be done using the Dark-
Net architecture [25]. Alas, an attempt to train such a model
did not succeed due to the time constraint of the project
and the difficulty in obtaining ground truth for the data.
However, as mentioned in section 2, Windrim et al claim
that transferring a model trained on different data can be
beneficial in cases where the training data is insufficient[31].
Therefore, a decision was made to use a pre-trained YoloV3
model with weights provided by the same authors.

For AHN2, the model trained on the Tumutl dataset will
be used and for AHN3 the model trained on the Tumut2
dataset will be used. Both networks are provided by Win-
drim et al. in [33]. The choice of these models stem from the
fact that both models are trained on a high resolution point
cloud, where Tumut2 also includes the intensity attribute.
However, the models are trained on mature pines in Tumut,
Australia. For that reason, the performance of the model is
expected to be suboptimal. Therefore, the resulting amount
of trees will be an estimation based on two experiments.

The first experiment is a manual true or false positive
or negative evaluation to obtain the precision and recall of
the model. These two measures indicate the performance
of the model. The meanings of the true or false positives
or negatives are shown in Table 2. For the best parame-
ters, the model runs on various subtiles. The subtiles are
small enough that one can manually count the trees with a
visualization similar to Figure 1. One can zoom in on the
visualization and count the trees, which can cause human
errors to miscount because of f.e. a cluster of trees where
the individual trees are not visually distinct. A visualiza-
tion is made of only the trees detected where every cluster
with a unique label is distinct from other clusters. Another
visualization is made of the points that are not identified as
trees by the model. Using these two visualizations, one can
count the trees detected as trees (true positives), count other
objects detected as trees (false positives) and the amount of
trees that are not detected (false negatives). From these val-
ues, the precision and recall of the model can be measured.
The precision and recall are

true positives

(1)

precision = — " ,
true positives + false positives

true positives

recall =

(2)

Using the precision and recall, an estimation for the total
trees in the tile Nest can be made

true positives + false negatives’

precision

Nest = N , (3)
where N is the amount of trees detected. This equation is
build on the fact that if one finds IV trees, precision is the
fraction of actual trees and recall is the fraction of actual
trees and missed trees. The manual precision and recall
evaluation is done on multiple tiles, for which a mean value
and an standard deviation for both the precision and recall
will be found. These standard deviations will be included in
the estimation error.

The second experiment is based on the hyperparameter
stepsize, which is the step size of the window that moves
over the tile to detect the trees. The size of the moving win-
dow is set to be 5/4 by 5/4 of the step size, such that the

recall

True False

Detected tree Detected not tree
as "tree” as "tree”
Negative | Detected not tree | Detected tree

as "not tree” as "not tree”

Positive

Table 2: Attributes and description of the LAZ point format.

overlay of the adjacent windows is big enough to find a tree
that’s only partially in one of the windows. Using a smaller
window and smaller step size results in a more accurate de-
tection, but requires more computational power and time.
Therefore, the experiment will detect trees for multiple step
sizes on multiple tiles, and fit a function that approximates
the ratio of the trees found with respect to the trees found
for the smallest step size. Using that fitted function, the
step size can be set to a higher value, resulting in less com-
putational time, which is crucial due to the large dataset.
The smallest step size will be chosen from an assessment
on time and performance. The smallest step size used in
this experiment will be the same value for the precision and
recall evaluation.

Using the results of the two experiments, one can estimate
the amount of trees Negt using the detected amount of trees
N for a certain step size s. The estimation steps are as
following,

1. Use the fitted function f(s) to find the ratio of trees
found w.r.t. the smallest step size 5. This ratio is
f(s) = N/N, such that N = N/ f(s) is the estimation
for the amount of trees found for step size §;

2. Using the recall r and precision p found for step size
3, the total estimate of trees in the tile Nest is found
with Nest = Np/r.

The error on the estimation is done with error propagation
rules using the errors in precision, recall and the fitted for-
mula’s parameters [12].

4.1.4 Data product

After detection, multiple data products are acquired. The
first one is a geoJSON, which is a collection of every detected
tree and its coordinates. This collection will be used in the
visualization, which is explained in Section 4.2. The second
data product is the estimated density per subtile. Due to
the time constraint on the project, the priority will be set on
cities which provide the data of municipality managed trees.
This will provide a more qualitative rather than quantita-
tive result, as without priority the chance exists only parts
of the Netherlands are detected for which there is less so-
cial relevance such as in a city. The chosen cities, chosen
by availability of municipality managed trees, are Amster-
dam, Amersfoort, Den Haag, Nijmegen, Utrecht, Groningen
and Eindhoven. Using the coordinates of these cities, the
amount of trees within those coordinates can be counted
and by doing the estimation steps described above, the esti-
mated amount of trees per city is calculated. Using the size
of the city, calculated with the sizes of the used subtiles, the
estimated density is found. After doing this for both the
AHN2 and AHN3 dataset, the change in estimated density
can be calculated. The final data product is achieved by cal-
culating the estimated density per subtile of a city. Every



city is divided into 100 subtiles, for which all estimated den-
sities are calculated. These densities and the density changes
between AHN2 and AHN3 are used in the visualization.

4.2 Visualization Setup

In order to visualise the output of the model with a web-
application, a method of overlaying geographical informa-
tion on a map had to be found, while adhering to the project
constraints and keeping the website static and as simple as
possible. The initial idea was to overlay points on a map
where ever the model detected a tree, as well as a grid of
polygons to display tree density in a specific area. Taking
inspiration from a previous project [16], Mapbox was found
to be a suitable package. Mabbox provides Mapbox GL JS;
a JavaScript library for vector maps on the Web. Addition-
ally, Mapbox provides Mapbozx Studio, which allows to create
customized tiles to be used as a layer on the map.

As previously mentioned in 4.1.4, the data product con-
sisted of detected trees and their respective coordinates in
geoJSON format, which could be used directly in Mapbox
GL JS or uploaded as a layer to Mapbox Studio. The ap-
proach taken was to aggregate data into different layers
which could then in turn be overlayed on the map with the
ability to hide or display a specific layer. Hence, a unique
geoJSON frame was collated for AHN2, AHN3, along with
a density layer to display change between AHN2 and AHNS3.

An additional layer was added to include the cadaster data
of selected municipalities - which would serve as a baseline
to compare against the model’s output.

S. RESULTS

Due to the time constraint of the project, only results
for the cities containing data about the trees from the local
municipality were analysed. Specifically for Groningen, only
the analysis on AHN2 was finished. This means that all
of the results in this section will be catered to the cities
Amsterdam, Amersfoort, Den Haag, Eindhoven, Nijmegen,
and Utrecht.

5.1 Estimation experiments

The estimated number of trees per step size hyperparame-
ter (w.r.t. the smallest value of step size) is shown for AHN2
in Figure 2 and AHN3 in Figure 3 for twenty randomly cho-
sen subtiles. The analysis for AHN2 was done until step
size 20 in contrast to the step size 80 for AHN3, because
an individual run on the AHN2 dataset took less computa-
tional time due to the lower point density in each file. The
function that could fit the data the best was found to be an
exponential function of the form

f(s)=a-exp(—=b-s)+c 4)

where f(s) is the ratio of trees found w.r.t. the smallest step
size §, s is the step size and a, b and ¢ are the parameters of
the fit. Table 3 shows the parameters that had the highest
R? value and hence were the best found fit.

Using the true or false positive or negative evaluation, the
precision and recall for AHN2 and AHN3 are found and are
shown in Table 4. The resulting precision and recall are
found as a mean and standard deviation of 10 experiments
on AHN2 and 10 on AHN3. The table shows that the mean
precision is lower for AHN2 than AHN3, but not signifi-
cantly lower due to the error. The recall of AHN2 is also
not significantly higher than AHN3.
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Figure 2: The ratio of trees found w.r.t. the trees found
at the smallest stepsize § = 20 for AHN2. The blue dots
are individual datapoints and the green line shows the fitted
function. The green space shows the uncertainty in the fitted
function.

5.2 Densities per city

Using the just mentioned methods, the estimations are
shown in Table 5 and Table 6. The change in estimated
density is shown in Table 7. This shows that for all cities in
a whole, the estimated density of trees has gone down from
the time of AHN2 to the time of AHN3.

5.3 Visualization

The visualisation was made in the manner outlined in 4.2;
a static website was created using Javascript, HIML and
CSS, where the Mapbox GL JS libarary was extensively
used. Due to time and computational constraints, results
were limited to the 7 aforementioned municipalities. A snip-
pet of the visualisation showing various layers is given with
figure 4.

6. DISCUSSION

The time window of this project and the size of the datasets
were the hardest parts of this project. The methods that
were implemented to abide by this time window created a
need for an estimation which has a relatively large variance.
The size of the datasets were handled by taking a subset of
the files and creating an implementation which handles the
data in chunks that do not overload the ram storage. These
solutions come with their own set of problems, which will
be addressed in the following sections.

6.1 Estimation experiments

The uncertainty in the precision and recall are more re-
sponsible for the uncertainty in the estimate than the fit
uncertainty. This is due to the detection model not being
the optimal model for the AHN point clouds. Training a
model, or finding a model that’s trained on the type of trees
in the Netherlands, would have improved the precision and
recall. As training a model was not an option, an existing
model had to be optimized for the given subset.



‘ a b

c R?

AHN2 | 0.961 £ 0.008 0.515 £+ 0.016 0.0278 4+ 0.0048 0.91441
AHN3 | 0.925 + 0.009 0.203 £ 0.006 0.0788 4 0.0090 0.96255

Table 3: The found parameters with uncertainties and the R-squared value for the fit shown in Equation 4 for both AHN2

and AHNS3.
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Figure 3: The ratio of trees found w.r.t. the trees found
at the smallest stepsize § = 80 for AHN3. The blue dots
are individual datapoints and the green line shows the fitted
function. The green space shows the uncertainty in the fitted
function.

‘ Precision Recall
AHN2 | 0.818 4+ 0.167 0.562 &+ 0.285
AHN3 | 0.885 + 0.298 0.422 £ 0.207

Table 4: The mean precision and recall with their respective
variances for both AHN2 and AHN3.

The precision and recall experiment was done on a ran-
dom sample of subtiles from the subtiles created after the
pre-processing. These randomly chosen subtiles were not
limited to the cities subtiles. Therefore, the precision and
recall values are based on how well the model performs on
different kinds of area’s, for example areas with a higher tree
density, which makes it more difficult to distinguish individ-
ual trees. An improvement to this experiment would be to
classify the subtiles on which the detection model will run,
and find a precision and recall per class, such that the found
values correspond well to the type of subtile. This classifi-
cation could even be done on cities, where for example one
distinguishes a subtile from dense city centre to less dense
suburb.

The differences in the subtiles might have influenced the
step size experiment. As seen in Figures 2 and 3, there are
multiple outliers, for which the optimal step size might be
different. The classification of the subtiles might be a partial
solution to this problem, as one would be able to couple the
step size to a certain subtile class.

6.2 Densities per city

The boundaries of the cities were created by drawing a

square around all trees mentioned by each municipality. How-
ever, some cities have trees within their data that are far
from the urban area of the city. Especially in the case of
Eindhoven, which was the city with the largest size in the
evaluation, the tree data gives a wrong impression about
the actual size of the city. Together with the fact that city
borders always change and the AHN datasets are (at least)
two years apart, using the same city borders for both the
analysis on AHN2 and AHN3 can come with inaccuracies.
For future research when the focus is also on cities alone,
it would give a better indication of the deforestation within
the city itself if the official city boundaries, of the year the
specific AHN dataset was created, were used.

The selection of LAZ files for the specific cities, based
on if they contain at least a single point within a city, was
executed on the unprocessed LAZ files. Because the unpro-
cessed AHN3 LAZ files cover a distance of 6.25 km by 5.0
km and AHN2 only 1.0 km by 1.0 km, this helped to cre-
ate the significant difference between the city sizes in the
analysis on AHN2 and the analysis on AHN3. This differ-
ence can be seen in Table 5 and 6, which have a significant
difference between the size of each city. Although this dif-
ference is taken into account when estimating the density
and when creating the visualization, it still creates a shift in
which area is analysed when looking at the whole city. For
future research this can be fixed in multiple different ways.
Firstly, if the the selection of LAZ files is done before and
after processing the LAZ files, the number of files that is
processed is minimized and the number of points used for
the estimation is also minimized. Secondly, a separate table
containing meta data about each LAZ file could be made
during the processing. This way, there is only a need to
read that specific table to know which LAZ files to use.

Due to the difference in sizes of the processed LAZ files of
the AHN2 and AHN3 dataset there are multiple files over-
lapping in coordinates for each of dataset. Therefore, if an
analysis on one of the datasets fails because of a problem,
e.g. a corrupt file, this will only overlap partly with the
files from the other dataset. This creates a situation where
the analysis of the change sees zero trees where an error has
occurred. Therefore, the ratio of subtiles which were com-
pleted without issue (as shown in Table 5 and 6) has a very
important role in the estimation of the density. To make
sure the estimate is not influenced by these corrupt files,
future analyses should either make the LAZ files of the dif-
ferent datasets overlap fully, or continue the analysis until
there is no corrupt estimation left.

6.3 Visualization

The visualisation was limited to the output of the model.
Unsurprisingly, as the model was not applied across the full
data, the scope of the project to be restricted to selected
cities. However - The results obtained do give an interesting
insight into the number of trees across the cities included.
What was evident from the visualisation was that the claim



City Trees detected Size (km?) Completed ratio Trees estimated  Density estimated (tree / km?)
Amsterdam 16071 159.87 1.00 (5.4 £3.0) x 10° (3.3£1.8) x 10°
Amersfoort 8386 80.78 0.70 (2.8%1.5) x 10° (3.5+£1.9) x 10°
Den Haag 15853 162.15 0.99 (5.342.9) x 10° (3.3£1.8) x 10°
Nijmegen 25475 119.80 1.00 (8.6 £4.7) x 10° (7.1 £3.9) x 103
Utrecht 23760 193.54 1.00 (8.0 +£4.3) x 10° (4.1 £2.3) x 103
Eindhoven 53008 240.51 1.00 (1.7 £1.0) x 10° (7.4+£4.1) x 103

Table 5: The results of the tree detection per city for AHN2. The trees detected are the output of the detection model. The
size of the city is the total size of the subtiles on which the detection is executed. The completed ratio shows how many
subtiles of the cities subtiles have been used for detection, the residue subtiles are unused due to corrupt processed files. The
trees estimated and density estimated are the results after the stepsize and precision and recall estimation.

City Trees detected  Size (km?) Completed ratio Trees estimated  Density estimated (tree / km?)
Amsterdam 58610 298.61 0.88 (6.2+3.8) x 10° (2.0£1.3) x 10°
Amersfoort 45230 263.56 1.00 (5.3 +3.2) x 10° (2.0+£1.2) x 103
Den Haag 66661 300.97 0.96 (7.7 44.6) x 10° (2.5+1.5) x 10°
Nijmegen 50837 280.31 1.00 (6.0 £3.6) x 10° (2.1+1.3) x 10°
Utrecht 72630 371.71 1.00 (8.5+5.2) x 10° (23+£1.4) x10°
Eindhoven 76064 434.89 0.76 (9.0 4 5.4) x 10° (2.14£1.2) x 10®

Table 6: The results of the tree detection per city for AHN3. The trees detected are the output of the detection model. The
size of the city is the total size of the subtiles on which the detection is executed. The completed ratio shows how many
subtiles of the cities subtiles have been used for detection, the residue subtiles are unused due to corrupt processed files. The
trees estimated and density estimated are the results after the stepsize and precision and recall estimation.

City Estimated density change (%)
Amsterdam -38.4 + 19.3
Amersfoort -41.9 + 19.9
Den Haag -22.2 + 14.1
Nijmegen -70.0 + 17.1
Utrecht -44.1 £+ 20.1
Eindhoven -72.1 + 16.4

Table 7: The change in estimated density per city in percentages from AHN2 to AHN3.
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Figure 4: Four different views of the visualization.

made in the introduction - that the municipal cadasters are
limited and do not contain all trees in a particular city seems
to be supported by the result.

As seen in the visualization, the points of trees detected
from the AHN3 dataset show some vertical gaps in the data.
This is due to the preprocessing done per column of subtiles,
and if this preprocessing fails - for example due to the cluster
stopping or the workers crashing - the files from this column
of subtiles might become corrupt. The detection model will
then skip over these files and not detect any trees for the
corrupt subtiles, creating these vertical gaps in the data. If
time allowed, an improvement afterwards would be to create
an algorithm that searches these corrupt files and recreates
the subtiles to allow detection on them.

7. CONCLUSION

The main goal of this project was to find out if it is pos-
sible to make a probable estimate of the number of trees in
the Netherlands using a deep learning algorithm on Point
Cloud Data. It is shown that with the methods used the

estimate has a variance of a size that makes it not proba-
ble. As mentioned above, this variance can be brought down
using methods that take more time which could make the
estimate more probable in the future.

Furthermore, this means that the change in the number
of trees over time using different versions of the point cloud
data also does not have a probable estimate with the meth-
ods used. However, if the only interest is whether the num-
ber of trees has decreased or increased, this estimate is more
relevant.

8. CONTRIBUTION

The contributions to this project are shown in Table 8.



Nadav Levi [ Jacco van Wijk

[ Tjerko Kieft

Investigated relevant research
on the detection of trees

Investigated relevant research
on the detection of trees

Investigated relevant research
on the detection of trees

Created visualization
using BAG dataset

Did tests with removing

Created detection model

[10]

Investigated relevant research
on social relevance

Did estimation experiment
on precision and recall

Created and tested
pre-processing scripts

Wrote introduction

Ran pre-processing script AHN2

Ran pre-processing script AHN3

Wrote relevant research

Did fit experiment on AHN2

Ran detection model on both AHNs

Wrote method on
visualization

Found fit parameters for estimation

Provided data for visualization

Wrote results and discussion Wrote results on

on visualization

estimation experiments

Did fit experiment on AHN3

Collected and processed

municipal data(cadaster) on city densities

Wrote results and discussion

Wrote method on project setup

Wrote conclusion

Wrote discussion on estimation experiments

Table 8: The contributions to the project per group member.
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