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ABSTRACT
Affected by the COVID-19 outbreak, industrial production
and human social activities have been significantly reduced,
leads to decreasing in polluting gases in the atmosphere. In
order to visualise the data on gases affected by the coro-
navirus, the main target of this project is to analyse and
use the data captured by Tropospheric Monitoring Instru-
ment(TROPOMI) to create a visualisation of the air quality
change processes on both global and regional scale. In the
project, the final data is stored in GeoJSON files after data
processing on Databricks. The data pipeline starts with a
selection from raw data, data quality assessment and data
cleaning, integration and calculation. After removing the
data which qa value is lower than 0.5 (0.75 for NO2) and
which on the ocean and Antarctica, and averaging points
with similar latitude and longitude, the data size was de-
creased by over 99.6%. The final product is a global visual
interactive map of selected gas concentration distribution
between 2019, 2020 and 2021 using Mapbox.

1. INTRODUCTION
The COVID-19 lockdown and travel restrictions world-

wide did lead to the emissions drop of key air pollutants
in 2020, especially in urban areas. According to the World
Meteorological Organization (WMO) ’s Air Quality and Cli-
mate Bulletin, though areas such as China, Europe, and
North America have a reduced concentration of aerosol, many
parts of the world still do not meet the aerosol concentra-
tions of WHO guidelines. To improve the air quality in the
long term should still be human’s sustained goal in the fu-
ture. During COVID-19, people gradually accept life with
the stay-at-home and work-from-home pattern, which could
significantly affect air pollution. Currently, countries are
gradually emerging from lockdowns which will probably in-
crease the air pollution worldwide. This paper will conduct
visualization based on the TROPOMI data from 2019 to
2021. Therefore, in this project we visualized the air pol-
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lution dataset compared between before, during, and after
COVID-19 lockdown.

Tropomi is a Dutch-made satellite instrument on board
the Copernicus Sentinel-5 Precursor satellite. It can accu-
rately survey air quality and provides the data source of this
paper. The main objective of the Copernicus Sentinel-5P
mission is to perform atmospheric measurements with the
high Spatio-temporal resolution to be used for air quality,
ozone & UV radiation, and climate monitoring & forecast-
ing. The main pollutants, such as aerosol, sulfur dioxide
(SO2), nitrogen oxides (NOx), carbon monoxide (CO), and
ozone (O3), are usually used for evaluating air quality. In
this paper, we decide to generate visualization on NO2, SO2,
CO, and CH4 gas.

Some literature has shown the changes and analysis of
pollutant gases from 2019 to 2020 based on TROPOMI
data. Therefore, this project will add 2021 data to con-
duct a deeper investigation. As the final data visualization
product, we decide to provide a static html. There will be a
website to show the change of various types of gas concen-
tration worldwide.

In this report, section 2 contains a literature review re-
lated to air pollution, TROPOMI data, essential consider-
ations, and visualization. Section 3 lays out the research
questions, which help to clarify the goals and organization
of this project. Section 4 gives a detailed description of the
data investigation, data analysis and the pipeline,as well as
the visualization website and analyses the visualisation out-
comes. The cloud cost is calculated in Section 5. Section 6
provides a summary of the project, also addressing to the
problems raised in section 3, analyzes the challenges faced
and lessons learned, and lists flaws and improvements.

2. RELATED WORK

2.1 Key Pollutant Gas
The hazards of air pollutants have a wide range of conse-

quences. Respiratory illnesses and physiological dysfunction
are the most serious threats to the human body. The im-
pact of air pollution on weather and climate is likewise sig-
nificant. Acid rain, for example, is rainwater that contains
sulfuric acid. As a result, crops are ruined, and buildings
are corroded and polluted.

Carbon monoxide (CO), nitrogen dioxide (NO2) and sul-
phur dioxide (SO2) are all regarded major air pollutants in
cities because they are directly discharged into the atmo-
sphere by fossil fuels burned in power plants and automo-
biles.
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The principal source of CO is incomplete combustion of
carbon-based fuels. The transportation sector plays a key
role for more than 80% of all CO emissions. When the
heating system is turned on, as well as in the petroleum
refining, chemical production, and other industries, CO is
released [5].

NOx is formed during combustion when nitrogen and oxy-
gen gases react in the air, especially at high temperatures.
Traffic accounts for around half of the output, with the rest
coming from households and industry [11].

SO2 is mainly generated from the combustion of sulfur-
containing fuels (such as coal and petroleum), the produc-
tion process of chemical, oil refinery and sulfuric acid plants,
as well as electricity generation from power plants.

Despite the fact that methane (CH4) is not a hazardous
chemical, it is a greenhouse gas that contributes significantly
to global warming. It is generated when organic material
breaks down or decays, and it can be released into the at-
mosphere through natural processes such as plant decay in
wetlands or human operations like oil and gas extraction
and waste management.

Overall, combustion activities in industry, as well as au-
tomobile traffic, are the main producers of air pollution.
According to the source of these gases, human behavior will
have a greater impact on those hazardous gases than on CH4

[17].
By analyzing air pollution in terms of seasonality, we can

deduce the presence of elevated levels during the heating
season, as well as low levels throughout the summer season.
It follows a regular pattern that air pollution was reduced
when the temperature was high, the wind speed was low,
and the humidity was low [3].

2.2 Impact of COVID-19 on Air Pollution
The aim of this experiment is to show how COVID-19

affects air pollution. As mentioned in Section 2.1, gas emis-
sions are related to the frequency of human activity, and the
spread of COVID-19 has prompted many governments to
enact blockade policies, so the air pollution problem should
diminish in 2020 when COVID-19 broke out, and polluting
gas emissions should increase in 2021 when countries lift or
relax their blockade policies.

Janet et al. (2020) studied gas emissions in China during
the COVID-19 period of November 2019 to April 2020 [13].
Compared with the previous winter, there is an increase in
aerosols over most of Northeastern and Central China. At
the same time, NO2 concentrations declined sharply. The
contributors to increased atmospheric particulates may in-
clude inflated industrial production and low wind speeds. A
study conducted by Mahato and Pal (2020) in India claimed
that after forced restrictions on outdoor activities, the con-
centrations of PM2.5, NO2 and CO levels in the outdoor
air reduced during the lockdown phase, and the air pollu-
tion levels dropped rapidly which sparked the discussions
of the lockdown being an effective solution to control air
pollution [12].

2.3 Important considerations
Before visualizing the TROPOMI data, it is necessary to

consider all factors that influence the air pollution pattern
and concentration, influencing the scope of the data selec-
tion in this project. All potential sources of emission, pollu-
tant chemistry, transport, and bias in measurement and me-

teorological and environmental conditions would influence
the air pollution condition [2].

According to the Copernicus program, it is essential to
consider the data quality related to cloud cover. Cloud ob-
scures the accuracy of the NO2 concentration, which will
lead to flawed estimates [4]. Moreover, in the Product Read-
me File of NO2, qa value > 0.75 is a recommend pixel fil-
ter, which could remove cloud-covered scenes (cloud radi-
ance fraction > 0.5), partially snow or ice-covered scenes,
errors, and problematic retrievals [8].

Regarding to Section 2.1, the weather impact the air pol-
lution concentration. According to Tijl Verhoelst ’s research,
NO2 concentrations are highest in the winter and summer
(mostly December and June) and minima near the equinoxes.
There is a seasonal cycle, with the largest values observed
in the winter of the Northern Hemisphere [19].

2.4 Visualization
As for all Sentinel missions, the Sentinel-5P products are

freely available to users via the Copernicus Open Access
Hub. In 2016, Nicolas et al. gave a thorough description of
the operational TROPOMI SO2 algorithm and the S-5P SO2

L2 Algorithm Theoretical Basis Document v1.0 [18]. Yuping
et al. (2019) analyzed the seasonal variable characteristics of
the CO total column from June 2018 to May 2019 in China
based on the TROPOMI dataset [10]. Their analysis of the
CO curve trends by region provides some ideas for visuali-
sation. In 2020, Lerato Shikwambana et al. used the Earth
Engine Code Editor and the QGIS software to analyze SO2
and NO2 TROPOMI OFFL datasets in South Africa. The
datasets period is from December 2018 to September 2019
[16]. In 2020, Bauwens et al. assessed the impact of the coro-
navirus outbreak on NO2 pollution using TROPOMI and
OMI observations [1].The Atmospheric Toolbox was devel-
oped for the European Space Agency (ESA) by S&T Corp
in partnership with EUMETSAT and the Royal Belgian In-
stitute for Space Aeronomy. Tropomi (Sentinel-5P) is one of
the support data to the toolbox. In addition, many helpful
visualisation examples can be found on Github, and Mapbox
Javascript API also provides the tools to create and share
interactive web maps with static html.

3. RESEARCH QUESTIONS
The object of this project is to explore the impact of the

COVID-19 pandemic on the content of multiple pollutant
gases in the troposphere through data visualization. The
raw data need to be dealt with comes from TROPOMI,
which the file are in NetCDF type. In order to present
the best results, the following issues were raised when per-
forming the project design and they need to be investigated
during the project design process.

• Which variables are we interested in and how to filter
out the most significant data?

• What is the type and size of the file after data pro-
cessing, and how is these data used for visualization?

• What are the factors that affect the pollutant gas level,
how to show these considerations in visualization?

• How to visualize the impact of the severity of the
COVID-19 on the pollution gas content, and how is
it being affected?
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One hypothesis would be that as the pandemic spreads,
each country experienced varying degrees of lockdown, there-
fore, the suspension of activity at industrial enterprises and
transportation facilities, each pollutant level should show
reduction.

These concerns and hypothesis were considered in the pro-
cess of accomplishing this project, and the solutions and con-
sequences will be shown in the next section. The conclusion
section will include a summation.

4. PROJECT SETUP
In this project, we investigate the global impact of activ-

ity reductions resulting from the spread of COVID-19 on air
pollution. For this purpose, we use the polluting gas data
generated by the TROPOMI onboard the Sentinel-5 Precur-
sor (Sentinel-5P) satellite, launched in October 2017. Settin
up TROPOMI aims to collect the best quality data and col-
lect data for a more extended period in air quality and cli-
mate research. The visualization of the TROPOMI dataset
is conducive to meteorological scientists to observe climate
and air quality changes to ensure that the best scientific
data will influence climate research and policy formulation
in the future [9].

4.1 Raw Data Investigation

4.1.1 TROPOMI Data
TROPOMI data set consists of the Level 2 products. The

Level 2 products contain the gas of ozone, methane, formal-
dehyde, aerosol, carbon monoxide, nitrogen dioxide, and sul-
fur dioxide. The TROPOMI datasets are consist of Near-
Real-Time stream (NRTI), Off-Line stream (OFFL), Repro-
cessed File stream (RPRO), and the Cloud Optimised Geo-
TIFF (COGT) files.

NRTI data stream is available within 3 hours of sense but
may be incomplete or have quality defects. The OFFL data
is generally available about a week after the NRTI data,
and RPRO is the best quality version. In this project, we
decided to observe the air quality changes between 2019 and
2020. However, the RPRO has much fewer data compared
to the NRTI and OFFL files. Some gases file only contains
the data in 2018 or 2019. NRTI, OFFL, and RPRO are in
the netCDF file format. COGT files are in the TIFF image
file format, generated from NRTI, OFFL, and RPRO data.
COGT contains the image files, which have less other gas
information. As a result, in this project, we decide to study
and analyze the gas data of OFFL files.

OFFL folder contains NetCDF files for multiple gases
from 2018 to 2021. The netCDF files are set up with group
hierarchies, the METADATA group and the PRODUCT
group, which store scanline (which indicates the dimensions
of the satellite’s flight direction), ground-pixel, time, corner,
layer, longitude, latitude, quality value, and value array, etc.
This project will only keep the most important data like the
latitude, the longitude, the quality value, and the value ar-
ray.

Through the list of S5P/TROPOMI Level 2 data prod-
ucts, data of CO, CH4, Tropospheric NO2 and SO2 would
be the domain of interest in this project. Data processing
in the OFFL stream from 2019 to 2021 is focused on.

• Methane (CH4). The file contains about 900,000 val-
ues on the column averaged dry air mixing ratio of
CH4.

Figure 1: Graphical description of the generic struc-
ture of a Level 2 file.

• Sulphur dioxide (SO2). There are approximately 1,80-
0,000 values on the mole content of SO2 in the atmo-
sphere.

• Carbon monoxide (CO). The file also contains about
900,000 values, which is the mole content of CO in the
atmosphere.

• Nitrogen dioxide (NO2). There are 1,800,000 values
per variable, the variables are the mole content of tro-
pospheric vertical column of NO2, the averaging kernel
and troposphere air mass factor.

Figure 2 shows qa value distribution in one piece of NetCDF
file. As we can observe from the figure, each NetCDF file
only represents part of the time of the day and part of the
area of the whole world. If we want to read for complete
one-day data, we must scan all the NC files in the same-day
folder. As we mentioned previously, qa value will influence
the data quality. By deleting the substandard qa value, the
step will filter out most of the points. Figure 3 shows the
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Figure 2: NO2 NetCDF-file qa value distribution
within range of (0,1) in 2019

Figure 3: NO2 NetCDF-file qa value distribution
within range of (0.75,1) in 2019

qa value distribution within the range of (0.75, 1). The re-
sult gives evidence that not every coordinate is meaningful
and valuable to the project. We can also observe that only
the country-level coordinates are detected. There also con-
tains the point which is located on the ocean and place with
no countries. Also, above the previous introduction, though
the OFFL is more cleaning than the raw data set NRTI,
there are still some meaningless and wrong values inside the
dataset. All the above observations provide the idea and
evidence to the data extraction section.

4.1.2 COVID-19 Data
The Oxford COVID-19 Government Response Tracker

(OxCGRT) [14] collects information on several different com-
mon policy responses governments have taken, scores the
stringency of such measures, and aggregates these scores
into a common Stringency Index. The data set collecting is
an ongoing project, which has been collected since January
21, 2021. The OxCGRT is a country-level data, it contains
Entity (country name), Code (country code), Day (time),
stringency index(government response stringency index) four
attributes. The OxCGRT data set is a CSV file format that
can be easily read and analyzed by Spark. Below is the visu-
alization of the Netherlands government response stringency
index in 2020 and 2021. Line 2021 only has the data to Oc-
tober because the newest version of the data set is October

2021.

4.2 Data Process Pipeline
Based on sections 4.1.1 and 4.1.2, we will introduce how

to extract necessary information from the raw data. The
algorithms designed for this project should first test on the
small dataset. After getting the program’s correct and suc-
cessful execution, the demo program can be applied in the
databricks environment. In this way, we can guarantee both
the correctness of the algorithms and the safe use of the data
bricks. The algorithm mainly contains three steps. They are
data reading and import, data extraction, writing to result
to JSON and GeoJSON.

4.2.1 Data reading and import
There is a directory structure in the dataset. The system

helps users and programmers to apply data discovery. This
directory structure is based on the filename and is as follows:
”XXXX/PPPPPPPPPP/YYYY/MM/DD.” XXXX means
processing stream (NRTI, OFFL, COGT), PPPPPPPPPP
means Product identifier, YYYY means year, MM means
month, DD means Day. For example, ”OFFL/L2 NO2 /
2019/10/01/”. Each gas in the project will show as a month
unit, so the first preparation before parallelization is to read
all the file path names into a list. In the reading file section,
the project in this paper chooses the os (Miscellaneous oper-
ating system interfaces) package. It is also necessary to pay
attention that files don’t end with ”.nc.” After appending
all the NetCDF files’ paths into the list, the next step will
be parallelization.

4.2.2 Data Extraction

Figure 4: Data process pipeline.

In the project, two data extraction methods have been
tested and compared. One of the methods was realized
based on Python, and the other used Scala. After compar-
ing the two methods’ efficiency, the Python-based method
is adopted in the project at last.

Figure 5: variables details

As shown in the Figure 4, the first step is to select the
variables. As mentioned in 2.1 and 2.3, most variables and
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gases are not meaningful for the project. We will finally use
the latitude, longitude, qa value, and value array for data
visualization. The project is using ”netCDF4” package for
reading NetCDF files. Figure 5 shows the detail of the vari-
ables of the PRODUCT group, including name, datatype,
dimension, and shape. Each of the variable arrays will be
transferred to a 2D array. The 2D arrays have the same data
structure as each other. For the more profound explanation,
each latitude in the 2D array corresponds to a longitude, a
qa value, and value. If one of the points is deleted in a 2D
array, we will need to delete the other three corresponding
2D array points.

Figure 6: Process NC File(Python).

To realize the above idea, we used ”NumPy.ma” to seg-
ment the target data. ”NumPy.ma” is a tool package to
apply the function on the masked array. A masked ar-
ray is the combination of a standard ”NumPy.ndarray” and
a mask. The mask has the same data structure as the
”NumPy.ndarray.” The mask only contains two types of
values. One is TRUE, and then another one is FALSE.
If the mask’s value is TRUE, it should remove the corre-
sponding value on the ndarray. At first, we need to create
a qa value masked array. Which is mentioned in 2.3, NO2’s
qa value should be higher than 0.75. For the SO2, CH4 and
CO, the qa value should be higher than 0.5. The function
”ma.maksed less” and ”ma.maksed greater” will be used to
create a masked array. Next, using the ”ma.getmask” func-
tion can get the mask of the masked array. At last, we need
to apply the qa value mask to latitude, longitude, and value
array. The mask applying step will remove all the cloud-
cover scenes in the data set will be removed.

Figure 7: Process NC File(Scala).

Table 1: Data extraction result.
Folder Name Original Size GeoJSON Size Reduce Rate
L2 NO2 2019 1900GB 2.53GB 99.86%
L2 NO2 2020 2200GB 2.51GB 99.88%
L2 NO2 2021 1900GB 1.72GB 99.99%
L2 SO2 2019 4000GB 1.91GB 99.99%
L2 SO2 2020 4600GB 1.89GB 99.99%
L2 SO2 2021 3800GB 1.43GB 99.96%
L2 CH4 2019 242GB 0.97GB 99.59%
L2 CH4 2020 284GB 1.03GB 99.63%
L2 CH4 2021 242GB 1.06GB 99.56%
L2 CO 2019 679GB 1.84GB 99.72%
L2 CO 2020 788GB 1.82GB 99.76%
L2 CO 2021 635GB 1.54GB 99.75%

The project plan and goal is to observe the air quality
before, during, and after the COVID-19 among countries.
Current data contains both oceans and dryland coordinates.
It will be helpful only to extract the rows whose coordinates
belong to the land. Creating an ocean mask will be a good
idea to segment only the data in the land. The package
”global land mask” will be imported to help judge whether
the coordinates are on the ocean. Furthermore, some lo-
cations have abnormal values out of the range of standard
latitude and longitude. So we also created a mask called lo-
cation mask. When observing the data set, it is also noticed
that some of the value of the value array is lower than 0. A
negative number is a measurement or machine error. As a
result, a value mask is also created. The ocean, location, and
value masks will finally be combined into one mask called
the final mask. The final mask will apply to each ndarray,
which is already masked by the qa value mask(Figure 6).
We use the qa value mask first and apply the final mask
because the qa value mask will delete 99% of the original
data. The running time will also be reduced because of the
smaller data set.

In the scala-based data extraction method, the ”ucar.nc2.
NetcdfFile” package is used to read NC files. There should
be a corresponding RDD for each variable, latitude, lon-
gitude, qa value, and value array. After creating 4 RDDs,
they need to be zipped together using RDD basic conversion
operation ”zip.” The next step will be to delete the substan-
dard qa value row. After cleaning the data, the dataset will
write into the parquet file as a monthly unit. Next, we will
reuse Python to read the parquet file and apply ocean, re-
gion, and value mask to the data. The new RDD will convert
to Dataframe.

At last, we execute two data extraction methods. The
executing time for the Python-based approach is for a max-
imum of 30 minutes, and a minimum of 1 minute, and nor-
mally for 10 minutes. The executing time for scala based
method usually is slower than in Python. At last, we finally
decided to use the Python-based method in this project.

After reading and filtering the data, the redundant vari-
ables in the netCDF file will be removed. The extraction
process will reduce the amount of data for both computa-
tion and storage. Table 1 shows the data reduction result.
As we can see, the reduced rate of data extraction is bigger
than 99.6%.

4.2.3 COVID-19 Data Extraction
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Figure 8: Stringecy index change in Netherlands

Three steps will conduct data extraction for OxCGRT
data. Firstly, calculate the average stringency index by
month unit. The final visualization will show the TROPOMI
data set month by month, and the OxCGRT data should
also transform into a monthly unit. The raw data of the
OxCGRT is separate by day. We need to group the day for
each month and calculate the average index. The second
step should be to transfer the code attribute to coordinates.
Each country code number is replaced by the country loca-
tion value, which can be readable in the GeoJSON file. The
detail will be explained in 4.2.3. Finally, the data result will
also be written into a GeoJSON file.

4.2.4 Creating GeoJSON Files
To visualize data using the Mapbox Javascript API, the

final input for the visualization product should be GeoJSON
format. In the project, we used two GeoJson formats. One is
for visualizing emission data, and the other is for visualizing
the Government Response Stringency index.

The emission data GeoJSON file has the format as below.
Each of the records in the GeoJSON file should contain infor-
mation about latitude, longitude, and a value representing
the heatmap color.

{

"type": "FeatureCollection",

"features ": [

"type": "Feature",

"geometry" : {

"type": "Point",

"coordinates ": [lon , lat]

},

"properties" : {

"value": value

}

]

}

The Government Response Stringency index GeoJSON
file uses the format as below. It should be mentioned that,
though the emission data is saved month by month, there
is only one GeoJSON file for the Response Stringency index
data. We use the properties ”year” and ”month” to mark
which data should be in which layer. The value property in
the GeoJSON represents the Government Response Strin-
gency index.

{

"type": "FeatureCollection",

"features ": [

"type": "Feature",

"geometry" : {

"type": "Point",

"coordinates ": [lon , lat]

},

"properties" : {

"value ": value ,

"year" : year ,

"month" : month ,

}

]

}

4.3 Data Visualization
The final product of this project shows the changes in the

levels of different pollutant gases measured by TROPOMI
around the world from 2019 to 2021. It geographically visu-
alizes the global impact of the COVID-19 epidemic on these
emissions. This section describes how to create the data
visualization website and the results of visualization.

4.3.1 Creating Tilesets
To effectively show the impact of COVID-19 on air qual-

ity on a global scale, the visualization product uses Map-
box to read GeoJSON files to create maps. Tilesets are the
primary data format for Mapbox maps which is easy for
caching and loads swiftly. Mapbox Tiling Service (MTS) al-
lows users to create vector tilesets by providing source data
with recipe transformation rules, which can set the ”low-
est where in distance” to reduce feature density. As shown
below, we use recipes to subdivide each tile at every zoom
level into many equally spaced regions and only keep the
average feature in each region. It helps us keep the most
essential features at each zoom level while ensuring they are
spatially distributed.

{

"tiles": {

"limit": [

"lowest_where_in_distance",

true ,

8192,

"SCALERANK"

]

}

}

Since the Mapbox style only allows a maximum of 15
sources, we use Multilayer tilesets to create a tileset with
up to 20 layers. Each layer can have a unique tileset source,
which can fit more data into a style. Therefore, Tilesets
CLI was used to create tileset sources from GeoJSON files.
We used Mapbox Studio Style to create a total of 251 lay-
ers containing monthly gas distribution layers, government
lockdown levels layers and country boundary layers, all of
which can be read and displayed in JavaScript and static
HTML.

4.3.2 Visualization Website
The website shows a world map of the distribution of the

NO2, CO, CH4 and SO2 gases from 2019 to September 2021.
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There are overall three time periods: the no outbreak period,
the early outbreak period and the late outbreak period.

Figure 9 shows what the website looks like, each gas vari-
able is positioned by its latitude and longitude to a pixel
point on the map, and the colours of the pixel point depend
on the concentration of the gas. Moreover, a time slider
and two drop-down menus are set to allow the users to view
the map of different gases at different times. In order to
observe the effect of COVID-19 on air pollution, there are
the options to display the OxCGRT of different countries
and regions as in figure 10. The main causes of air pollution
are from factory emissions and human activities, so govern-
ment lockdown levels are more relevant to air quality than
the confirmation rate of COVID. Stringency levels ranging
from 0 to 100 can be displayed on the website as numbers
and circles, and the size of the circle represents the level of
lockdown, which can help observe the details of COVID-19’s
impact on air quality more effectively.

Figure 9: Website visualization.

Figure 10: CO in March 2020 in Europe with lock-
down level.

4.4 Result Analyzing
As pollution is mostly caused by major industrial coun-

tries, it is easier to monitor pollutant changes in those areas
in relation to the lockdown. Afterwards, our group will con-
centrate on the locations with the greatest pollutant gas
emissions. For example for NO2 are these three regions:
eastern Asia, Europe, and the east and west coasts of the

United States. Since the season has such a significant impact
on polluting gases, the statistics for 2020 and 2021 must be
compared to 2019, which COVID-19 has not yet emerged
in.

By comparative observation, the gas most affected by
COVID is NO2, and a rapid reduction in NO2 emissions
can be seen very clearly in the global response to the epi-
demic in 2020. Figure 11 shows the NO2 in the atmosphere
over the Netherlands in June between 2019 and 2021. Since
the pandemic in China commenced in January, China has
witnessed a bigger decline in NO2 pollution in 2020 than in
2019, compared to other nations across the world. By Febru-
ary, the tendency had spread throughout Europe. Many
European nations had a monthly average lockdown level of
higher than 10.0. In March, the US’s NO2 emissions began
to fall considerably, in combination with the steep increase
in the lockdown level. Emissions in China, on the other
hand, have climbed significantly since last month, despite
the fact that the lockdown level remains near to 80. China’s
pollutants in April were similar to those in 2019, and the
lockdown level was dropped as well. Emissions in Europe
have gradually begun to rebound, and until September, they
were not significantly different from the previous year which
the lockdown level has declined from a high of nearly 90
to a low of less than 50. The United States has resumed
NO2 emissions since November. With the recurrence of the
pandemic, the country has modified the lockdown level ac-
cordingly, reducing emissions for a period of time, such as
in Europe in February and May 2021. However, emissions
in 2021 are much greater in several other months than in
2019. One probable reason is that individuals are concerned
of catching an infection when they take public transit, which
leads to an increase in self-driving travels. Other possible
factor that may contribute is the newly constructed plant.

As shown in Figures 13 and 14, Europe and China also
show some reduction in CO concentrations in 2020 compared
to 2019, and an increase in 2021 when the global response
stringency is reduced. During the seasonal dry period in
Africa, people ignite hundreds of fires to manage agricul-
ture and grazing land for preparing fields for planting. A
significant amount of CO was emitted throughout this pro-
cess, negatively impacting local air quality [15]. However,
through the comparison of the visualization results, The CO
content has not been fixedly raised or lowered in compari-
son to the value in 2019, hence CO emissions in this region
may not be influenced by the pandemic. Unlike other pollu-
tants, the impact of CO on China can only be seen starting
from March 2020 and recovered in May. One of the reasons
may be that CO is mainly affected by transportation facili-
ties. Although the usage of public transit has declined, this
does not necessarily mean that the use of automobiles has
reduced. Furthermore, the reason why the change of CO to
other pollutants is not very drastic is due to its relatively
longer life cycle in the atmosphere [7].

Figures 15 and 16 show the atmospheric concentrations
of SO2 during the cold season in Europe and China respec-
tively, but from Figures 16 and 17 it can be seen that SO2

emissions are mainly seasonal and latitudinal related. Heat-
ing begins in the north as the climate starts to cool, re-
sulting in an increase in SO2 emissions. The data of SO2

cannot possibly be inadequate for direct comparison, unlike
NO2 comparison. Hence, prior to the European COVID-19
pandemic, SO2 emissions in January 2020 were considerably
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higher than in January 2019. This might be influenced by
the weather or industrial development in that year. How-
ever, compare the differences between January and February
of the two years, the reduction in SO2 in 2020 is still evi-
dent, confirming the influence of the pandemic on the sus-
pension of industrial factory activities. However, this drop is
lower than that of NO2 since the providing of heat remains
a major source of SO2 emission. With the improvement of
the epidemic condition and the unblocking, SO2 emissions
steadily approached the value in 2019 in the next months.
Furthermore, SO2 outputs are less affected by the subse-
quent lockdown level changes.

However, not all gases were affected by the Corona virus
and reduced. In Figures 18 and 19, Atmospheric concentra-
tions of CH4 increase rather than decrease in 2020 and 2021,
Claus Zehner, manager from ESA’s Copernicus Sentinel-
5P, said: ”One explanation for this could be that due to
the reduced demand for the gas from COVID-19, it is be-
ing burned and emitted, leading to an increase in methane
emissions in this area”. On the other hand, it may be the
gas that is least affected by human activity, therefore the
COVID lockdown has little impact on its production. [6]

This data analysis is not comprehensive enough for consid-
ering just one year’s dataset might be used as a comparison,
which is somewhat uncertain. The fluctuations in pollutant
gas levels will be more visible if the data is segmented on a
weekly or daily basis. However, storing too much data will
slow down the loading time of the web page.

5. CLOUD COST
Since all the processed data in the project will be stored in

S3, there will be some costs during the project. According
to Section 2.1, there are limited gases with obvious changes
in the atmosphere affected by the outbreak, so our main
subjects are the atmospheric distribution of NO2, CO, CH4

and SO2.
For cost planning in cloud computing, the various call op-

erations during data processing must be considered. For the
S3 standard, PUT, COPY, POST and LIST will cost $0.005
per 1000 requests and GET, SELECT and all other requests
will cost $0.0004. In our project, we need to fetch the files
for the above gases in the OFFL path from the S3 server
separately, then update the filtered and averaged new JSON
files, and finally read the JSON files to write them into Geo-
JSON. The calculations show that there are 69,731 netCDF
files for the selected gases in the OFFL folder from 2019 to
2021, during which time our team will be viewing this data
multiple times, resulting in a cost of approximately $5 to ac-
cess this data for the month. As we will eventually average
the gas data on a monthly basis, the volume of processed
data will be significantly less, with approximately 264 files
being PUT.

The original file size of these gases from 2019 to 2021
is about 21270 GB, or 21 TB, after data filtering and data
merging, the size of the files are expected to be controlled at
20.25 GB, which can effectively reduce the costs. We chose
Mapbox as our visualisation tool and therefore did not incur
any costs.

6. CONCLUSION AND DISCUSSION
The purpose of this project is to explore the impact of the

spread of Corona virus on air quality. Therefore we selected

data for four gases - NO2, CO, CH4 and SO2 - from 2019
to September 2021, then extracted, combined, averaged and
compressed the raw two-hourly sets of data. As an outcome,
we were able to obtain monthly GeoJSON data files which
were 99.5 percent less than the original file size. These files
were then converted to tilesets, and Mapbox was used to
visualize them. The timeline of the visualisation product
is adjusted on a monthly basis, allowing users to observe
changes in atmospheric content of various gases at different
time. The severity of the COVID-19 is represented through
lockdown levels.

The hypothesis in Section 3 is partially confirmed. As
mentioned in 4.4, after comparative observations, NO2, CO
and SO2 all showed a decrease in emissions during 2020,
mainly due to the restrictions on human production and
activities caused by the epidemic outbreak. While CH4 ap-
pears to have the least relationship to the pandemic. By
observing the changes in global air pollution, we can sum-
marize some patterns and strategies. For example, the high
SO2 emission areas are mainly in the cold northern regions
in winter, which shows the impact of burning fuel for heat-
ing on air quality, so we can use cleaner energy to control
the emission of harmful gases.

We encountered some errors and problems during the pro-
ject, and also found solutions with the help of our professor
and the efforts of group members. In the data processing
pipeline, as the netcdf file structure was quite specific and
could not be directly converted to parquet file format, so
we used two methods, the first was to use python RDD to
read the chosen columns in the file and then convert it to
dataframe format to filter data. The second method was to
use Scala and zip the initially flat RDDs. The difference in
runtime between the two methods is not very significant and
depends mainly on the state of the cluster.

There is also a lot of room for improvement in our project.
For example, the limited choice of gases, aerosols and O3 are
also well worth investigating. When processing the NetCDF
files, we sometimes encountered some file corruption errors,
which we resolved by skipping the file, but it would cause
errors in the results. Besides, the three years of maps in the
visualisation site need to be manually switched to compare,
but it is rather confusing to put three maps on one page, so
we can add pop-up windows to each area to show the change
in data over three years, which can make the website more
user friendly.
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Figure 11: NO2 in June 2019 to 2021 in the Netherlands.

Figure 12: NO2 in February 2019 to 2021 in China.

Figure 13: CO in August 2019 to 2021 in Europe.
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Figure 14: CO in February 2019 to 2021 in China.

Figure 15: SO2 in September 2019 to 2021 in Europe.

Figure 16: SO2 in February 2019 to 2021 in China.
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Figure 17: SO2 in June 2019 to 2021 in China.

Figure 18: CH4 in April 2019 to 2021 in Europe.

Figure 19: CH4 in March 2019 to 2021 in China.
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Table 2: Project workload distribution.
Task Who

Initial data investigation All
Visualization tool search Zhining Bai

NC file Visualization and Reading tool Search Simei Li
Related work search Yiran Li

OxCGRT related search Yiran Li
Project pipeline design All

Parallelizing the code on Databricks Simei Li
Python code transfer to Scala Simei Li

Data extraction All
Data export All

Processing OxCGRT dataset Simei Li, Yiran Li
Writing JSON and GeoJSON files All
Tileset creating method and tool Zhining Bai

Creating Mapbox tilesets Zhining Bai, Yiran Li
Adjust Visualization Styles Zhining Bai

Visualization website implement Zhining Bai, Simei Li
Report All

Report formatting All
Presentation All
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