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ABSTRACT
The ongoing COVID-19 outbreak expanded rapidly through-
out the world, forcing countries to take measures. The
pandemic affected many people in different ways globally.
Economies were slowed down significantly, resulting in a de-
crease of polluting gases. The emission of these gases can be
measured in different ways and the TROPOMI installed on
the Sentinel-5P satellite is one of them. To make this data
more accessible to the public a visualisation of the measure-
ments was created showing the evolution of the emission of
the polluting gases before and during the pandemic. This
was done by analyzing the data captured by TROPOMI,
extracting the useful data in an efficient way to ensure an
interactive and responsive website could be created for the
visualisation.
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1. INTRODUCTION
In 2020, the COVID-19 pandemic caused a lot of indus-

tries to temporarily close their doors and forced people to
work from home. Many people were forced to quarantine
themselves[1]. An example study by Harrington et al. [2]
shows that these measurements caused the amount of traffic
in the UK to decrease severely. Data published by Tom-
Tom1 shows that the large cities Madrid, Rome, Paris and
Milan have seen a sharp reduction ( >80%) in march of traf-
fic volumes compared to the baseline of January 20th.
Open industries and traffic contribute to the emission of
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1https://www.tomtom.com/blog/moving-world/covid-19-
traffic/
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greenhouse gases, which would suggest that during the COVID-
19 pandemic less gases have been emitted. Furthermore,
the emission of greenhouse gases is a topic that is often a
source of debate and is often linked to negative effects on
the climate, which resulted in numerous research projects
on pollution[3][4]. The impact of lockdown-measurements
has impacted the air quality in western Europe [5]. In par-
ticular a reduction in NO2, a smaller reduction in particu-
late matter concentrations and a mitigated effect on ozone
concentrations were measured. Other studies show that the
global effects have been similar [6]. However, most of these
reports only consider a part of the bigger picture and do not
show how the air pollution fluctuated on a small time scale,
for example on a weekly basis.
The data for gaining such knowledge is already available
and accessible. Much data is available which could lead
to interesting research. However, actually accessing it and
understanding the underlying datastructures is not an easy
task. Additionally, translating these structures into concrete
and understandable examples is difficult and requires a fair
amount of effort and technical knowledge, which could make
it hard for people to see the value of this data. To lower the
threshold to this data and showing what is possible, this
project aims to visualize the decrease in air pollution for
the period in which the COVID-19 pandemic became more
widespread and lockdowns were enforced. It will show that
interesting results can be achieved with this data and will
hopefully open the doors to more research and awareness
using the large amount of data that is available.
In the next section relevant research, techniques and data
will be presented that contribute to a better understanding
of the themes related to this project. In section 3 the re-
search questions for the project will be presented. These
question will guide the research and ensure that the scope
of the project is clear. Section 4 describes the execution of
the complete project from the initial data investigation to
visualizing the final product. Section 5 shows the results
found during the project. Section 6 summarizes what has
been done and explains the final results by answering the
aforementioned research questions. Lastly, in section 7 the
work is discussed and future work is suggested.

2. RELATED WORK
The related works have been divided into four categories:

Data gathering, Pollution, Visualisation of pollution and Vi-
sualisation tools. Each category is discussed separately be-
low.
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2.1 Data gathering
To gain a better understanding of the presence of green-

house gases in the atmosphere, various methods have been
deployed to measure this. One of the methods that is used,
namely measuring by satellite, will be used during this project.
The Sentinel-5P satellite, developed by the ESA, uses the
TROPOMI (TROPOspheric Monitoring Instrument) to mea-
sure the wavelength bands between the ultraviolet and short-
wave infrared [7]. It uses passive remote sensing techniques
to measure the solar radiation reflected by and radiated from
the earth. By doing so, 7 particles and gases that are present
in the atmosphere were measured, namely Methane (CH4),
Carbon Monoxide (CO), Formaldehyde (HCHO), Nitrogen
Dioxide (NO2), Ozone (O3), Sulphur Dioxide (SO2) and
Aerosol. For each substance, a great amount of data has
been captured by the TROPOMI. Some other works that
describe how the data can be processed and visualised is
discussed by for example Bauwens et al. [8]. Something else
that was also discussed by many works is the accuracy of
the TROPOMI dataset. One example from Wang et al. [9]
discusses that there the TROPOMI dataset is still off on
various occasions.

2.2 Pollution
The effect of COVID-19 on air pollution is something

which has already been researched extensively. In the in-
troduction it was already mentioned that a reduction in
NO2, a lower reduction in particulate matter concentrations
and a mitigated effect on Ozone concentrations has been
measured [6]. Bauwens et al. also investigated the impact
of COVID-19 on NO2 pollution using the TROPOMI and
found that it significantly decreased, especially in Chinese
cities with amounts up to -40% relative to the same period
in 2019 [8]. Within this research only TROPOMI data was
used for which the qa(quality assurance)-value is > 0.5 and
the cloud fraction is < 40%. To expand on this, a study
conducted by Sannigrahi et al. found a reduction of NO2

and CO over large cities worldwide during the COVID-19
period, indicating that a reduction in emissions is to be ex-
pected [10]. Menut et al. measured the impact on air quality
over western Europe due to COVID-19 lockdown measures.
Instead of using satellite data, the WRF=model [11] and
CHIMERE models [12] were used to simulate hourly con-
centrations of a variety of pollutants over Western Europe.
The research is unique because it takes meteorological con-
ditions into account. The results again show a reduction in
NO2 concentrations ranging from -30% to -50% in western
Europe and an increase in Ozone concentrations in urban
areas [5]. In Wuhan it was shown that there there has also
been a significant drop of 71% in SO2 levels, a drop of 11%
in HCHO and a decrease of 4% in CO [13]. However, the
same research showed an increase in SO2 in other places, for
example Seoul and Tokyo. Having this information makes
it relatively safe to assume that a fluctuation in NO2 and
SO2 will also be visualized in this project.

2.3 Visualisation of pollution
There have been projects that focus on visualizing this

air pollution. An example can be found at NASA [14].
There it is possible to compare the amount of NO2 from this
year with previous years. Another example can be found at

IQAirMap2 and IQAirEarth 3, which present the current sit-
uation on air pollution. This can be used as a guideline for
visualising air pollution, but cannot be used for information
older than today since it is live, so is more useful on how to
properly represent a pollution map.

2.4 Visualisation tools
To publish or show the results in a web-based front-end

Wang et al. argue that after mapping and refactoring the
data into a correct format like GeoJSON or KML, multi-
ple JavaScript libraries are available to visualize the created
data[15]. Moreover, visualizing geospatial data is happen-
ing constantly around us in services such as Google Maps
or Buienradar, and has therefore been the subject of various
researches [16] [17] [18]. To visualize this data, specific tools
and frameworks exist that apply to various use-cases. Ex-
amples of such use-cases are showing geophylogenies[19] or
showing static datasets interactively[20]. For demonstrating
GeoJSON files MapBox4 offers a JavaScript library specifi-
cally for doing this.
From looking at these examples it can be concluded that
tools can be found to aid in visualizing the data related to
this project. This means that the focus can be shifted from
front-end development to visualizing the data in a meaning-
ful manner.

3. RESEARCH QUESTION
This research aims to contribute to the fourth objective

set by TROPOMI: To develop and improve air quality model
processes and data assimilation in support of operational ser-
vices including air quality forecasting and protocol monitor-
ing. Specifically, focusing on the change of air quality due
to the COVID-19 pandemic and thereby contributing to the
possibility of protocol monitoring. In accordance with this
goal the following research question has been stated: How
can the reduction of global gas emissions during the
COVID-19 pandemic be visualized concisely and in-
teractively? In order to be able to answer this question
sufficiently, it has been split up into sub questions that fo-
cus on more specific problems:

• Sub-question 1: How can greenhouse gas emissions be
visualised efficiently over time?

• Sub-question 2: How can COVID-19 events be sum-
marized and visualised globally?

• Sub-question 3: How can large datasets containing
geographical information over time be efficiently dis-
played to end-users?

4. PROJECT SETUP
This section will describe the development and execution

of the project. It starts with the raw input data and the
initial investigation on this data. From this data a scope
was inferred. After this, the pipeline to process this data
was created and it will be discussed how this pipeline was
used on each substance. Then there is a short section about
the way the COVID-19 data is read, transformed and used.
Lastly, the visualisation of the written data is described.
2https://www.iqair.com/world-air-quality
3https://www.iqair.com/earth
4https://docs.mapbox.com/mapbox-gl-js/api/
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Figure 1: NetCDF-file extracted

4.1 Raw Input Data
All of the data that is used for gases comes from the

Sentinel-S5 dataset. The Sentinel-5P dataset is represented
in two different data formats. The first data format uses so-
called COG(Cloud Optimized GeoTIFF)-files, which is sim-
ilar to a regular GeoTIFF file except that it is being hosted
on a HTTP file server and is said to be more efficient for
the cloud [21]. A GeoTIFF is a TIFF file that holds images
and georeferencing information5. This can be anything from
coordinate systems to dates. An TIFF image also holds po-
tential ”bands”, which are extra layers that hold additional
information.
The other file format is called NetCDF, which is a is a for-
mat that can be used for array-oriented scientific data [22].
NetCDF-files do not contain images, but hold an incred-
ible amount of data related to the TROPOMI measure-
ments. For measuring the presence of a certain gas the
TROPOMI not only stores coordinates and presence and
volume, but for example also accuracy variables, quality re-
lated variables, wind speed and much more. For each sub-
stance detailed documentation is also available. A summary
and ”easy read” for for example NO2 is available under [23].
Since detailed documentation for each substance is avail-
able, it became easier to decide what variables were needed
for analysis as well as finding the right scales and thresholds.
Through this research it was found that generally four ar-
rays of data are of interest, namely the longitude, latitude,
data and qa(Quality Assurance)-value. The first three vari-
ables are clear, they represent per coordinate the measured
presence of the gas in question. The qa-value represents
for each ”pixel” in the image how clean, or better, uncon-
taminated the measurement is by factors such as reflection
or clouds. Generally, values below 0.75 should be dropped,
but this is dependent on the substance. Unfortunately, the
NetCDF format also has a downside which is that files can
be very large and cumbersome to extract portions of data
from. Depending on the substance, file sizes can range from
around 50MB in the case of CH4 up to around 750MB or
more in the case of SO2.

5https://www.earthdatascience.org/courses/use-data-open-
source-python/intro-raster-data-python/fundamentals-
raster-data/intro-to-the-geotiff-file-format/

In the end the NetCDF file format was chosen because it
contains more information than the GeoTIFF files and in
case this information was needed it would be quite cumber-
some to move to NetCDF. Further on using NetCDF allows
for more control over what data will be used and displayed.
Each of the formats contains 3 data streams. These are the
near real-time, offline and reprocessing data streams. The
reprocessing stream only contains data from 2018, so this is
not very useful for the scope of this project. Also, the near
real-time stream only contains data from March 2020 until
June 2020. However, the offline processing stream contains
data from various years up to and including June 2020. To
ensure that the data for visualisation is reliable and since the
aim of this project is to compare data from various months
and years, it was decided that it is necessary to get data
from a single stream. Hence, the decision to use the offline
processing stream. This stream contains data from each
day of each month of the year 2018 to June 2020 for most of
the substances under investigation in this project. Further-
more, it was found that between the offline and near real-
time streams no real difference in data existed, therefore no
important data would be missed in choosing only the offline
stream. The daily data that the TROPOMI generates for
this stream does not come from a single measurement. Each
day the satellite usually creates between 12-14, and some-
times more, pieces of data. If added together these pieces
create an approximated view of the entire earth. However,
the data may still be incomplete because some parts were
not scanned or due to external factors. The total size of the
offline data stream is 20 tebibytes.

4.2 Initial Data Investigation and visualisation
Now that the decision was made for which data to use,

some initial data investigation and visualisations were made.
This gave a general idea of what would become the end prod-
uct. During the start of the project the main goal was to
understand the data at hand. As has been explained in
section 4.1, two data formats were available. At first, the
obvious choice was to use the preprocessed COG files, since
they contained the images already. However, this would
limit the ability to design a visualization that would fit the
purpose of this project the best. Of course, the NetCDF
files were analyzed as well. The NetCDF from 17 Oktober
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2018 was extracted by using NetCDF46 for python. The
data that was found is shown in figure 1. In this figure one
can see that the file is split into groups, which have dimen-
sions and variables. Also, high-level groups have subgroups,
which may have more data attached to them.
To understand this format better and to get an idea of how
the visualized data might look like, an application called
Panoply was used7. This application has built-in support
for opening NetCDF files and displaying these on a map.
Figure 3 shows the qa-values of a certain NetCDF-file while
Figure 4 shows the measured Carbon Monoxide (only if the
qa-value is >0.5 is the measurement taken into account)
After the initial data investigation, a basic visualisation us-
ing the NetCDF files in python was realised. Figure 2 shows
a single measurement and visualises naively the tropospheric
vertical column values of NO2 over a set of longitudes and
latitudes. This particular figure is a single file from Oc-
tober 17th, 2018 and is therefore only a part of the data
of this day. All ”pixels” that have a qa-value below 0.75
have been dropped, as has been explained in section 4.1.
Furthermore, to compress the data, all latitudes and longi-
tudes where averaged to 1x1(1 in longitude and 1 in lat-
itude) squares, which meant that multiple measurements
have been combined to a single measurement. We exported
these squares to a GeoJSON [24] file with the help of Geo-
JSON for Python8. We then loaded this file back and dis-
played it using python. This result was then compared with
the Panoply example and the two were similar, which en-
sured that visualising the data in a meaningful way is defi-
nitely possible.

Figure 2: Single Measurement of NO2

6https://unidata.github.io/netcdf4-python/netCDF4/
7https://www.giss.nasa.gov/tools/panoply/
8https://pypi.org/project/geojson/

Figure 3: NetCDF-file qa-values

Figure 4: NetCDF-file carbon monoxide values

4.3 Scope
As was explained in section 4.1, only the offline data

streams for NetCDF are used. Since the offline datastream
ends on the 14th of June 2020 and one of the goals of the
project is to visualize the difference between emissions be-
fore and during COVID-19, it was decided to only pick data
between the 1st of January and 14th of June. This means
that for both 2019 and 2020 only the data between January
1st and June 14th are picked. Furthermore, it was decided
to only pick polluting gases that have been found to have
changed during the pandemic in quantity and that are the
most harmful to the environment. Because of scoping is-
sues, it was also necessary to only look at a few substances.
In the end 4 substances were picked: NO2, SO2, CH4 and
CO. NO2 was chosen because this substance was proven
to have decreased throughout the pandemic [6]. SO2 was
chosen because according to some sources it changed in a
few countries, both positively and negatively [13]. CH4 was
chosen due to sources stating to have decreased during the
pandemic (Talekdar et al [25]). A decrease in this substance
would be important, since this gas is said to be a more po-
tent greenhouse gas than CO2 [26]. Lastly, CO has also been
found to have decreased during in the pandemic in mayor

4



cities worldwide [10]. Ozone would be a good candidate for
the visualisation as well since it is said that the negative
effects on the ozone layer have been mitigated [6]. However,
it is a lot less country specific (mainly visible around the
poles) and a visualisation might therefore be less interest-
ing to look at than the other candidates. HCHO was not
picked because it is not a greenhouse gas and also does not
harm the ozone layer. When writing files it was also noticed
that writing data for each day and each coordinate was a
lot of information. One of the first things to reduce the
size of the dataset was averaging all coordinates to larger
zones. These zones all range .1 degrees in both longitude
and latitude directions. Since longitudes and latitudes are
not equal everywhere on the earth, it leads to some zones
that are a bit more stretched. This will be discussed more
in depth later on. Additionally, it was decided that rather
than showing the results for each day, to show it per week.
As a result the data is averaged over the zones for all snap-
shots of a day as well as all days in a week. Some further
data reduction was done by limiting the scope only to data
on actual land. The reason for this is that the main interest
of this project, as can be read in section 3, is to visualize the
change in emission of certain gases during COVID-19. The
emission of these gases mostly happen on land and also the
lockdowns were enforced mostly on land, thus making the
reduction most visible on those coordinates.

4.4 The pipeline
The entire algorithm for the pipeline was first tested on

local machines, before it was parallelized on Databricks.
Therefore, the algorithm that is used to extract-, modify-
and write data is written to be easily modifiable and par-
allelizable and should function on local machines and with
Spark. The algorithm itself is divided in 4 distinct sections:
reading and filtering data, averaging and combining data
into tiles, creating JSON files and writing the JSON files.
Each of these sections will be discussed. In addition to the
algorithm a few global variables that need to be set for each
substance are kept. This makes it easy to run the program
for different substances with minimal change needed.

4.4.1 Data extraction
All of the data extraction can be traced back to a Python

3 function that reads NetCDF files. This function is igno-
rant of the underlying TROPOMI directory structure and
only reads an absolute path to a NetCDF file. It is also
by far the most expensive function in the program both in
time and processing power. It then uses the Python library
”NetCDF” to parse the NetCDF file to a structure that is
easy to read and modify. If this function throws an excep-
tion, the program crashes. This means that this function
does not allow for corrupt records. This is handled else-
where. When the data is parsed, only a few arrays need to
be kept. The NetCDF structure mainly contains arrays in
a structure that is not too far away from a columnar data
store. However, an important thing to note is that almost
all arrays are stored as 2D arrays. These are a latitude, a
longitude, a quality value and a value array. Only the value
array differs between substances and needs to be handled
differently. All of the other arrays in the NetCDF file are
simply dropped. After this, the data is filtered to only the
row entries that are needed. This was first done in an order
that was not optimized and proofed to be fault intolerant. It

also used many explicit for loops that did not make full usage
of the underlying hardware. In order to achieve a reasonable
speed, it was decided to make use of mostly Numpy func-
tions, which are known to be easily parallelizable (talking
about local paralleliziation here) and make use of optimized
C functions instead of pure Python functions [27].
It was noted that all of the necessary arrays have a similar
2D shape. That is to say, they their width is equal, their
height is equal and they are all 2D. This means that if we
keep track of what rows we need, we only need to keep track
of one 2D mask array that contains for each element if we
need it. This mask can then be applied to all columns that
are being kept. The first filter used in the mask is to re-
move all rows that contain corrupt latitudes and longitudes.
This is done as early as possible because later functions as-
sume that all latitudes and longitudes are valid, since doing
constant checks for bounds is expensive). Then the second
filter is applied to the mask. Each entry has a quality value
(qa-value) as was already mentioned in section 4.2. Only
the data that is above a certain threshold is usable. This
threshold can be tweaked for each substance and everything
below this threshold is dropped. The third and final check
only works with valid latitudes and longitudes. Therefore
the mask is first applied and then this check is done. This
check is also expensive, which further justifies doing this fil-
ter as late as possible. This filter checks if the data is on
dry land.
After all data is filtered, it is combined into something that
can be used later on. In order to reduce the amount of
data for both computation and storage, only a portion is
kept. For this the data will be averaged to .1 latitude and
longitude accuracy as was explained in section 4.3. This
averaging could however make the image look a bit more
distorted especially along the poles. That is because that
is because longitudes and latitudes differ along the Earth.
Near the poles longitudes may reach close to 0 km distance
between each other. This decisions was made because it is
not trivial and expensive to go from latitude and longitude
to kilometers and back. Further on, the underlying map is
distorted itself as well, which should also be accounted for.
This can be seen because the visualisation is on a rectangle
map, whereas the earth is a sphere. In the end this risk was
migitated and a decrease in accuracy along the poles was
accepted. The averaging itself is postponed, but all data
belonging to the region that will be averaged, will be kept
together. For this a dictionary is used. In order to make sure
that not too much memory is used and information is cheap
to convert back and forth an int is used as a key. Latitudes
range between -180 and 180 and longitudes between 90 and
-90. This information can be used. It is possible to go to .1
accuracy by multiplying with 10 and then rounding back to
an int, for example 5.34 should become 53 and -6.67 should
be -67. For later usages, it is necessary to make all numbers
unsigned, therefore longitudes get an additional 1800 and
latitudes an additional 900. So longitudes range between 0
and 3600 and latitudes between 0 and 1800. These numbers
can then be combined with the formula:

Key = longitude+ latitude ∗ 3600

This is similar to how 2D arrays can be encoded into a 1D
array and is similar to the formula index = x+y∗width. Do
note that it is absolutely necessary that all values between
0 and 3600 belong to latitudes and only 3600*x belongs to
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longitudes. The longitude can later be retrieved with the
formula

longitude =
key%3600− 1800

10

and the latitude with

latitude =
key
3600
− 900

10

. The value in the keyvalue pair will be a tuple of (total-
Value, amountOfValues). Each value that will be added to
a key adds its value to totalValue and 1 to amountOfVal-
ues. These tuples can later on be reduced to an average with

totalV alue
amountOfV alues

. This is not too different from a combine-

reduce solution like would be used in MapReduce9. It is
possible for external functions to give an initial dictionary,
which would allow multiple days or even weeks to make use
of the same dictionary.

4.4.2 Averaging and combining data into tiles
Each task is assigned an x number of so-called ”day” tasks.

This is usually a week with each day containing multiple
files, see section 4.1. Each day therefore represents a di-
rectory. This directory is scanned for files and only the
NetCDF files are selected (other filetypes might also exist).
The data extraction discussed in section 4.4.1 is performed
on these files. As was noted in section 4.4.1 corrupt files
will crash the extraction. Therefore, some error handling
is done while running the data extraction function. This is
done with a try-catch function. This is not the most ele-
gant, but accounts for almost all possible errors. A myriad
of errors can happen when reading a lot of files and doing
all tasks over is expensive. When something goes wrong,
the task should proceed, but log the errors. If an error oc-
curs, no data is added that was read during the extraction.
Rather, the error is logged to an error log file. This can be
used later on to verify what went wrong and how often this
occurred. After all data is read, some averaging will need
to be done. For this a dictionary is used. As was explained
in section 4.4.1, the data extraction method accepts a dic-
tionary. This allows the task to write all data to the same
dictionary. This dictionary is then passed on to a different
function. This function goes over each key value pair and
applies the conversion from key to (latitude, longitude) and
calculates the average over the value as has been explained
before. All of these results are stored in an array of tuples
of (latitude, longitude, average). The visualisation on the
website requires tiling for more efficient rendering, see sec-
tion 4.8.2. Therefore the entire world is divided into twelve
regions. Each region has the complete latitude, but only 30
( 360

12
) in the longitude region. To account for this, 12 ar-

rays are created. The tuple is added to the array with index
longitude+180

30
. This formula ensures that all data is written

to the proper tile-array.

4.4.3 Creating JSON
In this project, the GeoJSON format is used for storing

the data that will be visualised. This file format can be
quite verbose and also requires a lot of repetition. The rea-
son why GeoJSON is used, is that the MapBox Javascript
API requires a standard format such as GeoJSON. It should
in theory be possible to write a simple format and write a

9https://event.cwi.nl/lsde/papers/mapreduce-osdi04.pdf

”convertToGeoJSON” function in Javascript that does this
on the fly. This was not done because the GeoJSON format
can take significant time to load into MapBox and switching
from one dataset to another would add to this waiting time
and therefore give a decrease in responsiveness. In order to
reduce the disadvantages of GeoJSON, some workarounds
were needed. Firstly, it was determined what was absolutely
necessary to be stored. For all of the (latitude, longitude, av-
erage) variables, the latitude and longitude were absolutely
needed. That is because GeoJSON requires these as pairs
and due to the averaging all of these values are unique. How-
ever, the value that accompanies the coordinate pair is not
necessarily unique. In fact, it can be observed that many
locations have a very similar average. In a later stage, this
averaged value will be used to show a color on the map.
Also, it is not necessary to encode thousands of different
values, if they only end up being used for colors. The user
will probably not notice 1000th of an increase in red. Instead
only a few hundred are necessary, which was incorporated
into a design decision. So, only a few hundred values are al-
lowed, but the exact numbers differ slightly per substance,
but all points with similar values will be grouped together.
The points can be grouped together by adding them to a
so-called Multipoint10. Now only one a few features need to
encode the value. However, saving the value causes a dif-
ferent problem, namely the data had to be interpreted to
ensure that it is usable for the front-end. In the end, it was
decided to convert the value to a color when creating the
GeoJSON. Not only is this better for the performance for
the site, it also ensures that the site does not have to know
anything about the actual values. The actual conversion to
a color is explained in section 4.8.3, but to explain it shortly,
all values are converted to a hexstring of ”#RRGGBB” with
R representing the red bits, G the green bits and B the blue
bits. The end result is a GeoJSON of the format:

{

"type": "FeatureCollection", "features":

[

{

"type": "Feature",

"geometry": {"type": "MultiPoint",

"coordinates": [[lon, lat], ...]},

"properties": {"fill": "#RRGGBB"}

},

...

]

}

The ”FeatureCollection” can be seen as the root node with
a list of ”MultiPoint” nodes as children. Each MultiPoint
contains an array of longitude/latitude pairs and a unique
color defined as properties. All of the tiles discussed in the
previous section, will be converted to this GeoJSON format
individually. Later on, it became evident that certain rows
could be corrupt. These rows are not written to the JSON,
but are instead written to a dedicated log file. This makes
it easy to see how much data is lost and especially what is
lost.

10https://tools.ietf.org/html/rfc7946
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4.4.4 Writing the GeoJSON
After all GeoJSON formats are created, they are written

to files. This function is made explicitly simple. It only
accepts JSON and a filename and other tasks have to give
the data and a filename. This allows it to be easily used on
both local systems and with Spark on Databricks. There is
however also a more general function for writing tiles. This
function not only recognizes tiles in data, but also creates a
JSON for each tile and writes it. It recognizes a file prefix
and for each tile it appends the tilenumber and ”.geojson”
behind it. Tiles should in general be written from left to
right. This means that in the data array the first tile should
start at -180 degrees as the longitude and the last should
end at 180 desgrees. It also means that the first tile will be
written as prefix1.geojson and the last as prefix12.geojson.

4.5 Running the algorithm on Databricks with
Spark

The algorithm described in the previous sections allows
for easy porting to the Databricks environment. To make
the best use of the parallelization it had to be decided what
tasks are applicable for this. The tasks had to be individ-
ual and had to have a good granularity. It was noted that
each substance clearly needed different arguments and also
strictly contains different data. In order to properly test vi-
sualisations on the webpage and get a good workflow, only
one substance per year is written at a time. The reason
is again mainly for easy verification and testing. Running
both years, 2020 and 2019, would take a significantly larger
time to run. The tasks are big enough to require little user
input, but are small enough to be testable. Therefore, for
each substance, for each year a separate ”notebook” is used
even though they were run in sequence. Each ”supertask”
would now exist out of 26 weeks, see section 4.3. Each of
these weeks can be read completely independently and will
be written to a different file. These can therefore be de-
fined as separate tasks. Each task will get a week of input
filepaths and one output prefix. The input filepaths will be
paths to the S3 bucket. The output location will be struc-
tured like ”.../Year/Substance/x y” with x representing the
weeknumber and y representing the tile number. Creating
the tasks by hand could take quite some time, so a sepa-
rate task can be run to create an array of tasks for Spark
in ”taskcreator.py” called ”createTasks”. These values need
to be copied to Spark, because this will not run on Spark
where the Python version is not at least 3.8. For clarifi-
cation, the pipeline has been visualized as is illustrated in
figure 5. It performs a task for each substance/year combi-
nation, then assigns a week for each worker and lastly runs
the worker. All of these tasks are independent and are visu-
alised in figure 6. The tasks starts by processing all days of
the assigned week. The ”Day task” and ”Process NC file”
are explained in section 4.4.1. Notice that if something goes
wrong during processing the NetCDF-file it is logged. After
this is completed the data is averaged and tiled. For each of
the tiles a JSON is created and written. Again errors during
the creation of GeoJSON are logged.

Figure 5: The pipeline for all tasks

4.6 Handling each substance
Each of the substances should be handled differently. This

is because each of them have not only a different distribu-
tion, but often also a different measurement unit. For each
substance a different colormap was used to ensure that dif-
ferences between regions were easily visible. Not all data
could be represented accurately, therefore some decisions for
each visualisations were made, which are explained in the
next sections. In general the visualisations are made with a
colormap. A colormap represents a function that returns a
color from a value based on the minimum value and max-
imum value. The minimum value and maximum value are
used for interpolation. For example, assuming it is desired
to show low values as red and high values as green. This
requires a function that creates colors in between red and
green, based on the values. Therefore, for each substance
a minimum and maximum value had to be chosen. Even if
these were not the true minimum and maximum values.

4.6.1 NO2

The NetCDF files of NO2 contain data for multiple at-
mospheric layers. The set of NO2 holds information about
the tropospheric, the stratospheric and the combined (sum
of the previous ones) atmospheric layers. Both the tropo-
spheric and the stratospheric layer are visualized. It was
chosen to show both separately since they might show dif-
ferent data. The sum was not chosen because it would be
harder to deduct conclusions about the emissions when the
two layers are combined. However, it was decided to use
the same colormap, minimum value and maximum value for
both atmospheric layers to ensure that a comparison be-
tween the layers would be clear and easy to see. For the tro-
pospheric layer the array ”nitrogendioxide tropospheric column”
was used and for the stratospheric layer the array ”nitrogen-
dioxide stratospheric column” was used. For both layers the
unit of the measurements are in mol/m2. Unfortunately all
NO2 values are really small, therefore a better measurement
unit for the visualisation would be µmol/m2. The reason
for this is that the values then can be represented as full in-
tegers. It should then also be possible to create a mapping
from value to color. However, for this a colormap is needed.
It was noticed that there were some values below 0 and a
few above 150. However, most values were in between 0
and 100. If a really large set of values was chosen, say -100
to 500. It would mean that a lot of the colorspace would
be wasted on very few values. This would mean that most
of the visualisation will be limited to one color. Therefore
the minimum and maximum values were chosen, to repre-
sent most of the data, but still visualize possible outliers.
For this other visualisations of NO2 were examined. For
example Bauwes et al [8], Duncan et al [28] and the visuali-
sation on the actual Tropomi data products site[29]. Many
of the visualisations use a colormap that is similar to the
Matplotlib colormap ”jet”, with some slight changes like us-
ing green instead of white. This map represents a gradual
increase from dark blue to light blue to green to yellow to
orange to red. This is quite a wide spectrum and makes it
easy to spot small differences between regions. There was
however not a lot of consensus on min and max values. In
the end it was decided to use 0 and 110 µmol/m2 based on
trial and error. Values below 0 were simply converted to 0,
because they were seen as at least as ”positive” as 0. The
value 110 was chosen because any value that is lower, does
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Figure 6: The pipeline for one task

not correctly show outliers and any value above makes it
hard to see differences on the map. Any value above 110 is
simply treated as being 110.

4.6.2 SO2

For SO2 there is only the combined column of tropospheric
and stratospheric layers. So it is only possible to visualize
the sum of both layers together. This makes it harder to
pinpoint if there is a lot of SO2 in lower or upper layers of
the atmosphere. The data is stored in mol/m2 just as with
NO2. For SO2 the visualisations from NASA [30][31] and
Tropomi[29] were examined. Those visualisations all use so
called ”DU” (Dobson units)11. A few visualisations used 2
DU as a max value, others used 1. This was tried as well.
For this 2 DU was converted to mol/m2, this can be done
with the formula 1DU = 0.4462mmol/m2. It was noticed
that there were a lot of different values next to each other.
This resulted in lots of different colors next to each other
when using the ”jet” colormap. This is visible in figure 7.
To tackle this problem a colormap was used that used less
colors and a more gradual change. This color map was called
”RdYlGn r” and is again from Matplotlib. It represents a
shift from green to red. Unfortunately, there was now mainly
one color visible on the screen, green. Apparently, a lot of
values are below 2 DU. With some trial and error, the end
result became 0 DU as a minimum and 0.5 as maximum.
This particular scale allows the user to see differences on
the map, but not too much. Here it is important to note
that this means that many extreme outliers are not properly
visible. The reason why ”RdYlGn r” was used is because of
a few different reasons: the values fluctuate too much for a
colormap like ”jet”, most colors are in a lower spectrum and
lastly it avoids confusing the data with NO2. The second
reason ”most colors are in a lower spectrum” requires some
additional explanation. The human eye is more sensitive for
green than for blue [32], since most values will fall in to the
lower spectrum, green would therefore be ideal.

4.6.3 xCH4

Methane or xCH4 should be handled quite differently.
Rather than a certain quantity in a layer, parts per bil-
lion (ppb) are measured. This means how many particles

11https://sacs.aeronomie.be/info/dobson.php

in a billion are CH4. So the result is a mixing ratio of
methane and other substances. This variable is stored as
”methane mixing ratio”. For this mixing ratio, TROPOMI
already defined a minimum and maximum value that can be
used for histograms [29]. These values can be found back in
the product user manuals that are provided. The used min-
imum and maximum values for the histograms were noted
as 1200 and 2000 respectively. This was tried and seemed
to work well enough, but could do with some improvement.
Therefore some other visualisations were analysed. These
are by Frankenberg et al [33] and Turner et al [34]. These
all provide ranges between about 1700 to about 1900. Un-
fortunately, methane emissions have increased over the years
and these are older visualisations [26]. In the end a mini-
mum of 1700 and a maximum of 2000 was used. After these
values were found the approach to xCH4 was most simplis-
tic one. That is no conversion is needed, since the data is
given in ppb and displayed in ppb. There was however one
caveat. Methane requires a different qa-value than the other
substances, namely 0.8. This, in addition to containing less
data generally, meant that a lot of data seemed to be miss-
ing. This resulted in a lot more gaps in the visualisation
compared to the other substances. The colormap that was
used in the end is the Matplotlib colormap ”gist heat r”.
This colormap shows a good progression from low to higher
values. Values that are near the minimum are white/yellow
while values near the maximum are a deep red.

4.6.4 CO

Carbonmonoxide or CO is measured in mol/m2 just like
NO2. It should also be handled quite similar to NO2. The
column that should be retrieved is called ”carbonmonox-
ide total column”. Unlike all other substances, the thresh-
old of qa-values can be set to 0.5. For visualisation the
TROPOMI website was analyzed [29]. Unfortunately the
measurement unit that is used is in ppb, not in mol/m2.
This conversion is not trivial and is not the purpose of this
project, therefore it was decided to not convert to ppb. Un-
fortunately, no visualisation was found that made use of
anything other than ppb. This meant that the scale had to
be chosen by hand. By analyzing a few samples, it was noted
that all values are far below 1 and converting to mmol/m2

gave a better scale. In this scale integers could be used. The
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Figure 7: Difference in SO2 left colormaps. Left: jet, Right: RdYlGn r

main tool to test visualisations ended up being Panoply. One
of such tests is visualized in figure 8. As will be discussed in
section 7, basing the visualisations on a few samples is quite
problematic. In the end, the Matplotlib colormap ”cool-
warm” was used. This colormap makes it clear to the user
that they see a different substance than before, since each
substance has its own colormap, and gives a clear distinction
between low and high values. Low values are represented as
blue and high values as red. Values in between the mid-
dle are white. The values that were used in the end were
0 and 140. Even though many significantly higher values
were measured, it is clear that many values are really close
to the minimal (dark blue), therefore to allow for some more
contrast a lower maximum value was chosen. Do note, that
unlike the other substances, this is less empirical and might
have not been the best range for each week.

Figure 8: Carbonmonoxide in Panoply

4.7 Covid-19 data
To visualize the COVID-19 pandemic it was decided to

use the strictness of ’lockdown styles’ which countries have
had during the pandemic as a representation. This strict-
ness is a number that ranges from 0 to 100, extracted from a

dataset12 provided by the University of Oxford and Blavat-
nik School of Government. The number is based on 17 in-
dicators that fall under three categories: closure policies,
economic policies and health system policies. The dataset
contains the daily strictness numbers for each country since
the 1st of January, 2020. However, it might be the case that
the strictness number is significantly higher or lower in cer-
tain regions of a country. For example, some cities might
have a full lockdown while other cities do not. This gives
some data inaccuracies, but it does give a general idea of
what lockdown status countries were in on a given week. The
second dataset used to visualise COVID-19 is provided by
Google13 and contains the centroids of each country, given
by latitude and longitude. By merging the two datasets a
GeoJSON file is created that contains the coordinates and
strictness number of each country on different dates. This
allows the visualisation of the global COVID-19 pandemic
over time. The algorithm for merging the datasets and the
file format are discussed below.

4.7.1 Algorithm
The python library Pandas14 was used to work with the

datasets. Since the COVID-dataset contained dates in a
format that Pandas could not read, the column contain-
ing dates was first formatted to the desired format. Then
the datasets were joined on their mutual column: ”Country
names”. However, some entries from the COVID-dataset
contained strings in the ”Country Name” column that did
not exist in the centroid-dataset. This was due to the fact
that some countries names were spelled differently in the
datasets (e.g. Slovak Republic - Slovakia, Congo - Congo
[Republic]). Therefore the centroid-dataset was manipu-
lated to have the same spelling as the COVID-dataset. After
the join, a dataframe containing the columns: date, longi-
tude, latitude, strictness and countrycode remained. For
each entry a GeoJSON point was created and added to a
collection which was exported to a GeoJSON file. Addition-
ally, each point was given a RGB-colorcode based on the

12https://www.bsg.ox.ac.uk/research/research-
projects/coronavirus-government-response-tracker

13https://developers.google.com/public-
data/docs/canonical/countriescsv

14https://pandas.pydata.org/about/
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strictness number, allowing easier visualisation (low strict-
ness: green, high strictness: red).

4.7.2 JSON
The JSON format for COVID-19 data is handled a bit

differently. There is at most one element for each country,
for each week in 2020. That means that there would only
be a few thousand points in total. Separating this data
in layers would therefore not be necessary. Furthermore, it
should not be necessary to write each week to a separate file.
Loading extra files is quite expensive because that would
mean re-sorting all the other layers as well (layers in the
order last in, last out). Therefore it was decided that all
data is kept in a single GeoJSON file. In this GeoJSON
file each entry is encoded with a week property. This week
property can then be used to filter only the entries that are
needed for each week. Rather than MultiPoints, Points are
used. That is because the amount of data does not justify
this performance treatment. In the end the following simple
format was used:

{

"type": "FeatureCollection",

"features":

[

{

"type": "Feature",

"geometry":

{

{"type":"Point,

"coordinates":[lat,lon]

},

"properties":

{

"name":"XXX:Y",

"week":int,

"fill": "#RRGGBB"

}

}

},

...

]

}

The XXX is a placeholder for the countrycode like NLD for
the Netherlands. The Y stands for an integer representing
the weeknumber. The hexastring for color works the same
as it does for the substance data.

4.8 Visualisation
While for each substance the data was extracted and pro-

cessed, it could already be used to create a clear visualisation
and start answering the research questions. For the purpose
of this project a webpage using HTML, CSS and Javascript
was created. Fortunately, certain libraries already exist that
could be used to map the data on. After investigating pos-
sibilities of mapping the data on a map in a meaningful and
interactive way two options were found which have already
been mentioned in section 2.

4.8.1 Libraries for visualisation
At first Folium15 seemed to be a viable option. It supports

the GeoJSON datatype and ensures a certain flexibility in
15https://python-visualization.github.io/folium/

visualizing the data. The data could namely be created as
so-called vector tiles, which take the coordinates, geome-
try features and colorscheme of each substance (see 4.6) of
the GeoJSON as input and show them on a map. Unfortu-
nately it would take a lot of effort to show the data results
in a interactive manner, which is one of the main goals of
this project.
Fortunately, a library already exists that builds upon the
same basis, supports the right dataformats and has specific
functions for showcasing the data interactively. Through
MapBox it is possible to either upload the data to the service
and create a unique visualisation through a GUI or use local
files and create tiles and the mapping through a Javascript
library. Using the GUI was found to be easy, but unfortu-
nately not usable since the service became costly fairly quick
once tiles of the whole world would have to be visualised.
Instead of the GUI the Javascript library MapBox GL JS16

was used.

4.8.2 Visualizing Emission Data
Mapbox GL JS provides many useful functions that allow

to create interactive maps visualizing GeoJson files. The
way this happens is that a basic empty map is created as
a source on which layers in the form of vector tiles can be
added. To ensure that rendering the website does not take
too much time and computing power, GeoJson files were
created that contain emission data for a week for a certain
region of the world (see 4.4.4). These GeoJSON files are
loaded as tiles by the MapBox GL JS library. To make
sure the application is user-friendly we have written custom
Javascript code that prevents all tiles being loaded in to the
cache memory of the user at the same time.

By retrieving the user’s location it is determined which
regions should be visible. The corresponding tiles (see 4.4.2)
for these regions can then be downloaded. We restrict the
zoom-level of the map in a way that the user can view at
most 5 tiles at the same time. Besides the 5 tiles that have
to be downloaded for the current view of the user, we also
download the same tiles for the previous and next week to
allow smoother switching between the weeks. If tiles are at
any point in time not needed anymore they are removed,
once they become needed again they are downloaded again.
By doing this, at most 15 tiles per map are stored in the
users cache memory. With this approach we choose not to
minimize data exchange but to minimize the data that must
be present in the cache memory of the user.

Since the goal is to show the difference between emissions
before and during the COVID-19 pandemic two basemaps
were created and put next to each other. Each map shows
data taken from the same week of the year for a certain
substance, but from different years, namely 2019 and 2020.
By putting these maps next to each other a fast and clear
view on the differences is shown. To these two maps some
functionality was added to ensure that the views remain
clear and navigation is possible. Firstly, a time slider is
added that allows the user to switch between weeks and
shows the evolution of the emission per week. Secondly,
buttons are added that allow the user to switch between
different substances. Furthermore, the two maps have been
synchronized in order for the user to compare the emission
per region and not get lost or having to navigate through
two maps to see the data of different regions.

16https://docs.mapbox.com/mapbox-gl-js/api/
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4.8.3 Visualizing Covid-19 data
Visualizing COVID-19 data along with the substances

proofed to be quite an undertaking. For each country a
value for the lockdown should be displayed. Using simple
shapes like the points used for substances, would not have
worked well. That is because it would be impossible to see
exact values. Therefore, it was decided to use text instead.
Similar to the other data, the color should differ based on
the value. However it is not trivial to choose these colors.
They may not interfere with the underlying substance vi-
sualisation and the text should remain readable. The end
result was drawing a black box on top of each centre of a
country. No substance has a colormap with black, so it does
not disturb the other visualisations. On the contrary, it
adds some contrast. On top of this box the text was drawn
in a color based on it’s value. Lockdown numbers that were
exactly 0 were marked as green. That is to make it easy
for users to see that no COVID-19 measures are active in a
country at that moment. If the value ranged from 1-25 it is
drawn as orange-yellow. This makes it easy to see that some
measured are taken, but it is not that heavy. If the value
trespasses 25 it becomes more red. For each 25 integers, it
gets one tint more red. These values were carefully chosen to
still be readable and to be distinct enough to notice. Since
the texts are not directly next to each other, it would not
make sense to add really small increases. Therefore only
big leaps were chosen. However, now a different problem
came into existence. The lockdown measurements combined
with the substance data, would obfuscate the country name.
The solution for this was to add 3 letters for each country,
the CountryCode. This is long enough to make countries
recognizable, but not too long that it would obfuscate the
substance data.

5. RESULTS
In this section the results that were obtained from the

project plan are discussed.

5.1 Data reduction
The original dataset of 20TiB was significantly reduced,

which was mostly done by focusing only on some sub-directories.
However, by exposing these sub-directories to the pipeline
described in 4.4 it was possible to decrease the size by 99,9%
on average. Table 1 shows the original directory sizes against
the size of the data used for visualisation. For NO2 we
have visualized the troposphere and stratosphere, therefore
they are mentioned separately to better visualize the data
reduction. The final dataset that is used for the visuali-
sation, including substance-data, COVID-19-data and col-
ormaps (PNGs), is sized at 6,14 gibibytes in total.

Due to the mechanism of only loading necessary the tiles
and its neighbours, the cache does not become flooded with
unnecessary data. The average cache that was required for
each substance was tested by using the web-application on a
standard Mozilla Firefox web-browser. During this test the
6th region was taken as the center point resulting in tiles
5/6/7 being loaded for the current week and the weeks be-
fore/after. Table 2 shows the memory cached whilst showing
different weeks and substances.

5.2 General visualisations
As was explained in section 4.4.2 some distortion was ex-

pected among the poles. This distortion is visible in figure

Folder name Original size
Application
size

L2 NO2 /2019 711 GiB 0.714 GB
L2 NO2 /2020 940 GiB 0.719 GB
L2 NO2 /2019 711 GiB 0.714 GB (S)
L2 NO2 /2020 940 GiB 0.719 GB (S)
L2 SO2 /2019 1567 GiB 0.716 GB
L2 SO2 /2020 2008 GiB 0.721 GB
L2 CH4 /2019 109 GiB 0.242 GB
L2 CH4 /2020 121 GiB 0.198 GB
L2 CO /2019 267 GiB 0.715 GB
L2 CO /2020 340 GiB 0.726 GB
Total 7714GiB 6.2GiB

Table 1: Data reduction, (S) indicates stratosphere

Substance Week 2 Week 12 Week 23
NO2 81.90 MB 98.30 MB 67.30 MB
SO2 78.65 MB 98.50 MB 70.70 MB
CH4 33.76 MB 27.70 MB 21.40 MB
CO 82.11 MB 90.80 MB 70.40 MB

Table 2: Cached memory

9. The closer one gets to the equator the closer points get
to each other. No COVID-19 data is available around the
poles so in the scope of correlation between COVID and air
pollution this does not cause any large problems.

5.3 Substance visualisations
Each of the substances has, as discussed in section 4, it’s

own colormap and value range. The results therefore vary
greatly between the substances. For each substance an im-
age is taken of Europe and of China. All images of Europe
are taken in week 12 because there is a clear difference visible
between 2019 and 2020 and Covid-19 restrictions were quite
high. All images from China were taken in week 6 since at
that point China’s lockdown restrictions were high. These
images can be found in the appendix. In figure 10 and figure
17 some visualisations in respectively China and Europe can
be seen for the tropospheric vertical column of NO2. The
full spectrum of colors is visible on each of the pictures and
some differences are visible for the images between 2019 and
2020. Figure 12 and figure 13 show the stratospheric column
of NO2. Only a few of the colors are visible of the spectrum
and differences between 2019 and 2020 are harder to notice.
There are also some results for the SO2 dataset. These can
be seen in figure 14 and 15. Just like NO2 all colors are vis-
ible, but high and low values are directly next to each other
on a lot of places. The visualisations that were made of CH4
look quite different. There are a lot of gaps visible on the
map as can be seen in figure 16 and figure 17. Most values
also fall into the orange spectrum with only some slight de-
vaitions visible to red and yellow. Lastly, there is CO. When
looking at China in figure 18 there are some distinct orange
features visible, but no red ones. Most values fall into the
blue range. This is even more accentuated when looking at
Europe in figure 19. There is only blue to be found on this
picture.
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6. CONCLUSIONS
As was stated in 3 the goal of this project was to con-

tribute to the TROPOMI objectives by answering the ques-
tion ’How can the reduction of global greenhouse gas emis-
sions during the COVID-19 pandemic be visualized concisely
and interactively? ’. The visualisation on the webpage shows
the ’how’ of this research question. To do this concisely has
been achieved through the thorough analysis, extraction and
compression of the data and translating that to coordinates
that received a certain value, which in turn could be visu-
alised in a manner that is easy to understand. The inter-
active part of the research question is evident through the
possible interactions the user can have. The idea of this is
that allowing the user to interact and search for places to
see the evolution of greenhouse gases, an engaging experi-
ence might make some people curious.
The sub questions can also be found in the visualisation.
Sub-question 1 is related to the choice of showing data per
week instead of, for example, by day or hour. Then, for
the visualisation of the data itself the obvious choice is to
show the emission per area in a colored scale in which a
upper and lower limit indicate if the emission was high or
low related to the range of measured values. To answer the
next sub-question it was necessary to look somewhere else
for an answer. As has been stated before (see 4.7) an ex-
ternal source was used to integrate lockdown strictness into
the visualisation. Lastly, showing the data to the end-user
in a user friendly way was done by chunking the data into
smaller files and only keeping data in a users cache that is
required for that current visualisation. By doing this the
client browser does not have to render all the files at the
same time, thus enhancing the load time and usability of
the visualisation.

7. DISCUSSION
During the course of this project some problems and er-

rors occurred as well as some actions were taken that require
elaboration. For the future, and if this project will be con-
tinued, taking this discussion into consideration is essential
to ensure correct and usable results will be achieved and im-
provements of the data and analysis can be made.
Firstly, it must be stated that the people working on this
project are by no means experts in chemistry, geology, me-
teorology or any other field related to the content of the
data. Therefore, at times it was difficult to make sense of the
data and use correct parameters in the source code. Most
significantly this came forward during the creation of the
color maps. As has been explained in section 4.6, for each
color map a range was chosen based either on research or
the guides accompanying the TROPOMI [23], but the found
numbers were not always equal. Furthermore, to create the
weekly tiles the data was averaged, which resulted in a loss
of data. If these ranges, color scales and averages to visualize
the data make sense and were implemented correctly should
be discussed with an expert, preferably from the Coperni-
cus Institute of Sustainable Development. It was also noted
that the color maps were in some cases less suitable for a
visualisation. Most color maps were first tested on a few
samples, this was especially the case for CO. As can be seen
in the CO example, this might not have been the best color
map to pick globally. Most regions can be quite monotone
in color. The averaging that was chosen also caused some

distortion as can be seen in 9. This is of course not ideal, if
the visualisations would be made again it might be worth-
while looking at a different approximation algorithm.
Once we started running the algorithm to extract the data
from the NetCDF files we ran into certain errors indicating
that coordinates were either out of bounds or corrupt. This
has been discussed in section 4.4.2. To make the results
more reliable, more research should be done into finding the
source of these errors, perhaps again with an expert from the
Copernicus Institute. Reducing the amount of corrupt files
would decrease the missing information. After running the
algorithm it was found in some cases that either no informa-
tion was written or information was written to the incorrect
files. The reason for this most probably was human error,
since before running the algorithm changing the global vari-
ables as well as adjusting the files to be written to had to
be done manually. These files were later corrected to ensure
no incorrect data was used in the visualisation, however this
caused more budget to be used then necessary.
Lastly, it is worth mentioning that extending this research
to identify local and global trends in the emission would be
very interesting. During this project this did not happen,
even though the year 2018 could have been added. Due time
and resource constraints it was decided not to add another
year to each substance, to ensure that as many substances
as possible could be added to the visualisation.
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8. APPENDIX

8.1 Webpage
The data for the webpage that was created can be found

on databricks in the following directory: dbfs:/mnt/group08/website

8.2 Result visualisations

13

https://so2.gsfc.nasa.gov/no2/no2_index.html
https://so2.gsfc.nasa.gov/no2/no2_index.html
https://www.cogeo.org/
https://sentinels.copernicus.eu/documents/247904/3541451/Sentinel-5P-Nitrogen-Dioxide-Level-2-Product-Readme-File
https://sentinels.copernicus.eu/documents/247904/3541451/Sentinel-5P-Nitrogen-Dioxide-Level-2-Product-Readme-File
https://sentinels.copernicus.eu/documents/247904/3541451/Sentinel-5P-Nitrogen-Dioxide-Level-2-Product-Readme-File
http://www.tropomi.eu/data-products
http://www.tropomi.eu/data-products
https://earthobservatory.nasa.gov/images/76571/so2-pollution-controls-bring-results
https://earthobservatory.nasa.gov/images/76571/so2-pollution-controls-bring-results
https://earthobservatory.nasa.gov/images/87154/sulfur-dioxide-down-over-china-up-over-india
https://earthobservatory.nasa.gov/images/87154/sulfur-dioxide-down-over-china-up-over-india
https://earthobservatory.nasa.gov/images/87154/sulfur-dioxide-down-over-china-up-over-india


Figure 9: Averaging causes heavy distortion among the poles

Figure 10: NO2 tropospheric column in 2019 and 2020 week 6 in China
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Figure 11: NO2 tropospheric column in 2019 and 2020 week 12 in Europe

Figure 12: NO2 stratospheric column in 2019 and 2020 week 6 in China

Figure 13: NO2 stratospheric column in 2019 and 2020 week 12 in Europe
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Figure 14: SO2 total column in 2019 and 2020 week 6 in China

Figure 15: SO2 total column in 2019 and 2020 week 12 in Europe

Figure 16: xCH4 mixing ratio in 2019 and 2020 week 6 in China
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Figure 17: xCH4 mixing ratio in 2019 and 2020 week 12 in Europe

Figure 18: CO total column in 2019 and 2020 week 6 in China

Figure 19: CO total column in 2019 and 2020 week 12 in Europe
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Task Who
Initial data investigation All
Project plan All
Test visualisations with Cartopy Krijn

Colormaps and minimum and max values

Krijn. Tim helped with
determining the range.
Further on all colormaps
were debated and im-
proved upon team feed-
back.

Visualisation and layout of colorbars based on colormaps Lucas
Local pipeline Krijn
TaskCreator.py Krijn
Parallelizing the code on Databricks (spark) Krijn and Lucas
Pipeline: Averaging data Krijn and Lucas
Pipeline: Tiling, Assigning colors Krijn
Pipeline: handling corrupt data Tim and Lucas
Determining what was necessary for the GeoJSON format Tim
Determining how to keep the GeoJSON format compact All
Writing GeoJSON Krijn
Optimizing the pipeline Krijn and Lucas
Filtering data and defining metrics All
COVID-19 data investigation All
COVID-19 pipeline Lucas
COVID-19 GeoJSON and writing Lucas
COVID-19 foreground colors Krijn

Running queries on DataBricks and debugging
All, but mainly Tim and
Lucas

Site hosting and managing Lucas
Investigation in visualisation tools Tim
Setting up initial folium and mapbox environments and cre-
ating preliminary visualisation

Tim

Javascript:
Allowing changes in weeks/substances
”Chunkloading”

Lucas

Website layout (other than the basic Mapbox Map) - CSS
/Javascript

Lucas

Site displaying 2 maps at the same time Krijn
Synchronising the 2 maps and handling input Tim
Report sections: The pipeline, substances, the JSON for-
mats, Results for substances, everything about colormaps
(project plan, conclusion, discussion)

Krijn

Report sections: Abstract/Introduction/Related
works/Research Question (partly), Data sizes for In-
put Data, COVID-19 Data, Visualisation (partly), Results
data reduction, Discussion (partly).

Lucas

Checking, adding sources and finding these sources All
Report sections: Abstract/Introduction/Related
works/Research Question (mostly), Raw input data, initial
data investigation, Visualisation (mostly), Conclusion,
Discussion (mostly)

Tim

Checking, adding sources and finding these sources All
Final formatting of the document and deliverables Tim
Presentation: Intro, RQ, Scope, First results Tim
Presentation: Pipeline, GeoJSON Krijn
Presentation: COVID-19 Data, Demonstration, Conclusion Lucas
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