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ABSTRACT
We analyze trips of crude oil tankers and compare the time it takes
them to reach their destination port when the crude oil price is
low versus when the price is high. We use a large data set of AIS
messages broadcast by ships between 2014 and 2017. The data is
filtered, cleaned and transformed in a data pipeline implemented
in Apache Spark. The data product of this pipeline is a set of trips
of crude oil tankers including their durations. We found that there
is a significant difference between trip durations depending on the
oil price. It took tankers on average 114.13 hours to reach their
destination port when the oil price was high, compared to 142.86
hours when the oil price was low. The results are visualized on a
static website.

1 INTRODUCTION
“Buy low, sell high” is a truism not only for stock investors following
a market timing strategy, but also for corporations trying to make
profit on other markets—like the crude oil market. It does suggest
the assumption that, whenever the current oil price is low, the
unloading of oil is delayed with the hope that prices will rise again
in the near future.

Hypothesis 1. Crude oil tankers take a longer time for the same
route in times when the oil price is low compared to times when the
oil price is high.

We define a route as a way across the sea that a ship follows to
get from its origin to its destination port. A trip, on the other hand,
is a journey that a ship makes along a route. In other words, it is a
concrete instance of a route.

Thanks to the Automatic Identification System (AIS) which ships
use to broadcast their current position, it is possible to track the
movement of ships around the globe. This opens up a whole new
way to analyze the behavior of ships using a very large data set.
But with Big Data also come engineering challenges that require
special methods and tools to be solved.

In this paper, we describe the data pipeline we used to transform
2.6 TB of raw AIS messages into a data product and finally a vi-
sualization of the trip durations during times of low and high oil
prices. Such a visualization helps to collect evidence for or against
hypothesis 1.

The rest of the paper is structured as follows. In section 2, we
will give some information about AIS and the crude oil price. We
give more details on what we consider periods of low or high oil
price in section 3. Section 4 describes how we decoded, filtered and
transformed the raw AIS data to trips of crude oil tankers from one

port to another, and what steps we performed for data cleaning. In
section 5, we discuss the findings of the data analysis and how we
visualized the results on a static website. Some limitations of our
method and implementation are described in section 6. Section 7
summarizes our paper.

2 BACKGROUND
The Automatic Identification System (AIS) was introduced in ship-
ping to aid navigation and help avoid ship collisions by regularly
broadcasting information about a ship’s status [12]. All ships with a
gross tonnage (a measure of internal volume) of 300 tons and more
are required to operate an AIS transceiver [11].

A ship sends different messages based on its situation. For exam-
ple, it is reporting information about its position, speed and heading
every few seconds when in motion and every three minutes when
at anchor. This information is sent as message types 1, 2 or 3. A
message of type 5 is broadcast every six minutes and includes in-
formation about the ship itself, including the ship type. The data
for this message type has to be entered manually by the crew. A
comprehensive overview of other message types can be found at
[13].

Every ship is identified by a unique IMO number of the Inter-
national Maritime Organization, and a unique Maritime Mobile
Service Identity (MMSI), issued by a ship’s flag state. The MMSI
is included in type 1–3 and type 5 messages and can be used for
correlating AIS and external data. However, Wu et al. point out
that the data might contain duplicated MMSI numbers, as these are
entered manually [20].

Thanks to shore-based and satellite-based receivers, live and his-
toric AIS data from around the globe is nowadays readily available
on the internet. It has therefore been used in earlier studies. Deng
et al. [3] propose a method based on statistical models to remove
outliers and other data faults. Furthermore, they enrich the data
with information that aid analysis. Kroodsma et al. [9] use AIS
to track fish harvesting. They trained neural networks to firstly
identify fishing vessels and secondly recognize fishing activity. Yan
et al. [21] study the global marine oil trade network and are able to
calculate the oil trade volume over sea. Yang et al. [22] survey even
more applications of AIS; Svanberg et al. [18] do this with an em-
phasis on maritime research. Lastly, Tu et al. [19] give an overview
of various AIS applications, with a special focus on methods for
data mining and analysis.

A multitude of stakeholders participate on the oil market, from
oil-producing countries to businesses that consume oil. Their vari-
ous objectives as well as their reactions to current events influence
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the price for crude oil. In a short time range, price fluctuations seem
to be mainly driven by changes in market expectation, speculation
on future markets and political stability in oil-producing countries
[6]. In the long-term, other factors come into play, such as the
capacity of oil-producing countries [8].

West Texas Intermediate (WTI) and Brent are two benchmarks
for crude oil that act as reference prices [17]. Both correlate strongly
in the period from 2014 to 2017 (see figure 1). Besides the long-term
changes, there are also short-term fluctuations in the price. If we
could find that these fluctuations correlate with the trip duration
of crude oil tankers, this would be evidence for hypothesis 1.

Figure 1: Brent and WTI crude oil price from 2014 to 2017

3 OIL PRICE ANALYSIS
To validate hypothesis 1, we have to define periods duringwhich the
oil price is considered high or low. In particular, the current change
of the oil price is of importance, as this indicates the direction in
which the market is moving. When prices are rising, the ships could
delay their unloading by loitering to achieve better market timing.
When prices are falling, the cargo looses value for each day on
sea, so selling as early as possible is financially beneficial. In order
to identify periods of rising and falling oil prices, the difference
between the ten-day and the 30-day rolling average of the WTI
crude oil price is calculated. Then the lower and upper quartile of
this difference is defined. Days on which the difference is above the
upper quartile are marked as days with rising oil price, while days
on which the difference is below the lower quartile are marked as
days of falling oil prices. This is visualized in figure 2, with the
difference visible as the blue line in the lower graph. We refer to
periods consisting of days with rising oil price as high-price periods
and to periods consisting of days with falling oil price as low-price
periods.

4 DATA PIPELINE
Our data pipeline consists of 6 stages. Firstly, AIS messages have to
be decoded. Then they are filtered and the position reports from

Figure 2: The oil price
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Figure 3: Overview of the stages of our data pipeline

crude oil tankers are connected to trips. The data is cleaned in a
last step.

For the data processing, we useApache Spark1 on theDatabricks2
platform. Spark takes care of the distribution and parallelization
of the workload. This allows us to focus on implementing the data
processing itself, while the solution is scalable horizontally and
vertically. Another benefit of Spark is that we can extend its func-
tionality with user-defined functions (UDFs).

The individual stages of our data pipeline are described in the
following sections. Figure 3 visualizes these stages.

4.1 Data Set
The size of our data set is around 2.3 TB. It consists of .txt files that
store AIS data packets, with one packet per line. The packets are
encoded. Each file contains the packets that were received in one
particular minute. The name of a file and the directory it resides in
follow the naming scheme **/yyyy/MM/dd/HH-mm.txt. Hence, the
filename can be used to determine a timestamp for each message.

The data are fromOctober 2014 to August 2017, with somemonth
or days missing in between. Missing data is not a problem, though.
It just means that we get less trips in the end, but has no negative
consequences for other trips or the analysis itself. The data is mostly
from Europe and only from near the shore, where AIS receivers are
located.

2https://spark.apache.org/
2https://www.databricks.com/
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4.2 Message Parsing
For the decoding of AIS packets (stage 1), we wrote a Spark UDF.
We decided to write it in Scala because this, in general, offers a
better performance compared to UDF written in Python [1, p. 111–
112]. The UDF passes the raw packets, i.e., lines in the files, to
AISmessages3, an open-source Java library, that we use in version
2.2.3. Spark automatically parallelizes this work. However, this
approach comes with the drawback that we are not able to decode
multi-line packets (see section 6.2).

The result of the parsing stage is a Spark DataFrame which
contains the successfully decoded AIS messages from the input
files.

4.3 Message Filtering
As described in section 2, AIS transmitters send AIS messages of
different types. For the data analysis, we are only interested in
position reports (message types 1–3) of crude oil tankers. Ships
identify themselves in these messages with an MMSI. To only keep
messages from crude oil tankers, we first need to collect the MMSIs
of these tankers. For this, we additionally need type 5 messages.
Messages of other types than the aforementioned can be discarded
(stage 2).

Besides the MMSI, type 5 messages contain an IMO number as
identifier, and they provide information on the general ship type
as well. A ship type of 80–89 identifies a tanker [13]. But it is not
possible to identify crude oil tankers from a type 5 message alone.

Therefore, we retrieved a database of approximately 3200 crude
oil tankers including their IMO number from VesselFinder4 through
web scraping. We use it to collect all type 5 messages with an IMO
that can be found in this database and select the MMSIs from these
messages (stage 3). The result is a set of MMSIs from only crude oil
tankers that have sent a type 5 message. After processing all files
in our original data set, we had a mapping of 354 IMOs from crude
oil tankers to their respective MMSI.

In a next step, we discard all the position reports that do not have
an MMSI that can be found in this set (stage 4). This reduces the
amount of data by approximately three orders of magnitude. The
result of this stage is a DataFrame of 52 million (MMSI, timestamp,
longitude, latitude) records. This intermediate data product
is stored in .parquet files for further processing.

We processed the input files in batches of a three to four month.
The processing time for of such a bath was between six and ten
hours.

4.4 Trip & Route Creation
Given the position records of crude oil tankers, we connect them to
trips in stage 5. The first step in this process is to create a collection
of ports visited by each ship in chronological order. To get a list
of ports and their geographical location, we used web scraping on
three different websites, namely the Global Energy Observatory5,
World Port Source6 and TankTerminals7. We achieved the best results

3https://github.com/tbsalling/aismessages
4https://www.vesselfinder.com/vessels/
5http://globalenergyobservatory.org/
6http://worldportsource.com/
7https://tankterminals.com/list-of-oil-terminals/

(a) Trips before cleaning (b) Trips after cleaning

Figure 4: Result of data cleaning

with the data from TankTerminals, as this website listed only oil
ports that are accessible by ship. We merged ports that are not
wider than 30 kilometers apart. Each port is the center of a square
with an edge length of 15 kilometers. For each position record,
if the broadcast location is within such a square, the record was
assigned to the corresponding port. This allows us to assemble a
chronological list per MMSI of ports that a ship has entered, from
which we then create trips between ports.

4.5 Data Cleaning
The trips that are the result of the previous stage are still not yet
adequate for a final analysis. In particular, we have to deal with
outlier data points and noise. As a final step before the analysis, we
perform data cleaning (stage 6).

The result of this stage is displayed in figure 4. In figure 4a,
the trips that take a long time are marked in red. These are all
successfully removed in figure 4b. Furthermore, most trips do not
cross land anymore.

4.5.1 Filtering position updates by coordinates. Whenwe examined
the geographical distribution of the positions reported in AIS mes-
sages, we found that the majority originated in Europe. However, a
few came from the Gulf of Mexico and the cost of Singapore. After
visualizing the trips created in stage 5, it became clear that some of
them had a discontinuous trace. One possible explanation for this
is that ships in two different regions might use the same MMSI. To
filter out such faulty position updates within one trip, we narrowed
our data down to position reports from Europe only. This was im-
plemented by creating a geo-fence around Europe and removing
all AIS position reports which are not within this rectangle. (see
figure 5). This measure reduced the number of position reports by
3,908,887 (-7.5%).

4.5.2 Filtering trips by duration. During analysis, trips which took
more than 20 days have been found. This is a very long duration for
trips within Europe. A reason for such long trips could be that data
is missing (i.e., ships do not seem to reach their destination port)
or that ships faced unusual events such as urgent repairs. Such
trips would have a big impact on the average trip duration in the
respective period and introduce a big variance, which makes the
statistical evaluation more difficult. Therefore, all trips which took
longer than 20 days have been removed.

4.5.3 Moving ports. For a list of positions associated with a ship to
become a valid trip, it has to start and end at a port (see section 4.4).
If this is not the case, a trip will not be recognized as such and all
corresponding data points will be removed. However, as can be
seen in figure 6, a lot of ships on their way to St. Petersburg do
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Figure 5: Geo-Fencing

Figure 6: Missing AIS data in Russia

not reach the port. Reasons for this could be, for example, that no
data from Russia-based AIS receivers is included in our data set
or that ships turn off their AIS transmitter shortly after they cross
the Russian border. Since Europe gets most of its oil from Russia
(29% in 2020 [4]), we consider this port to be crucial for our data
analysis.

Therefore, the positions of the ports have been manually moved
to the position where the signal is lost. This is shown in figure 7 and
solves the problem, even though it comes with some manual labor.
Similar adjustments have been made for the oil port in Immingham,
UK.

4.5.4 Velocity gating. As mentioned in section 2, MMSIs can be
set manually and are therefore not a very reliable identifier to
correlate AIS messages. When two ships have the same MMSI and
send position reports at roughly the same time, it seems like a ship
jumps across the map. Unrealistic position reports are filtered out
using a technique called velocity gating [12]. It is determined if it
is physically possible for the ship to reach the reported positions
in the time between the messages, with the assumption that crude
oil tankers do not usually exceed a speed of 16 knots (29.63 km/h)
[21]. If this is not the case, the MMSI is marked as compromised.

Figure 7: Moving Ports

5 RESULTS
The final data set contains 48,157,636 position reports from 183
different crude oil tankers in the time period from 10/06/2014 to
22/08/2017. From this data, 1708 trips can be created, which can be
grouped into 377 routes. Hence, there are 4.53 trips per route on
average.

In this section, we will first describe the results of our data anal-
ysis and show evidence for hypothesis 1. We will finally describe
the visualization of these results.

5.1 Findings
The most traveled route is from Peterburgskiy Neftyanoy Terminal
to Rotterdam, which took oil tankers on average six days and was
navigated 130 times. More details on the most common routes are
shown in table 1.

To answer the key question of this paper—whether ships take
longer when oil prices are low—we conducted the following anal-
yses. First, the trips were categorized as happening in a period of
either a low, normal or high oil price, according to the time spans
depicted in figure 2. If the arrival date was within a high-price or
low-price period, the trip was assigned to the high-price or low-
price group, respectively. To be able to draw a comparison, we
only considered routes that had trips in both the high-price and
low-price group. This reduced the total amount of trips included
in the analyses by 26.8% to 1250. Furthermore, it is essential to
only consider trips of loaded ships which actually intent to sell
oil. Therefore, only trips originating in oil exporting countries and
ending in non-oil exporting countries are taken into account. As
this analysis only covers Europe, the three biggest oil exporting
countries are Russia, Norway and the United Kingdom [14]. This
further reduced the number of trips to 712 (-43%).

The distribution of the trip durations by price period of the
remaining 712 is visualized in figure 8 and listed in table 2. Both
average and median seem to support hypothesis 1: During periods
of a low oil price, trips tend to take on average 142.86 hours, which
is 12.54% longer than during normal periods (126.94 hours). During
high-price periods, trips take on average 114.13 hours, which is
10.09% less than the duration during normal periods. The median
provides a result which is not as clear the average. With 124.80
hours, the median of high-price periods is only 5.14% higher than
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From To Trip count Travel duration [h]
Peterburgskiy Neftyanoy Terminal Rotterdam 130 148.45
Peterburgskiy Neftyanoy Terminal Primorsk 92 18.58
Rotterdam Peterburgskiy Neftyanoy Terminal 92 145.88
Peterburgskiy Neftyanoy Terminal Ust’-Luga 82 16.26
Kobenhavn Peterburgskiy Neftyanoy Terminal 81 65.95
Teesport Immingham 46 27.63
Peterburgskiy Neftyanoy Terminal Lysekil 43 93.6
Rotterdam Kobenhavn 38 102.8
Lysekil Peterburgskiy Neftyanoy Terminal 26 89.25
Rotterdam Teesport 26 99.31

Table 1: The most common routes sorted by trip count with average travel duration in hours
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Figure 8: Trip duration in hours by oil price period

the median of normal periods. The median trip duration of low-
price periods, too, is with 114.15 only 3.83% smaller than the one
normal periods.

As the average is more sensitive to outliers compared to the
median and the average shows a clearer result than the median, the
reason for the difference between the travel duration of high and
low-price periods could be mainly the result of outliers. This offers
room for two interpretations: on the one hand, the outliers could
be indeed events of loitering and hypothesis 1 would be correct. On
the other hand, the outliers could be the result of randomness or
noise within the data set.

We performed a paired t-test to evaluate the following two hy-
potheses:
Null-hypothesis 𝐻0: The average duration of trips during high-
price and low-price periods is equal, 𝑑𝑙𝑜𝑤 = 𝑑ℎ𝑖𝑔ℎ
Alternative-hypothesis 𝐻1: The average duration of trips during
low-price periods is greater than the one during high-price periods,
𝑑𝑙𝑜𝑤 > 𝑑ℎ𝑖𝑔ℎ

Duration Low Normal High
Average [h] 142.86 (+12.54%) 126.94 114.13 (-10.09%)
25% quantile [h] 60.06 (-22.90%) 77.90 65.47 (-15.96%)
Median [h] 124.80 (+5.14%) 118.70 114.15 (-3.83%)
75% quantile [h] 193.96 (+15.85%) 167.42 143.99 (-13.99%)

Table 2: Average, upper and lower quantile, and median trip
duration in hours by oil price period with relative difference
from values of trips within normal periods

Figure 9: Page 1 – Landing page

The result of this test is 𝑡 (151) = 4.07, 𝑝 = 0.93 · 10−5. As 𝑝 is
smaller than 𝛼 = 0.05, the null-hypothesis 𝐻0 can be rejected. This
means that the difference in the duration of trips during periods of
high and low oil prices is statistically significant.

5.2 Visualization
Figure 9 displays the landing page of our website. It contains only
the most basic information at a glance and allows its visitors to get
a quick overview of the results. The diagram in the center displays
the average time on sea during periods of a low oil price (blue on
the left) and periods of a high oil price (red on the right).

Figure 10 shows all the collected routes. Each of the routes can
be selected by clicking on it. After clicking, visitors can see the
ship trips that are associated with one route. By default, only a

7https://niclashaderer.github.io/oil-ship-tracking/
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Figure 10: Page 2 – Map with routes

pre-calculated “optimal” route will be displayed. By clicking on the
button on the top left, additionally the trip fragments extracted
from the AIS files are displayed. Because the second page is the
part that requires a lot of JavaScript, but is not even visible during
the initial page load, the second page gets lazy loaded to improve
the website loading time. The same is true for parts of the routes.
Only the first ten routes are loaded in by default. Every consecutive
batch of ten routes are lazy loaded when the user scrolls the table.

6 LIMITATIONS
Because of the five-week timeline of the project we could not eval-
uate everything we wanted to and some decisions we made at the
start of the project could not be reversed. In this section, we describe
some of the limitations8 to our approach and results.

6.1 Method
With our approach, we can only show a correlation between the oil
price and the trip times of crude oil tankers. We did not look into
other potential factors.

We also included all trips that took place during high-price or
low-price periods, respectively, in the calculation of the average.
That is, we did not analyze the difference for every single route on
its own. Our results are therefore more susceptible to randomness,
such as when tankers incidentally sail a very short route more often
when the crude oil price is low, but rarely when it is high.

6.2 Decoding
As mentioned in section 4.2, only AIS messages which do not span
more than one line in the input text file will be decoded. We realized
this too late and were, due to the constrained time and high utiliza-
tion of the cluster, not able to get a better approach running in time.
In the alternative implementation, we would have to pass entire
file streams to the AIS decoder instead of single lines. We struggled
with implementing this in Spark while not breaking distribution
and parallelization. The one working implementation took a really
long time and we decided to interrupt the computation at one point.
It was also very hard to debug without separate stdout and stderr
streams per user.

8What is worst, though, is that we did not find our favorite crude oil tanker Emerald
(IMO 9231224) in the data set.

Figure 11: Decoded type 5 messages

Figure 11 shows an estimation of the number of lost AIS type
5 messages based on data from 06/11/2014. The original data for
this day contained 3,266,668 type 5 messages, but our data pipeline
was only able to decoded 10,076 of them. This leads us to the con-
clusion that we only decoded around 0.3% of all type 5 messages
successfully. Because AIS type 5 messages are used to determine
the identity of the ship as well as the ship type, we most likely lost
a substantial amount of data points due to this error.

6.3 Crude Oil Price
We noted in section 2 that there are two big benchmarks for crude
oil, which determine their respective crude oil price: Brent andWTI.
Even though these prices correlate strongly, they show different
short-term fluctuations. For example, political events in the Mid-
dle East tend to have a greater impact on the Brent price, while
events in the US have a greater influence on the WTI price. For
our analysis, we used the WTI price. Perhaps Brent would have
been more appropriate because this is the benchmark that is used
in Europe—the region where most of our data comes from.

To determine periods of high and low oil prices, we used the
30-day and 10-day rolling average, respectively. This means that,
when sudden price changes appear within only a few days and
crude oil tankers adjust their behavior because of this, we might
not identify these periods as relevant for our analysis.

6.4 Budget
When calculating our budget, we added enough margin for error,
and do thus assume that we did stay within our proposed amount.
However, we used a lot more computational resources than orig-
inally planned. This had mostly to do with not having any expe-
rience with a fully utilized Spark cluster. Most of the queries we
were running took a lot longer than initially planned because of the
high utilization. Another problem was the stability of the cluster. It
happened more than once that we had to restart our job because the
Spark driver excited unexpectedly or the cluster had to be restarted.
As a result, we lost all the data that was processed up to that point.
To recude our losses in these events, we started computing smaller
batches of data.
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7 CONCLUSION & FURTHER RESEARCH
In this paper, we investigated if the trip duration of crude oil tankers
depends on the current crude oil price, such as to achieve better
market timing. The hypothesis was that such tankers take longer
to reach their destination port when the oil price is low and shorter
when the oil price is high. We described a data pipeline, imple-
mented on Apache Spark, that extracted trips of crude oil tankers
between oil ports from 2.3 TB AIS messages that were received
from 2014 to 2017. A lot of this data we could remove, since we
only needed specific messages, namely position reports, from spe-
cific ships, namely crude oil tankers, for our data analysis. The
remaining positions were connected to a total of 1708 trips.

The statistical test we performed on the trip durations showed
that there is a significant difference between oil shipments during
periods of a low and high oil prices. This tends to support the
hypothesis that oil tankers actually participate in loitering behavior,
but it requires future research to draw convincing conclusions.

Researchers (or students) that want to expand on our work can
consider various directions. First, our approach was not limitation-
free and it would be interesting to see if our results are reproducible
by other people when they avoid themistakes wemade (e.g., parsing
less than 1% of type 5 messages). Trajectory aggregation [2, 7, 10,
15, 16] could lead to better results during trip and route creation.
It would also be interesting to see if the hypothesis still holds
when high-price and low-price periods are defined differently, for
example with a higher resolution of oil price fluctuations of only a
few days. Furthermore, it would be interesting to see if it is possible
to “predict” the oil price based on the time ships are on sea. Thanks
to satellite-based receivers and more AIS receivers in general, there
is much more data available nowadays that also covers the ocean
and most parts of the world. This data then also includes the routes
between the Middle East and Europe. Future studies can check
whether similar results can be found there. Lastly, to get better
evidence for loitering behavior, it would be helpful to actually
recognize such behavior from the data. Approaches such as the
ones described in [5, 23] could be added to the data pipeline.
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Parsing/Filtering Cleaning Visualization Analysis/Evaluation Report
Florian 60% 0% 0% 0% 33.3%
Paul 20% 50% 50% 100% 33.3%
Niclas 20% 50% 50% 0% 33.4%

Table 3: Work distribution
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