
Report: The Sinking Netherlands

Jeren Olsen Kailhan Hokstam Reinier van Elderen

1. INTRODUCTION

1.1 Problem Motivation & Definition
As about one third of the Netherlands lies below sea level[2]

and climate change accelerates soil subsidence[5], it is im-
portant to monitor which specific areas of the Netherlands
are currently sinking and potentially take additional pre-
ventive measures. These measures can, for example, be
related to improving water management and helping with
urban planning. In order to identify these areas, we uti-
lize publicly available data of the Dutch terrain taken over
two time periods: 2007-2012 and 2014-2019. More specif-
ically, we analyze terabytes of point cloud data obtained
using LiDAR sensors from the Actueel Hoogbestand Neder-
land (AHN1)’s two datasets AHN2 and AHN3 to create two
height maps, which can be interactively inspected in a 3D
visualization. There are various challenges associated with
the analysis of these large datasets that requires large scale
data engineering techniques to be applied in order to process
the input data and arrive at an output data product that
can be used in a visualization. In the following sections, we
will first describe related work, which allows us to determine
our approach and formulate our research questions. Subse-
quently, we delve deeper into the input data, data pipeline,
output data product and visualization. Finally, we answer
our research question and list the contributions of our group
members.

1.2 Related Work

1.2.1 Data Limitations and Previous Analyses of AHN2
and AHN3

As the measurements for the AHN2 dataset have been com-
pleted relatively recently, namely in 2017, there is not an
extensive body of previous works where AHN2 and AHN3 were
used to indicate elevation changes over the entire Nether-
lands. However, a 2017 thesis project conducted at the Uni-
versity of Wageningen provides the most comprehensive as-
sessment to date in the differences between the AHN2 and
AHN2 datasets. The thesis project also provides several in-
sights in the quality of the datasets that can help us in-
terpret our results when answering our own research ques-
tions [6]. The key takeaways from this thesis project in-
dicate that the AHN2 dataset possesses considerable instru-
mental artifacts acquired during data collection, such as el-

1https://www.ahn.nl/

evation change patterns corresponding to helicopter flight
paths. The AHN2 dataset was shown to deviate significantly
from measurements of elevations of terrain gathered from
particular study areas while AHN3 was more reflective of ac-
tual measurements of elevations of terrain. While the eleva-
tion differences of many regions can be attributed to instru-
mental variation, there were also some notable changes in
landscapes attributed to weathering and farming activities.
These included sunken dunes in the West Frisian Islands
and risen fields in Oostkapelle. We will use these findings
as a basis of comparison in our own research. Overall, it
was concluded that subtracting AHN2 heights from AHN3 in
order to determine differences in elevation levels of terrain
is unlikely to yield satisfactory results [6]. Additionally, per
the AHN2 Quality Document, AHN data carries a maximum
systematic error and maximum random error of 5 centime-
ters, making it unreliable in determining elevation changes
of only a few centimeters [4]. It is important to take these
findings and limitations into account when interpreting our
own results.

1.2.2 Height map
There are many height (or elevation) map visualizations of

the AHN2 and AHN3 datasets available on the internet such as
the point-cloud viewer at ahn2.pointclouds.nl. However, we
were unable to find any examples of height maps comparing
the two datasets or using a gridding pattern that would
lend itself well to the point sampling approach we wanted
to take. In addition, due to the resource constraints for
our final visualizations, we needed to create something less
detailed than the point cloud based height maps. Therefore,
we moved forward with the intention of creating a novel
height map tailored to our resource constraints and research
question.

1.2.3 Visualization
As part of this project, we have created a visualization

based on height maps that can be used to gain insight into
the elevation of the terrain of The Netherlands. Various
approaches exist to visualize height maps. A first simple
approach is transforming the cells of the height map to a
gray-scale image. In this case each pixel represents a cell
and the intensity of a pixel can represent the height of the
cell. A benefit of this approach is that an image can be gen-
erated ahead of time. Afterwards, this image only needs to
be transmitted from the server to the client and displayed by
the client therefore the client has a relatively small amount
of work to do. In our case, the height map data comes
from terrains with three spatial dimensions and we think

1



it could be more intuitive and informative to also visual-
ize this data in three spatial dimensions. A comparison of
the user experience with respect to how intuitive and in-
formative a visualization in two compared to three spatial
dimensions is, is left outside of the scope of this project. Re-
lated work that deals with rendering large amounts of data
in three dimensions is Potree. Potree is a WebGL based
point cloud renderer for large point clouds[3]. WebGL allows
web programmers to create interactive 3D graphics inside
web browsers[1]. Potree specifically uses Three.js as the
library to use WebGL to interact with the browser2. While
we could represent the height map as individual points and
use Potree to render these points, we decided against this
which will be further in explained in Sec. 2.3. However,
because of the level of detail that Potree is able to render
with Three.js, we decided to also use this it to build a
visualization.

1.3 Research Questions
This leads us to the following research questions:

1. Can we apply a point sampling pipeline to the AHN2

and AHN3 datasets to get a comprehensive overview of
sinking regions of the Netherlands?

2. For which number of cells for a height map could an in-
teractive 3D visualization while maintaining 60 frames
per second be rendered?

2. PROJECT SETUP
In this section, the input data, the implemented data

pipeline, output data and, lastly, the visualization are de-
scribed and related decisions motivated.

2.1 Data Investigation
The two datasets, AHN2 and AHN3, contain 3D points clouds

in LAZ files, a compressed version of the readily readable LAS

format which is typically 10x larger in storage size. The
points were obtained using LiDAR technology, projecting
lasers from helicopters onto the Dutch land. The measure-
ments for AHN2 were taken between 2007 and 2012 and are
shown in Fig. 1. The measurements for AHN3 were made
between 2014 and 2019 and are shown in Fig. 2. The differ-
ence in time of measurement between a point from AHN2 and
a point from AHN3 can vary between 5 and 10 years. The
point clouds in each dataset have point densities between 6
and 10 points per square meter, with AHN3 having a higher
density than AHN2. Each LAS file contains millions of points,
each with an X, Y, and Z coordinate, classification, scan an-
gle, GPS time and other dimensions. It is important to note
that all points in the AHN2 dataset possess a classification of
0, making it impossible to filter the AHN2 dataset based on
point type (ie. ground, water, vegetation, building) without
additional processing and potentially machine learning. In
contrast, the majority of AHN3 points possess classifications
that are not all 0. Each file also contains a header with in-
formation such as total point count and coordinate ranges
that can be read without reading all points in the file.

The AHN3 dataset consists of 1375 files totalling 2568 GB
of compressed point cloud data. Each file corresponds to
a 5 x 6.25 km rectangle of land within the borders of the
Netherlands. The AHN2 dataset contains 41438 smaller files

2https://threejs.org/

totalling 1747 GB of point cloud data. During initial data
investigations, due to the larger size of the AHN3 files, it
was observed that reading in entire files would occasionally
overload the memory. Upon further inspection of the doc-
umentation of the laspy Python library, we overcame this
issue by reading each LAZ file in chunks of points using a
chunk iterator.

Figure 1: AHN2 Measurement years

Figure 2: AHN3 Measurement years

2.2 Height Map Pipeline
The two data sets cannot be compared directly since for

a point with specific X and Y coordinates in one dataset
we cannot necessarily find a point with the same X and Y

2



coordinates in the other dataset. To be able to compare the
two data sets the data has to be turned into a format that
is equal for AHN2 and AHN3. To achieve this the map will be
divided into grids that are equal for both datasets.

Our data pipeline is can be run in parallel for the files
in each of the datasets. This is done since the files in each
of the datasets already consist of equal sized areas. This
means grid cells can be created within these files without
misaligned borders as long as the grid size divides the length
and width of the file area.

2.2.1 Sampling
The first step of our data pipeline is sampling the points.

LAZ files can be quite large and are much larger decom-
pressed. When reading some of the files this would fill the
memory and crash the Python process. To prevent this the
files are read in chunks using the laspy chunk iterator

function. With this function we read one million points at
a time. The next step is to sample a number of points from
a file. Since we know how large the area is of each file we
divide the number of points by the area size to know how
many points a file contains per square meter. With this we
then sample approximately one point per hundred square
meters from a file. This number is chosen to keep the time
it takes to calculate the grid cell values reasonable.

2.2.2 Gridding
The AHN2 and AHN3 use a global coordinate system in me-

ters which is equal for both data sets. Using these coordi-
nates the two data sets can be mapped into grid cells. We
have chosen to divide the map into fifty by fifty square me-
ter grid cells. This would result in approximately seventeen
million grid cells assuming each file has values for each grid
cell. With the sampling of one point per hundred square
meters this results in a twenty-five point sample per grid.
To create the grid cells the coordinate values of a point are
divided by the chosen grid size and floored to an integer
value. This results in a list of height values with an X and
Y grid cell coordinate.

The data sets contains some outliers of faulty data points.
To remove these points at this stage for each grid cell sample
the points the average is taken and the points that are larger
than 3 times the standard deviation are removed. After this
the mean is taken and stored as the height value for this
grid cell. All files of a dataset are then combined into one
large list of grid cell coordinates with height values.

Finally, the two lists of grid cells of the two datasets can
be compared to get the difference between the two datasets.

2.2.3 Computation time
In the first few weeks a lot of computation time was used

to analyse the data and test different methods for the pipeline.
The pipeline took roughly 12 hours to run on the AHN2

dataset on the shared cluster overnight. For AHN3 this was
a different story, with this dataset worker nodes crashed
regularly. This made it difficult to exactly time the compu-
tation. It took roughly 3 days including some time between
restarting the pipeline. These issues are most likely caused
by the size of the AHN3 files. Finally, transferring the data to
the format for the visualisation took 7 hours on the shared
cluster.

2.3 Visualization

As previously discussed, we used Three.js as the library
to use WebGL to interact with the browser. At a high-level,
this library allows a developer to instantiate a camera that
uses perspective projection, of which the position and rota-
tion can be controlled by user input, and instantiate meshes
in a scene that will be rendered. Specifically, as we are try-
ing to draw as many vertices as possible, we make use of the
BufferGeometry3 class for defining what will be rendered.
Using BufferGeometries we can store meshes and shaders
within preallocated buffers and pass these to the GPU. This
way of passing data to the GPU is more efficient compared to
using higher-level Three.js API’s like a BoxGeometry at the
cost of having to calculate vertex positions for the meshes
ourselves and manage the buffers.

The meshes rendered are cuboids. We decided on render-
ing cuboids instead of points as we expected these to look
better at any mesh density and be more intuitive to inter-
pret as an approximation of terrain certainly in conjunction
with the sea level simulation which will be discussed later.
Using cuboids means that we need a width, length and a
height value for the dimensions of the cuboid and a X and
Y coordinate for the position of the cuboid. These values
are obtained from the height map. Ideally, a cuboid could
be drawn for every cell in the height map, as this allows for
the most detail in the visualization, however from experi-
mentation this does not allow us to maintain 60 frames per
second. Therefore, we sample the height map in a grid-like
pattern, where we specify the number of columns and rows
this grid has. The number of columns and rows combined
with the bounds of the height map determines the width and
length of the cuboids and the height value from the height
map naturally translates to the height of the cuboid. The
specific column and row of a grid point determines the X and
Y coordinates of the cuboid. This number of columns and
rows can be thought of as a sampling resolution. The higher
the number of columns and columns, the higher resolution
meshes we obtain and the more detail is visible.

After we know the height, width, length, X, and Y coordi-
nates of the cuboids, we translate this information to vertex
positions corresponding to triangles that a GPU can draw.
Based on the grid we have created before, we group a set
number of neightbouring grid points together. This group
is called a ’chunk’ and we give it an unique identifier based
on the column and row number of the first grid point of this
group. The vertex positions are then stored in JSON files.
Additionally, as not all points in a chunk in the grid have
data associated, e.g. if (all) points in the chunk are in the
ocean, we keep track of the number of vertex positions and
the minimum and maximum X, Y, and height values per
chunk and overall. We store this data in a metadata JSON

file. When a browser client visits our visualization it can
therefore know which chunks it can and will need to fetch as
well as adapt the default scaling of Three.js to that of the
chunks. As fetching all chunks at once overloads the client
from our experimentation, we only fetch at most ten chunks
per frame.

The height value of a cuboid can be quite hard to un-
derstand if viewed from directly above the cuboid. To help
the user’s understanding of height values we implemented a
simple shader that colors pixels using a mix of two colors
with different ratios depending on the height of the pixel in

3https://threejs.org/docs/#api/en/core/BufferGeometry

3



the cuboid. The higher the pixel, the lighter the color is
and we have picked contrasting colors for AHN2 and AHN3 to
make it easier to distinguish between them.

Figure 3: Overview of visualization, top-down

Because we want a user of our visualization to be able
to get an idea of changes in elevation for the whole of the
Netherlands, but also be able to have a detailed view of a
specific area if it is deemed interesting, while also maintain-
ing 60 frames per second, we have implemented different
levels of granularities per chunk. We also refer to this as
dynamic zooming. This means that a part of the visual-
ization, a set of chunks, has a higher sampling resolution
than another part. In the current iteration of the project,
the base resolutions is 214 cuboids and the high resolution
is 220 cuboids. It is relevant to note here that we are al-
ways rendering two sets of cuboids: one for AHN2 and one
for AHN3. This difference in number of cuboids practically
means that 1 cuboid in the high resolution is 64 times more
detailed than a 1 cuboid in the base resolution. The other
side to this is that 1 cuboids in the base resolution can be
obtained by averaging 64 high resolution cuboids. There-
fore, by choosing specific sampling resolutions and specific
numbers of points that end up in a chunk, we can have the
identifiers for the chunks be the same, which is relevant for
dynamically switching between granularities per chunk.

Switching between the base resolution and higher resolu-
tion can be done by updating a simple array. As previously
discussed, we use BufferGeometries. To obtain the most
performance out of these, it is important to declare an ar-
ray of a fixed size and pass it to a BufferGeometry and then
only modify the values within the array e.g. not resizing it.
An important observation here is that arrays in JavaScript
get initialized to 0 and the number of 0’s in the array seemed
to have a negligible effect on performance compared to the
number of draw-able triangles within the array. Following
this, we can assign a fixed part of the simple array to a chunk
identifier, based on the number of vertex positions for that
chunk identifier for the higher granularity as stored in the
previously mentioned metadata files. If we are rendering the
higher granularity version of the chunk identifier we fill up
the fixed part of the simple array with the corresponding
values. When switching to the lower granularity version of
the chunk identifier we fill the fixed part of the simple array
up, up until we have have corresponding values, after which
we can fill the rest of the part of the simple array assigned
to the chunk identifier with 0’s.

The chunks that have a higher sampling resolution are
determined by a condition on their position relative to the
current position of the camera, e.g. the user. This condition

consists of two parts. First, we check if the camera is not too
high, if so, no chunks are rendered in the high resolution.
Second, we check for the distance in the X and Y plane.
If the position of the chunk is within a certain radius, it
will use the higher sampling resolution. This certain radius
is primarily determined by the average number of frames
over the last 50 frames. If the average is higher than 60
frames per second the radius will increase, if it is lower it
will decrease. We also set a minimum and maximum range.
This minimum ensures some detail can always be seen, while
the maximum prevents the radius getting significantly too
large, which can happen when focus is lost in which case
performance will drop significantly when focus is regained.

4



Figure 4: High resolution overview of visualization, side-view

Finally, we implemented a slider that controls the height
of a simple plane representing the sea level. The slider shows
the height of the plane and changing the height shows which
parts of the Netherlands would be under water given that
height. No further ’flooding’ logic has been implemented.
This can be seen in Fig. 5.

Figure 5: Sea level

2.4 Data Pipeline
Besides the visualization, the above has been implemented

using Databricks notebooks with the 10.4 LTS runtime. In
Fig. 6 a high-level overview of our data pipeline is shown.

Figure 6: Overview of data pipeline

2.5 Output Data Product
The final data product consists of three datasets, two for

the height maps and one containing the difference in height
between the datasets. The AHN3 grid list contains 14211438
points and the AHN2 contains 14230067 points. The differ-
ence of height map contains 14026974 values meaning there
where that many equal grids in AHN2 and AHN3. The data still
contains some inconsistencies since the difference of height
values range from −114 to 368. It is relevant to note here
that this these height values are already averages from multi-
ple data points and the original data thus had more extreme
values.

Fig. 7 illustrates the overall tiling results that are the
output of our data pipeline. In general, it is noted that
the colored indications of risen and sunken tiles are noisy.
However, some areas do have distinct characteristics, such
as the center of the Netherlands, the national forest, being
particularly blue, while most coastal islands and dunes are
red. The center of the Netherlands is likely related to either

5



growth of vegetation between the two time periods or that
the AHN2 version of this was recorded during the winter when
the trees had less volume.

Figure 7: Overall Tiling Results. Height changes
given in meters.

As can be seen in Fig. 8 and Fig. 9, our model was able to
reflect the reality that the sand dunes in the West Frisian Is-
lands have changed significantly between the collection dates
of the AHN2 and AHN3 datasets. This phenomenon was also
observed in the thesis project conducted at Wageningen Uni-
versity in 2017 [6].

Further, it appears that it is predominantly the north-
most shores of these islands which have sunken. This can
also be visualized using our 3D model in Fig. 10 where,
saving for the outliers, the outer shores of the Islands (AHN2,
blue) have sunken while inner sections (AHN3, orange) seem
to have risen.

Another region of interest highlighted by Meijeren’s work
lies in Oostkapelle. Here it was speculated that farmers had
been adding new soil to their land to even it out, causing
their fields to have risen [6]. This also appears to be re-
flected by the results of our sampling pipeline and can be
seen in Fig 11, where much of the land has risen by 0.25 to
1 meter. Both illustrations in this figure also highlight some
of the height changes that are due to instrumental varia-
tion rather than changes in elevations of the terrain. This
is apparent in the diagonal striations seen in both illustra-
tions. When looking for these same height characteristics in
the 3D visualization, it becomes more challenging to make
a comparison as it’s difficult to determine the exact regions
present in Fig. 11.

3. CONCLUSIONS
With regard to our first research question, taking the dif-

ference between AHN2 and AHN3 datasets can indeed roughly
reflect areas of the Netherlands that have experienced sig-
nificant geographical changes. However, are large sections of
the Netherlands sinking? It is not possible to make a com-
prehensive assessment of this with our approach, though it is
apparent that particular regions have certainly experienced
sinking such as the West Frisian Islands. To improve upon
our model’s ability to identify sinking regions, it would be
beneficial to utilize points of the same class, such as ground,
and to increase our point sampling density.

For our second research question, an answer is that it is
possible on a 2021 MacBook Pro 14” M1 Pro with 16GB of

RAM to render the high resolution map in full, while having
more than 60 frames per second. In this case 458334 cuboids
are rendered for AHN2 and 461433 for AHN3. Given that The
Netherlands has a land area of approximately 33670km24,
a single cuboids represent approximately 0.073km2. How-
ever, on a 2015 MacBook Pro 13” 2.7 GHz i5 with Intel
Iris Graphics 1600 1536 MB GPU and 8GB of DDR3 RAM,
60 frames per second could not be maintained on the base
resolution map. Additionally, on the 2021 MBP when ren-
dering the visualization with dynamic zooming enabled and
constantly moving around, leading to different chunks be-
ing rendered in higher resolution every frame, only approxi-
mately 19000 cuboids could be rendered, while having more
than 60 frames per second.

The results for the second research question show that our
implementation of dynamic zooming can introduce a perfor-
mance hit so large that better performance can be obtained
by rendering all of the high resolution chunks compared to
rendering some base resolution chunks and some high reso-
lution chunks when using dynamic zooming. Enabling dy-
namic zooming requires the browser client to perform extra
work. This work can be separated in network-related and
GPU-related. The network-related work involves fetching
chunks (which are recognized as not modified and therefore
do not need to be re-transmitted) and parsing text as JSON.
It might be possible to transmit data in another format
that can be more efficiently passed to the GPU. Three.js
currently does not seem to support this in any of its high-
level APIs and this would thus require future research to
look into more directly interfacing with WebGL. The GPU-
related work involves updating the specific buffers for AHN2

and AHN2 that are passed to the GPU and then rendering
these buffers. It is potentially important to note that a spe-
cific needsUpdate flag for the buffer needs to be set for the
updates to the buffer to be visible. We hypothesize that
because there is only a single buffer for each of the datasets,
every time there is an update to a part of this buffer, the
whole buffer is passed to the GPU and the whole buffer
is re-rendered. This re-rendering could be quite expensive
and future research could look at amortizing the cost of re-
rendering by not re-rendering every time there is a single
update to the buffer. This would, as an example, be pos-
sible by only setting the needsUpdate flag after a certain
number of updates to the buffer. Another option that can
be looked into is creating separate buffers per chunk of the
data instead of a single buffer for all data, so that only
smaller meshes would need to be re-rendered.

Another observation with regards to the results for re-
search question 2, is that the resolution a user can zoom
again would need to be extended if the visualization is to
render at 60 frames per second on more devices. The code
for this project could be extended to support this.

4https://data.worldbank.org/indicator/AG.LND.TOTL.K2?locations=NL

6



Figure 8: Ameland Region - Comparing our results to those of H. van Meijeren (right). Height difference
results from our pipeline are visualized on the left.

Figure 9: Height differences between AHN2 and
AHN3 for Terschelling island region.

Figure 10: High resolution visualization of the West
Frisian Islands using 3D model

7



Figure 11: Oostkapelle Region - Comparing our results to those of H. van Meijeren (right). Height differences
results from our pipeline are visualized on the left.

8



4. CONTRIBUTIONS
Task Jeren Kailhan Reinier
Data investigation 33% 33% 33%
Data pipeline 45% 10% 45%
Visualisation 0% 100% 0%
Report 33% 33% 33%

Table 1: Contributions

5. REFERENCES
[1] K. Matsuda and R. Lea. WebGL programming guide:

interactive 3D graphics programming with WebGL.
Addison-Wesley, 2013.

[2] Q. Schiermeier. Few fishy facts found in climate report:
Dutch investigation supports key warnings from the
ipcc’s most recent assessment. Nature,
466(7303):170–171, 2010.

[3] M. Schütz et al. Potree: Rendering large point clouds
in web browsers. Technische Universität Wien, Wiedeń,
2016.

[4] N. Van der Zon. Kwaliteitsdocument ahn2. Delft:
Rijkswaterstaat, 2013.

[5] T. van Dijk. The netherlands is sinking fast, Nov 2018.

[6] H. van Meijeren. Assessing the differences between
Dutch elevation datasets AHN2 and AHN3. PhD thesis,
MSc thesis, 2017.

9


	Introduction
	Problem Motivation & Definition
	Related Work
	Data Limitations and Previous Analyses of AHN2 and AHN3
	Height map
	Visualization

	Research Questions

	Project Setup
	Data Investigation
	Height Map Pipeline
	Sampling
	Gridding
	Computation time

	Visualization
	Data Pipeline
	Output Data Product

	Conclusions
	Contributions
	References

