
Large Scale Data Engineering: Image Interpretation

Abhinav Shankar
abhinav.shankar@

student.vu.nl

Corneliu Soficu
corneliu.soficu@

gmail.com

Leonard Herold
leonard.herold@

gmail.com

ABSTRACT
This work provides a detailed description of the six-week-
long practical assignment that was done as part of the Large
Scale Data Engineering (LSDE) course at Vrije Universiteit
Amsterdam under the guidance of Peter Boncz. The assign-
ment, as chosen by the authors, conducts an image interpre-
tation task using the Yahoo Flickr Creative Commons 100
Million (YFCC100M) dataset, wherein the data was ana-
lyzed, classified, and visualized into a search engine that can
be used to retrieve images using keyword search. Through-
out this work, an approximate 90 million images with a size
of over 5 TB were downloaded and classified using a Convo-
lutional Neural Network (CNN), producing a search index
of over 22.3 GB including 309,726,315 label associations for
over 89 million images. Overall this work outlines how the
images from the YFCC100M can be efficiently downloaded
and classified using Databricks cloud-based Spark environ-
ment as well as how to implement a Vue.js-based search
engine on top of an inverted list-based search structure.

1. INTRODUCTION
Transforming our human’s visual reception into some form

of representation is a deeply-rooted part of our culture, and
artworks or pictures are arguably one of such forms. One
of the oldest of these kinds were discovered in Europe and
date back around 40,000 years [3]. Over this entire period,
humankind has used visuals to reproduce the real world re-
ception in the form of paintings, or other more recent forms
such as pictures. Nowadays, sharing pictures has become
a global phenomenon. Technical revolutions that are ubiq-
uitous these days, such as digital cameras or smartphones,
enable millions of people to capture any moment of their life
at any time. As people also have become users of internet-
based social media platforms such as Instagram, WhatsApp,
or Pinterest, it has become natural to share such moments
on these platforms. As a result, companies store a large
corpus of data on behalf of their users. Depending on the
kind of information stored, companies have a very varying
understanding of what that data is actually representing.

This uncertainty poses a huge challenge for companies,
as they have to comply with laws and regulations, pre-
venting or resolving users’ violations caused by copyright-
infringements, or fight inappropriate content such as hate
speech or illegal images. However, companies have already
taken measurements against this. Facebook, for example,
operates large content moderation centers across the globe,
Tumblr scans uploaded pictures for pornographic images

since 2018 and YouTube uses their ContentID system to de-
tect copyright-protected content in users’ videos [6, 10, 5].
Apart from that, knowing and extracting information about
the user’s uploaded content simply helps companies provid-
ing sophisticated searching capabilities within their applica-
tions as they can index information and make it searchable.

Concerning images, improvements in their classification
technologies have provided companies with another method
to determine what images captured. In the past, compa-
nies mostly relied on user-provided tags, metadata extrac-
tion (i.e., Exif), and manual content moderation. Due to the
fact that in recent years machine learning and AI-based ap-
proaches have become much more feasible for large amounts
of data, as a result of increasing computational power that is
available on-demand from hyperscale cloud providers, open-
sourced software development kits and publicly available
pre-trained Artifical Neural Networks (ANNs). Using ANNs
to classify images to text has been proven to be a viable
method identifying specific attributes within an image [4,
11].

This work, being part of the LSDE course 2019 at Vrjie
Universiteit Amsterdam, aims at practically applying state-
of-the-art image-classification methodologies on a large amount
of image data and evaluate the applicability of these meth-
ods. Given the symbiosis of research and practical focus, the
YFCC100M dataset was chosen as a basis for this work. This
dataset, being the most recent standard of present multime-
dia research [11], contains 100 million media objects shared
on the Flickr media-sharing platform. Given the aim and
the underlying data, this work’s research question is formu-
lated as follows:

How can all the images currently available on Flickr be
downloaded and classified effectively, that is, the computa-
tional time required of each task, by using image-to-text and
scene classification and made available via a fundamental
search engine?

Regarding the limitations and duration of the course’s as-
signment, this work focuses only on the still available data
that is downloadable on Flickr as of October 2019. Fur-
ther, to fulfill the hosting requirements, all processing will
be done throughout the duration of the course; thus final
results that can be searched are static only.

The remainder of this paper is as follows. First, the re-
lated literature will be presented. Further is shown on which
scientific literature this project is built on. Subsequently, the
project itself will be described based on the individual com-
ponents and overall process. A brief overview of the project
is given, including project organization and then general ar-

1

chitecture. This is followed by presenting insights and the
underlying statistics obtained during the initial analysis of
the YFCC100M. After that, each component of the whole
architecture is explained in detail. Then the project timeline
is discussed, as well as the project’s total budget. Finally, a
conclusion is made regarding the entire project.

2. RELATED WORK
In this chapter, related work from academia and practice

is discussed, more specifically, the two research papers that
are closely related to our project’s objective. These two
scientific papers did offer some substantial insights for our
project and its implementation, as each paper did shed light
on different aspects that were relevant to the project.

2.1 YFCC100M: The New Data in Multimedia
Research

The first paper, ”YFCC100M: The New Data in Multime-
dia Research” from Thomee et al. [11], presents the Yahoo
Flickr Creative Commons 100 Million Dataset (YFCC100M),
which arguably acts as the groundwork for this project. In
fact, the published dataset is the basis for the entire project
described in this work.

The authors claim that previously, no sufficient datasets
for multimedia research was available for academic and com-
mercial use-cases. They stress the relevance for publicly
available datasets, that are easy to share and do not pose
any licensing issues, as other datasets do. Furthermore, they
criticize that previously published datasets were only col-
lected to support a related paper. Therefore, they argue that
their work ”meets the call for scale, openness, and diversity
in academic datasets” [11, p. 1] and aim at publishing a
new reference dataset for multimedia research. The paper
presents a thorough overview of the data included, touches
on the strengths and limitations of the dataset and ends on
drawing future research directions.

The data collected compromises exactly 100 million rows
of images and videos that have been published under a CC
commercial or non-commercial license. Regarding its distri-
bution the paper states that there are 99.2 million images
and only 0.8 million videos. While the media data on Flickr
itself is a total 16.5 TB large, the dataset only contains the
data required to locate the images and videos on the Flickr
service enriched with some additional metadata, such as lo-
cation, upload time and the camera model that took it (see
Table 6 in the Appendix for more information on which data
is included).

Given the fact, that this work aims at classifying only
the images referenced by the dataset, most of the metadata
was not relevant to this work’s task. Therefore, it is not
further discussed in detail, however, it should be mentioned
that the authors discuss five types of metadata contained
in the dataset, namely tags provided by users or some type
of automatic labelling, the timespan that goes up to 2014,
location, camera-related metadata and licences.

During the project initiation we also realized that the au-
thors already have analyzed the images and videos contained
in the dataset using a self-trained deep CNN, more specifi-
cally ImageNet [9]. They included in the paper the top 25 of
1570 classed detected in the dataset, while they also made
the whole dataset of autotags accessible via their website
[1]. In fact, this provided our work with valuable directions
in how to proceed. They also highlight that in the future

more data might be release, providing additional types of
annotations.

Regarding the strengths and limitations of the dataset
the authors, although they do not want to replace existing
datasets, encourage other researchers to specifically built
onto their work, due to the fact that the dataset was de-
signed for exactly this purpose. Additionally, they argue
that the data ensures some extent of research equality strength-
ening important aspects such as reproducibility, verifiability
and extensibility of research experiments. Apart from that
they also stress the size of their dataset, the multi modality,
which means that it is including images and videos, existing
metadata and suitable licensing for reusing the data present
in the dataset. They also point out that their dataset lacks
proper annotations. Regardless of that, they point out, that
annotating images is seen as a good challenge for further re-
search activities.

In the remainder of the paper, the authors give some rec-
ommendations for using the dataset, which this work fol-
lowed in the initial data analysis by mentioning our sampling
technique. They also address future directions of research.
These include how to use the YFCC100M to further advance
AI and computer vision, the opportunity to analyzes loca-
tion and time information included in the dataset as well as
using the dataset for studying the digital culture and preser-
vation of media. In fact, the paper discussed in the following
section built on the original dataset and allows researchers
to explore the dataset without any other additional tools.

2.2 Real-time Analysis and Visualization of
the YFCC100m Dataset

The paper published by researchers from the University
of Kaiserslautern [7] was introduced as a documentation to
a tool that can be used by the research community to utilize
the full potential of the YFCC100M data. By providing the
associated tool1 the researchers aim at allowing the users to
search for small subset within the entire dataset with the
possibility to browse images and videos of the dataset. The
paper mentions the target was to have a similar contribu-
tion to the industry as its predecessors such as ImageNet
and MS Coco, by presenting a means of accessibility for the
YFCC100M dataset [7]. The paper talks about the func-
tionality of Flickr upload mechanism, where it allows users
to upload an image without a title, an optional free-text
description and giving the users the choice to select from
an arbitrary number of tags or in some cases no tags at
all. The following led to concluding that such data should
be considered incomplete, and thus could be seen to be in-
homogeneously distributed which therein has a major impli-
cations on the dataset. The paper then discussed how there
was an average of 7.06 tags per individual item, which led
to a total of 386,435,393 tags. According to the authors,
removing duplicate tags resulted in 7,940,039 distinct tags.
This was then further reduced by grouping tags into differ-
ent categories such as app-generated, descriptions, etc.

The core of the paper was a description on the search in-
terface that can be used by scholars as an initial analysis to
find a subset for research. This was done by enabling easy
and quick access to a given query, by filtering and exploring
the entire dataset and retrieved by a keyword search that is
said to be pretty straightforward. The paper mentions that

1Reachable via www.yfcc100m.org

2

for any given user query, the search engine would retrieve a
set of images and videos in the form of thumbnails, where
each given item redirects to Flickr page containing the im-
age or the video. In addition to retrieval, the system also
provides statistics which are generated dynamically based
on the given subset that is retrieved. The statistics that the
engine provides include features such as a tag cloud which
is a visualization of the 100 most commonly used tags in
the given subset, which are ranked by count, i.e., the most
used to the least used. It also had a feature where the search
could be kick-started by just clicking on a particular tag and
retrieving a subset for that given tag as a keyword. To add
multiple tags to search, the system provided a “+” which
can be used to append another keyword which added an ex-
ploitative component to the browser. Our project adapted
some of these ideas in respect to the limits given, for exam-
ple, that the search index is required to be static.

The paper mentions briefly the technical side of how the
whole search engine works and what it is built on. Since
the dataset YFCC100M is pretty large, allowing high ac-
cessibility and scalability with respect to multiple queries
or multiple users querying into the browser, they decided
to use the Google Compute Engine. Google App Engine
Environment was used to run the frontend, which in the pa-
pers description is a framework which allows scalable web
applications to run smoothly on the Google Infrastructure.
This is done by spreading the application across multiple
servers and instances are spawned automatically based on
the demand that is generated to be able to scale up smoothly
with increasing application load. The backend system which
was running the keyword search, which included retrieval,
storage and aggregation of the search results feeding into
the browser was built with the help of Google BigQuery.
The paper emphasizes the main importance of choosing Big-
Query, as it has a database-like query language and database
schemas which allow the system to process very large quan-
tities of data including duplicate and nested fields in a very
distributed manner. The statistics that are also generated
by the frontend were done on the client side using JavaScript.
These were mostly visualizations in terms of charts.

The paper however also states the minor drawback of us-
ing BigQuery. The paper mentions although BigQuery is
easily accessed similar to any SQL-like languages, querying
on single static datasets with grouping, sorting and selection
is mostly a very high performant, where joins especially take
a lot of time. This is stated in the paper as one of the rea-
sons why the generation of statistics takes a little longer
than ideal compared to the result preview. Overall the pa-
per does lay claim that the performance is high enough to
be able to view results in a matter of seconds, making the
whole experience of browsing very fluid.

Overall, the paper provided valuable insight for the subse-
quent project execution, and provided a vision to our group,
how to implement our own solution.

3. DESIGN AND DEVELOPMENT
This chapter describes the overall solution that was used

to answer the given research question. First, a general overview
on the process steps required during the project as well as
the whole architecture, consisting of a data pipeline and web
application is given. Then, each individual component is de-
scribed in consecutive sections. Finally, the project plan and
the project budget are discussed in hindsight.

Im
plem

entation
Valid

atio
n

Pl

an
ning

& Design

Initial Data
Analysis Report

Figure 1: Process Steps of Project

3.1 Overview
During the entire project a simple and lean project pro-

cess was followed. It can be divided into three different
distinctive phases that are depicted in Figure 1. The first
step was dedicated to the initial data analysis to obtain a
rough understanding of the dataset that was given. This
was followed by an iterative development phase that con-
sists of three process steps, namely planning and design,
implementation, and validation. The last step’s purpose is
to communicate the project results and thus consisted of
writing this report.

Concerning the iterative development phase’s main result,
a high-level architecture was designed based on the under-
standings gained during the prior analysis. This architecture
consists of a data processing part and a user friendly search
interface. The data processing includes five data process-
ing pipelines displayed in Figure 2, whose output is used to
provide the search results and data required for providing
additional user experience within the interface. The search
interface, depicted in in Figure 5, consists of five different
components that together provide the search experience for
the user. Each component serves a dedicated purpose and
is described in more detail in the search interface section.

3.2 Initial Data Analysis
The initial data analysis, being the first step in the project,

was conducted to obtain a deep and thorough understanding
of the dataset given. Therefore, it acted as a foundational
basis for the subsequent iterative development and from the
insights gained the first draft of the architecture was crafted.

The initial analysis included three main aspects, the re-
sults of which are displayed in Table 1. First, the over-
all structure of the dataset and the determination of which
data is relevant to the project. Second, what implications
can be drawn from the dataset that might affect the overall
implementation of the project. Thirdly, and regardless of
the fact that the underlying dataset was published in the
communications of the ACM suggesting that the dataset
should potentially be from high quality, tests for potential
inconsistencies were carried out to confirm the suggest high
quality.

The dataset itself originating from a scientific paper by
Thomee et al. [11] consisting of 100 million rows with 23
columns (see Table 6 in the Appendix for a full descrip-
tion). Each row represents a single media object on the
Flickr service. The dataset itself only includes the data that
is required to locate the data on the Flickr service. This
includes, for example, the Flickr user id of the person who
uploaded the media object or data about Flickr’s infrastruc-
ture indicating where it is stored,i.e., the server id. Apart

3

Preprocessing
(Spark Cluster)

Downloader
(Spark Cluster)

yfcc100m dataset
CSV files

download input
parquets

binary image
parquets

Classification
(ML Machine)

classification
CSV files

Postprocessing
(Spark Cluster)

Transform
And Index

(Spark Cluster)

inverted index
list json

bucket
json files

word cloud
json

label list
json

downloaded
parquet

labels
parquet

Figure 2: Data Processing Pipeline Overview

Property Value
General Figures

Total Dataset Size 100 million rows
Partitions 10 with 10 million rows each
Total File Size 12.8 GB bz2 compressed
Total Number of Columns 23

Random Sample Figures
Ratio Videos / Images 10010 img, 84 videos
Random Sample Size 10094
Random Sample File Size 4.85 MB uncompressed

Random Sample Figures - Image Download
HTTP 200 8984
HTTP 404 683
HTTP 410 343
Images Download Volume 539.20 MB

Image File Statistics
Bytes Mean 60018.35
Std. Dev. 31906.52
Bytes Min 1018
Bytes Max 1907786

Predictions
Total Download Volume 5.39 TB
Downloadable Images 88,852,698
Total Download Time 6,417 hours on single thread

Table 1: Initial Dataset Analysis

from that some meta data is also present, such as a title of
the image, tags which the user or some form of automated
system provided, and location information allowing to see
where a image was taken (see also [11]. Overall only eight
columns were relevant for the project. This includes the
data required to download the data and display it later to
the user.

In order to draw further conclusions and determine possi-
ble implications, the images associated to each row needed
further evaluation. However, because of the size of the
dataset which due to the 100 million rows makes up a total
of 12.8 GB in compressed format (calculated from the files
on the provided S3 bucket) and the fact, that the data of the
associated images is even bigger (around 13.5 TB according
to [11]) sampling the data was deemed a feasible alterna-
tive. Therefore, a random sample2 of the entire dataset was
taken and used for further analysis. The sample with a size
of 10,094 rows, included 10,010 images which indicates that
99% of the dataset contain images. During downloading the
images from Flickr three data points were recorded. First,
the time each request took and, second, the HTTP return
code for requesting each image, and third, if the request was
successful the image’s resolution was recorded. Also each
image was stored on S3. As shown in Figure 4 a success-
ful download, represented by HTTP return code 200, took
in average 0.26 seconds. Unsuccessful requests only took
0.05 seconds for both HTTP 404 and HTTP 410. However,
Figure 4 also shows that the request time has a significant
variation from the median value of 0.21. Further investiga-
tion suggested that this is reasoned in the different file sizes
stored on the Flickr services. For example, the minimum and
maximum file sizes in bytes are 1,018 and 1,907,786 bytes
respectively, while the mean is at 60018.35 bytes. Accord-
ing to our analysis, the variety in file sizes originates mostly
from the different resolutions of the images. As shown in
Figure 3 a variety of resolutions is present in the data. Fur-
ther, all images from the sample are at most 500 pixels wide
or high. Overall, the variety in resolutions was naturally
expected, however, it was also evident that this must have
been accounted for in the data processing architecture.

2Sampling was done with Spark’s dataframe sample method
and a sample size of 0.0001 based on the random seed of
108115100101 (representing ”lsde” in ASCII decimal num-
bers)

4

100 200 300 400 500
Height

100

200

300

400

500

W
id

th

Width And Height Distribution

Number of Pixel
497

498

499

500

501

502
Width

Number of Pixel

100

150

200

250

300

350

400

450

500
Height

Figure 3: Image Resolutions in Initial Analysis

HTTP 200
n=8984

 mean=0.26
 med=0.21

HTTP 404
n=683

 mean=0.05
 med=0.05

HTTP 410
n=343

 mean=0.05
 med=0.05

HTTP Status Code

0.0

0.5

1.0

1.5

2.0

Duration in seconds

Figure 4: Downloading Statistics in Initial Analysis

Search Page Component

Search Bar Component

Image
Component

Next BtnBack Btn

Image
Component

Image
Component

Image
Component

Image
Component

Image
Component

...

label list

inverted
list

buckets

Btn
S

Btn
E

Word Cloud Component

Figure 5: Components of the Search Interface

5

Regarding the quality of the dataset it became also ap-
parent, that the sampled data did not have an issue in re-
gards of inconsistencies. All URLs used to request images
from Flickr were valid URLs, also all columns adhered to
the specified schema (see Table 6) and the data they sug-
gest to contain (i.e., the image extension contained jpg and
png formats).

As a result, it was concluded that around 99% of the rows
are associated to images, which is consistent with the claims
in [11]. Furthermore, it assumed that currently (as of Oc-
tober 2019) around 90% of the images are currently avail-
able. Based on the other figures obtained during the anal-
ysis, it is projected that a total of 5.39 TB would have to
be downloaded. This is in stark contrast, to the claimed
approximately 13.5 TB of image data in the published pa-
per. Initially, we assumed that as the standard deviation
already indicates (see Table 1), that a simple linear fore-
cast using the mean file size and the assumed amount of
still available images might be highly inaccurate. In fact,
based on the final download volume, we can conclude that
our prediction was reasonably accurate (See Section 3.3.1).
However, because of the uncertainty at that point in time,
one of the main concerns after the initial data analysis was
that it might turns out to be unpractical to download all im-
ages in a short time span. Therefore, the initial focus of the
iterative development process was to download all images,
which is discussed in the following section.

3.3 Iterative Development

3.3.1 Flickr Image Downloader
As mentioned before, the initial analysis did have an im-

pact on architectural decisions for downloading the images.
The main areas that were considered during drafting the
downloading process included a suitable storage format and
structure, a scalable and lightweight downloading implemen-
tation and some potentially necessary post- and preprocess-
ing steps.

Concerning, the storage of images, first, we had to decide
if storing images on disk or keeping them in memory and di-
rectly classifying them results in an overall higher processing
speed. Based on classification experiments conducted dur-
ing the initial analysis we decided that storing images on
disk first and classifying them in a later step is a workable
and preferable solution. The main reason for this is that the
main Spark cluster used for this project did not allow GPU-
based computation, which were deemed necessary to classify
images in a reasonable time. In fact, the GPU-enabled com-
putations were only possible on a dedicated instances, that
did not provide any Spark-based distribution of work. This
matter is discussed in more detail in the subsequent Section
3.3.2. Additionally, it was recognized that storing images
for a couple of days is not costly at around 23 USD for 1 TB
per month (according to the AWS Pricing Calculator [2]).
Apart from our decision to store images on disk, a suitable
way of storing images was also required. Given the previous
experience from the initial data analysis that storing sin-
gle images on the Databricks File System (DBFS), which is
backed by a AWS S3 storage instance, comes with additional
overhead, it was evident that some form of container file for-
mat was needed. Given the fact, that the Parquet format is
well supported in Spark, and that it supports storing binary
data in columnar storage, experimentation on a small subset

Download from
Flickr[without location]

[with location] Download from
S3 bucket [downloaded]

[downloaded]

[failed]

Transform image

Return only
metadata

[failed]

Return image
bytes and
metadata

[ok]

Figure 6: UML Activity Diagram for Downloader
UDF

of the data was carried out. After reasonable performance
a decision towards storing images in a binary column was
made.

Aside the decision for a storage format, a scalable and
lightweight downloading implementation needed to be found.
After preliminary research on how to write scaleable pro-
grams on Spark, a decision for using User Defined Func-
tions (UDFs) was made. UDFs provide a simple but ef-
ficient Application Programming Interface (API) injecting
processing logic and applying it on the each row of a Spark
Dataframe. The UDF written for downloading and prepro-
cessing is depicted in Figure 6. As shown, the UDF first
tries to download data from an S3 bucket, when location
data is present. As the Flickr image data is not only used
by this project, but also another project that is part of the
LSDE course, it was decided to collaborate between groups
and use the data the group already downloaded. However,
if downloading from the S3 bucket fails the processing falls
back to the Flickr service, as the other group stated some
errors occurred during downloading in their process. If the
image is successfully downloaded, the image is prepared for
classification by resizing and cropping the image. This way,
the variety of resolutions in the data is removed and images
are ready straightaway for further processing. Additionally,
we assumed that the transformation is also advantageous in
comparison to storing the raw image, as storing the images
at an unnecessary size is avoided. Based on the analysis, we
assumed that resizing and cropping the images would lower
overall file size, especially since the paper claimed to have a
total of 13.5 TB of image data [11]. However, after down-
loading all images, we can conclude that, first, the download
volume was significantly closer to our prediction based on
the random sample (see Table 1 and 2) as the total amount
of data claimed by Thomee et al. [11], and second, that
storing cropped images actually takes up more space than
the raw image data (7.07 TB compared to 5.33 TB). De-
spite the increase in storage required, preprocessing images
did still turn out to be advantageous as the data was ready
for classification straightaway.

Furthermore, our initial doubt about whether we can down-
load all images in time, was not justified. Collaborating with
the other group, especially Mathijs Maijer, which was pro-
cessing people’s faces from a subset of the Flickr dataset
and the fact that Flickr did provide constant downloading
speeds of 20 MB per seconds according to the Spark Cluster
statistics, allowed us to download all images still available in
approximately 100 hours (one partition of the dataset took
around 10 hours processing time on the Spark cluster). It
is evident that the sufficient speed originates from Spark’s
capabilities to distribute work well, as the UDF ran across
the whole cluster with 16 worker nodes, each with 8 par-
allel threads. Overall, downloading and storing images on

6

Property Value
General Figures

Total Volume Image Data 5.34TB
Total Volume Stored Data 7.07 TB
Total Images Downloaded 89,205,355
Average Downloading Speed 20MB per second

Image File Size Figures
Average File Size 59899.52 Bytes
Std. Dev. File Size 26038.14 Bytes
Min File Size 159 Bytes
Max File Size 3683448 Bytes

Image Resolution Figures
Average Image Width 389.22 pixel
Std. Dev. Image Width 73.06 pixel
Min Image Width 1 pixel
Max Image Width 729 pixel
Average Image Height 463.99 pixel
Std. Dev. Image Height 65.36 pixel
Min Image Height 1 pixel
Max Image Height 729 pixel

Table 2: Downloading Figures

H
TT
P

20
0

H
TT
P

41
0

H
TT
P

40
4

In
va
lid

Im
ag
e

H
TT
P

50
0 S3 G
ET

7.471

0.313
0.687

0.0000.000

1.449

N
um
be
r
O
fR
eq
ue
st
s

In
10

M
ill
io
ns

1e7
74714479

3131587
6869591

1 30

14490876

Figure 7: Overview on Request Responses

20 25 30 35 40 45

10

20

30

40 De201

ReX101

InV3
Re101

ReX59

Re50

De121

Vg19

MoV2 ShV2

Re18 AlNet

% Top-1 Error

In
fe
re
nc

e
tim

e
(m

s)
fo
r
on

e
im

ag
e
on

G
PU

Figure 8: Pre-trained model comparison [12]

disk prior classification turned out to be viable, as CPU-
instances and S3 storage is compared to the GPU-enabled
instances reasonably cost-efficient. Furthermore, it also al-
lowed us to scale the GPU-based instances easily if needed,
which turned out to be useful during the classification phase
of the project.

3.3.2 Image Classification
Another challenge of this project was to identify a solu-

tion that can process large amounts of photos and recognize
the main characteristics that are present in each image in a
timely fashion. Fortunately, image classification is a highly
researched field that has produced various solutions which
can be applied for this project. Currently, the best approach
for image classification is to use a deep learning technique
that makes use of CNN. These types of networks are pri-
marily used in analysing visual imagery and give outstand-
ing results due to the connectivity pattern of the neurons
that resembles the organization of the animal visual cortex.
These kinds of networks have already been developed by
many research institutions such as The University of Ox-
ford, Stanford University or Google and have been made
publicly available to be used for solving challenges in the
computer vision field.

In order to classify images that can contain any kind of
features such as trees, cars, fruits or animals, a CNN model
that was already trained on multiple categories of items can
be applied. Such a pre-trained model must offer a fast in-
ference speed so that it can easily scale on a large dataset
and it must also offer a relatively small error rate. For this
project, we decided to go with the InceptionV3 CNN model,
developed by Google and pre-trained on 1000 classes of the
ImageNet database. The ImageNet classes are very specific
and contain many categories of items such as dog breeds or
airplane types and can successfully be applied to identify
a variety of features from the images. Because the Incep-
tionV3 model was already trained on a general set of classes,
there is no need for additional model training using tech-
niques such as Transfer Learning as the model can directly
be setup for the inference of images.

To make classification of images possible, we created a
Python module that includes the PyTorch package. Using

7

PyTorch, one can easily build and make use of the various
tools for Neural Network development, such as tensor com-
putation or batch inference. This package also offers the
InceptionV3 pre-trained model as an embedded component
so that developing a classification pipeline can be done much
easier. In order to correctly classify the dataset, an inter-
mediate step was introduced that normalizes each image by
converting it to a tensor format and making each element
of the tensor fit within a range for faster inferencing and
reducing skewness.

By classifying a subset of images from the YFCC100M
dataset, we noticed that for all greyscale images, the classi-
fication was failing. This is caused by the model expecting
a tensor that was calculated from an RGB image. These
images contain three channels, one for red, one for green
and one for blue. In comparison, the greyscale images have
a single channel, called L which represents the luminance.
To also enable the classification of these images, we imple-
mented a converter function that makes the greyscale image
”appear” as an RGB image, by repeating the image array
for the luminance three times, for each RGB channel.

Due to the huge volume of images that must be processed,
certain parallelization techniques must be employed to en-
sure that the entire dataset can be classified in a reasonable
amount of time. The first attempt at parallelizing the clas-
sification of images was to distribute the classification work
on multiple worker nodes that are part of a Spark cluster.
Although a good solution for most parallelization problems,
the classification of the entire dataset would take up to 120
days using 16 worker nodes with 4 cores each. The faster
alternative came in the form of GPU computing, by storing
the classification model and the input tensors in the GPU
memory. This way, we can make use of the large amount
of simple cores that are found in a GPU, which can allow
us to effectively run the CNN model inference much faster.
By classifying a sample of our dataset on a compute in-
stance with an Nvidia V100 GPU, we noticed a speed of
1000 images per second which is significantly larger than
the classification speed on multiple worker nodes without
GPUs. Unfortunately, by also factoring in the download
time of the images on the GPU instance, the actual speed
was drastically reduced and to solve this, we decided to scale
up to two GPU intensive compute instances. This way, we
manged to find the optimal solution that can be applied to
classify our entire dataset of nearly 90 million images in a
reasonable amount of time. To benefit more from the per-
formance of GPU computing, we decided to make use of the
Batch Processing function of the PyTorch package, which
adds the benefit of classifying multiple images in parallel
instead of classifying one image at a time.

The result of the classification is stored in a CSV file us-
ing the following format: id, label, confidence. The reasoning
behind choosing CSV as an output format for the classifica-
tion was the lack of a Spark environment which could have
allowed us to directly write the result in parquet format.
The entire process of classification is displayed in Figure 9.

Based on the classification output, and the fact that the
subsequent processing steps are computed on a dedicated
Spark Cluster, a postprocessing step, as depicted in Figure
2 was required. This postprocessing collects all classification
results into a labels parquet, and the downloaded image ids
from the downloading step as the downloaded parquet. Ad-
ditionally, the postprocessing collects additional statistics

Classification module

Downloader

Parquet partitions
containing downloaded
images as bytes

Inception V3
CNN model

GPU
Classifier

Normalizer

Uploader

CSVs with
classified labels
for each image

Figure 9: Component diagram of the classification
module

for documentation purposes, such as the amount of bytes
from the raw image and the resolution. The labels par-
quet and the transform and index are the input for the final
transform and index step.

3.3.3 Transform and Index
The transform and index step prepares the raw pipeline

output so that any application that can read JSONs would
be able to handle the project’s final output data. This way
we were able to independently implement the visualization,
while implementing the data pipeline at the same time. In
fact, very early in the project it was agreed on how the
data structures for the visualization have to look like. This
reduced the amount of changes required to process the data
in the visualization throughout the project.

The whole transform and index job is divided into four
stages. The overall pipeline combines the Flickr metadata
the labels for all images that were downloaded and provides
an inverted list that references a partitioned search result for
each label that was found during classification. Each image
that that the pipeline was able to classify is present in one
or multiple rows, depending on the confidence level.

Concerning the four stages of the job, first the input data
is read and prepared for the main processing. This includes
the extraction of all classified images, so that each image
that was previously classified is associated with at least the
label having the highest confidence, remaining labels must
meet a minimum confidence of at least 1%. This confidence
value was chosen to reduce the search index significantly,
as some images only belong to one class at max and labels
predicted with a very low confidence would not be present
in the picture. We acknowledge that some correct labels are
dropped during this process, especially when they are in the
background. However, we believe that dropping images with
very low confidence not just helps reducing the overall size of
the search index, but also making the overall results better.
We determined the minimum confidence value through var-
ious experimentation during implementation. In the first
step, the other labels that were identified and associated
with the image are also added to each labelled image row,
which allows cross-referencing labels across single images.
Finally we calculate partitions, so called buckets in the con-
text of this work. For each label one to multiple buckets

8

make up the whole calculated search index. The buckets
contain each a maximum of 30,000 images that are labelled
with the associated label given a certain confidence. Each
bucket has a unique identifier and is associated to a label.
Each bucket is sorted by confidence and also all buckets of
one label are sorted in the same manner. Essentially, the
results for each label are divided into multiple buckets, and
all buckets calculated provide the full search index of our
processing.

In the second stage of the pipeline additional data re-
quired for the search interface is collected. For each image
and its associated labels metadata that enables our web ap-
plication to link to the matching Flickr URL is collected and
transformed into a JSON representation via a UDF. Subse-
quently, the output of that UDF is partitioned into the pre-
viously calculated buckets, reducing the total amounts of
rows to the total number of partitions. Finally, each bucket
is written to disk totalling at around 2 MB per bucket and
an overall bucket count of 10805.

In the third stage of the transform and index processing
the final data product is created. First an inverted list is cre-
ated. The inverted list is important to provide the search
capabilities for our image retrieval search, as it provides a
dictionary of labels mapped to the buckets, across which the
calculated search results are spread. Furthermore, a list of
all labels that were present in the dataset is generated, to
allow the visualization providing some search functionalities
to the enduser. Additionally, a list of all classes with the
total count of images is generated so that a word cloud of
the fully classified dataset can be generated. Initially, this
word cloud was planned to be created within the pipeline.
To compute the word cloud an existing python package was
forked3 and extended to generate vector-based graphics, but
as it would have required Cython as a dependency on the
Spark Cluster, local computation of the word cloud was a
preferrable option. Especially, since the generated result
needed some adjustments to be used in the final visualiza-
tion.

In the final and fourth stage all results are collected and
written to tar files to enable easier downloading. The final
results consist of 10,805 partitions, containing 309,726,315
labels for all downloaded images. Of all downloaded im-
ages only 29,824 images could not be classified. According
to analysis on a small subset, and looking at images via
searching the keyword unclassified, these images seem to
have mostly invalid metadata causing classification to fail.
This might have occurred due to that fact that users upload
large sets of images without knowing what images they are
uploading.

3.3.4 Search Interface
This section describes the visualization and the inner work-

ings of the search engine. The search engine is the frontend
of our project, allowing users to search through the final
classified dataset using keywords and performing informa-
tion retrieval to return images that correspond to the given
keyword. The description below has also been illustrated in
Figure 10.

The frontend loads word cloud of all possible tags, below
which is a search bar located through which the user can
enter a keyword. Adjacent to the search bar are two action
buttons, one for choosing a keyword at random, taking the

3See https://github.com/amueller/word_cloud

choice away from the user and still being able to deliver a
search function with valid results. The second one is a sim-
ple search button which can be used to trigger the search
when the user enters a keyword. The user can enter a key-
word in multiple different ways. The user is allowed to type
in a keyword, to select a keyword from the word cloud and to
choose from an auto-complete function drop-down that ap-
pears when the user is typing any keyword. On the backend
to perform these functions, when the homepage is loaded,
both the list of all possible keywords and the inverted list
are loaded on into the webbrowser’s memory to make the
process of searching smoother and more seamless.

Once the user enters a keyword, the system checks if the
keyword exists in the inverted list. If the keyword does
not exist, the user is returned with a “no results” page and
asked to search again. If the user chooses a keyword from
the word cloud return no results is not possible since every
keyword in the word cloud exists in our system. Similarly if
the user chooses the “choose a random” action, the search
bar is populated with a keyword term that exists in our list.
Once the keyword is validated, if it exists, the total number
of images the keyword is linked to and the unique identifiers
of all buckets, making up the search result are fetched from
the inverted list. A bucket, as previously mentioned, refers
to a subset of results. Since the frontend deals with a large
amount of data, these buckets help the browser to better
process a query without requiring too much computational
power. Each bucket contains at most 30,000 results. To
provide a smooth and fast user experience the bucket is di-
vided into pages, that contain a maximum of 100 images.
The system then sets the bucket index and page index for
the keyword so that the first 100 elements are shown.

To allow the user to navigate through the results, up to
four navigational buttons are offered. Two of these are the
next button which takes the user to the next page and the
last button which takes the user to the last page. The other
two buttons allow the user to navigate back one page or
jump back to the start of the results. During navigation,
additional buckets are loaded on demand. Thus, if a user
reached the end of a bucket, and more results are present
in the inverted list, the subsequent bucket is loaded, when
the user navigates further through the results. The user is
allowed to switch the keyword in the middle of looking at
the results, the search resets and the validation checker for
if the keyword exists is run again and the whole process in
repeated.

Concerning the results, all images are shown in equal sized
squers to provide a uniform presentation of each image.
Upon hovering a result, or click on it on a mobile device,
the whole image is shown. Additionally, for the current im-
age selected, the classification confidence is displayed upon
hovering/selecting. In general, results are sorted on high to
low confidence. When a user clicks on an image or, when
using a mobile device,s a user has clicked the open button,
redirection to Flickr is initiated.

The static-only limitation does however impose some re-
strictions on the functionality of the search engine. There
are no results for keywords not in our system. Multiple key-
word search is not possible. Although keywords that have
multiple words can be searched, two independent keywords
searched together can not. However, this could be a possi-
ble future task continuing on from this as a foundation. The
performance of the search engine is smooth, even though the

9

Homepage

Inverted ListAvailable Keywords
List

Request Keyword
From User

Keyword
Exists?

"no results"

False Set Bucket Index,
Page Index and run

query()
Query

Get Current Bucket

Keyword

Bucket
Exists?

True

Process Chunk

Data

"[]"

"First 100
images"

Page
Change?

Next? Can Load
More?

Back? Can Load
Less?

End?

Start

New
Keyword?

"Current Page
with 100
Images"

False
User
Input

False

False

False

False

True

"Current Page
with 100
Images"

False

True

True
Load More Update Page index

and Bucket Index
"Next Page"

with 100
Images

False

True

Button Disabled

False

Button Disabled

False

True
Load Less Update Page index

and Bucket Index
"Previous
Page" with
100 Images

Can Load
More? Load Last

With Last Bucket,
Get Size, Update
Page Index and

Bucket Index

"Last Page" with
Images > 0

Images <= 100

True

Button Disabled

False

Can Load
Less?

Button Disabled

False

True
Load First Update Page index

and Bucket Index
"First 100
images"

True

True

True

True

Figure 10: Visualization of Search Sequences

Figure 11: Homepage of Search Engine

10

Table 3: Validation Test-case
Feature Opt-

ional?
Visualization can be opened required 3

User can enter some input required 3

User can auto-complete input optional 3

User can select a keyword from word
cloud

optional 3

User explorer search index with random
keyword

optional 3

User gets feedback for keyword without
results

required 3

User gets first 100 Results for the key-
word on first page

required 3

User can go to next page required 3

User can go to previous page required 3

User can go jump to last page required 3

User can go jump to first page required 3

Image Confidence and Resolution Trans-
formation

required 3

Redirect to Flickr required 3

Mobile Ready optional 3

Multiple Keyword Search optional 7

dataset of results is pretty huge, the concept of pagination
and bucketing helped to provide a fast and easy to use search
engine without slowing down the user’s device. In general,
one could argue that the provided search engine is pretty
sophisticated given the limitations.

3.3.5 Validation and Testing
Throughout the project, validating the insights from the

data and testing the provided visualization was required. In
general, this was done mostly directly after implementing
certain components or obtaining certain statistics. Valida-
tion of the data processing pipelines was done by checking
plausibility and cross-checking information on the overall
dataset that we obtained for predicted values on our ob-
tained subset. We also used the information provided by the
dataset publishing paper by Thomee et al. [11]. However,
is was decided that a general user interaction flow should
be tested for the final submission. Therefore, we defined a
list of features that were planned to be implement within
the visualization. This list was used to define a final test-
case to provide measure for final sign off prior submitting
the results. The final checks for this list are displayed in the
Appendix in Figures 13 and 14.

3.4 Project Plan
Throughout the whole six weeks a project plan was fol-

lowed, which was composed during the project initialisation.
Essentially, we planned on how to achieve our objectives in
the time that is given and with the highest quality possible.
However, throughout the project some changes to our initial
plan occurred as shown in Figure 12. The first half of the
project plan remained unchanged, as during the first two
weeks tasks were well defined and therefore easier to judge
in regards of time required.

The project began with a kick off stage wherein we re-
ceived the details of our project, which then led us to the
planning and work distribution phase. During this the project

Table 4: Initial Cost Estimations
Calculation Estimated Total Costs
AWS Egress 0.90 USD
Download with CPU 89.59 USD
Image Storage 101.48 USD
Classification time in GPU 196.39 USD

Total Estimated Cost 388.36 USD

was setup and the work was distributed amongst the team.
Work was divided across the different modules which had to
be worked on independently in parallel and later combined.

The next phase was the architecture design phase which
was a prerequisite to the three main modules. Once the ini-
tial design for the architecture was finalized, the focus was
then shifted to doing some initial data analysis, which also
involved cleaning the data and running some preliminary
tests to understand exactly what kind of data we are deal-
ing with. This step allowed to further refine the planned
architecture and to come up with a more specific project
budget.

After that, all three team members worked to varying de-
grees on the downloading/data scraper, classification and vi-
sualization. Based on the sample generated during the data
exploration step, the entire pipeline was implemented until
the 14th of October. Subsequently, based on the first work-
ing version of the entire pipeline the large datasets could be
tested. Initially, it was assumed that downloading and clas-
sification of the images could be done during implementing
the final visualization. However, running the classification
only started on the 20th of October, due to various changes
required. Once all the three stages were finalized, it was
possible to process the entire dataset. This posed a chal-
lenge in regards of classification, since it was the most time
consuming part of the entire pipeline. Further, it took also
significantly longer to implement the visualization, as pro-
viding a good user experience was deemed advantageous.

Testing was carried out through all the stages as various
libraries were tested, different techniques to find what best
fit the project’s objectives and could help to achieve the
goal in time. Due to the changes in time and scope of other
activities writing the report was delayed, but finished in
time.

3.5 Project Budget
Apart from handling the limited time for the project, cost

also had to be considered. At the beginning of the project
one aspect was to estimate the project costs. The impor-
tance of having a closer to an actual estimation was neces-
sary, in order to avoid going over the given budget of 1500
USD. Although the budget was not an entirely strict line,
by estimating the project costs it could be ensured that the
creation process of the data product was not only complete
in its technical aspects but it also was economical within the
given budget. In the following sections, the initial and final
estimated cost are described.

3.5.1 Initial Estimation
Based on the initial data analysis and the AWS Pricing

calculator4, the overall cost for completing the project were

4Based on the Northern Ireland Pricing Region

11

Kick-Off (23 Sep - 24 Sep)

Planning andWorkloadDistribution (23 Sep - 24 Sep)

Peer-Review andFinal Submission (19Oct - 1 Nov)

Report Preparation (19Oct - 25 Oct > extended1Nov)

Architecture DesignPhase (25 Sep- 30 Sep)

Data Exploration and Cleaning (25 Sep - 3Oct)

Data Scraper for Images (27 Sep– 30 Sep)

23 24 25 26 27 28 29 30 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 01

Classification (1 Oct - 14 Oct) Running Classification (20Oct - 31Oct)

Visualization (8 Oct - 18Oct > extended 23 Oct) Fine Tuning (28 Oct - 31Oct)

Testing phase (27 Sep - 18Oct extended1Nov)

Legend
Change activities

Planned activities

Figure 12: Project Plan

estimated to total 388.36 USD. These total cost are com-
posed of various aspects, as listed in Table 4. The most
significant position in that listing are the required GPU-
based instances that were deemed required for classifica-
tion, totalling at around 196.39 USD based on the latest
Spot market prices for p3.2xlarge instances. Alternatively,
we estimated that cost could be marginally reduced if the
classification was to be done on a CPU, which would have
cost 165 dollars. We argued that this is a insignificant differ-
ence in price for a much faster execution. A design decision
had to be made, and after consultation on the availability
and the freedom for such a choice, considering we were still
well under the actual budget with our estimation, we de-
cided to include classification using the GPU in the actual
cost, instead of using the CPU. Given the initial worry, that
download might be a bottleneck during the project execu-
tion, storing images on S3 was also included in the cost es-
timation. The cost to store the images on S3 was estimated
at about 102 USD, while downloading the images in regards
of the total download time was estimated to cost about 90
USD. Other components of the price estimation were AWS-
Egress, which was estimated at about 0.90 dollars. However,
it needs to be stated that this estimation was presented as
part of our project plan, taking into consideration the total
loadable images, the average file size of the images in bytes,
the time it took to classify each image using a GPU and us-
ing a CPU. Given the fact, that a quite a few changes were
required throughout the project, estimated cost had limited
applicability in hindsight.

3.5.2 Actual Costs
After completing the majority of computational work, it

was considered to be good practice reflecting on the total
project costs. However, no exact measurements were possi-
ble due to a lack of monitoring data present. Due to this,
only a worst cast scenario based on the continuously man-
ually tracked running times of the Spark cluster, the ded-
icated classification instances and the used storage could

Table 5: Worst-Case Final Cost
Calculation Total Costs
100 GB AWS Egress
(0.15/GB for the first 10 TB p/m)

15 USD

16 x i3.xlarge for Spark Worker
(approx. 9 days at 0.344 USD p/h)

1188.86 USD

1 x r4.4xlarge for Spark Driver
(approx. 9 days at 1.1856 USD p/h)

256.09 USD

1 x p3.2xlarge for Spark Driver
(approx. 9 days at 3.305 USD p/h)

713.88 USD

6 TB AWS S3 for files
(approx. 11 days at 141.32 USD p/m)

51.82 USD

Total Worst Case Cost 2,225.65 USD
Total Worst Case with Spot Prices 1,393.45 USD

be estimated as of Table 5. Regardless of that, it is ar-
gued that the estimated worst case final cost still indicate
that initial cost were underestimated. First, the actual de-
velopment and download of temporary data as well as the
final results (totalling at 22.3 GB) increases the AWS egress
position by a multitude. Second, performance of classifica-
tion was slower than expected, although managing around
120 images per second, the classification took almost nine
days in total. However, the amount of storage required was
lower than previously expected, also we initially did not ac-
count that using the data from S3 with EC2 instances is free
too. Expecting worst-case the regular price for i3.xlarge and
r4.4xlarge instances at 0.344 USD per hour and 1.1856 USD
per hour respectively, running the Spark cluster would have
been significantly more expensive than anticipated. This is
simply due to the fact, the for the initial cost estimation
mostly Spot pricing was assumed and that later during exe-
cution, at least for the p3.2xlarge the regular price was rel-
evant due to the configuration given. Furthermore, it needs
to be mentioned that the Spot prices are quite volatile. Dur-
ing the project we noticed changing cluster configurations,

12

as prices and therefore the amount of Spot instances used,
changed over time quite often.

Regardless, it is believed that cost are likely to be signif-
icantly lower. As the given calculation is estimated based
on a worst-case scenario, which is that all listed resources
were used fully over the whole period. In fact, due to dy-
namic resizing and shutdowns on idle, resources were not
fully utilized over the whole period. Furthermore, as the
most recent market prices for Spot instances, according to
AWS’s Spot Instance Advisor5, were significantly lower. All
instance types showed (as of the 01.11.2019) 70% of savings
over the On-Demand prices in the last 30 days. Based on
this, total cost would drop by 832.20 euros6. This both high-
lights the advantages and disadvantages using cloud-based
computations, as prices do vary a lot and reliable predictions
about project cost are difficult without the appropriate data.

4. CONCLUSION
Gary King, social science researcher at Harvard Univer-

sity, argues in a presentation that ”Big Data is Not About
the Data” [8]. He argues that Big Data is more about what
statistical and other methods allow to extract from that
large amount of data. According to him, the novel insights
made possible by Big Data are what makes data so impor-
tant these days. Upon reflecting this statement and the work
done document in this paper, we, the authors, truly believe
that this is true.

Looking back over the last six weeks it is not necessarily
the total amount of data processed that is most inspiring,
but that by classifying the huge corpus of images, we had
the opportunity to discover what type of images are actually
uploaded on the Flickr platform. We realized that these im-
ages cover a huge bandwidth of scenes and and objects that
were photographed. Images on Flickr seem mostly related
to free time activities or social events, given that the key-
words lakeside, stage, groom or seashore are predominately
identified entities in the data. Overall, this is not surprising
because people possibly are more eager to share such mo-
ments in their life publicly than others, however, that such
insights can be easily extract from just images and nothing
else, is marvellous.

From a technical perspective, it can be argued, taking
into account the entire course contents of LSDE, that the
technology used during the project really helped the reach
our objective. Spark’s scalability helped in tackling a lot of
problems, that would have required much more work oth-
erwise. The usage of Spark did not remove the necessity
to carefully think about how to implement programs that
operate on large data, but we argue that the entire pipeline
scaled very well from the initial small sample to scaling it up
to the entire dataset. However, some minor challenges were
still present in the development phase. While the download-
ing of images did work and scale very well, implementing the
image classification for the processing of large parquet files
without Spark required some thought, especially since the
GPU-based instances should be fully utilized for maximized
cost-efficiency. More specifically, implementing the classifi-
cation was straightforward on smaller datasets, but had to
be adapted after applying it to the bigger dataset, reading

5https://aws.amazon.com/ec2/spot/instance-advisor/
6Savings only applied to Spark worker instances

single row groups from the parquet. Overall, it can be con-
cluded that Spark’s scaling does work very well when done
right, but non-Spark-based processing always should be kept
in mind.

Concerning, the implementation of the static search en-
gine, it can be said that Vue.js turned out to be the right
tool of choice. Due to its lightweight nature both JavaScript
and Vue.js-based implementations can easily be combined.
Using available frameworks such as Bootstrap and axios
boosted implementation speed drastically. Furthermore, it
was very straightforward to quickly get the search inter-
face mobile ready. The search mechanism implementation,
which was based on an inverted list, mapping each keyword
to its precalculated search index scaled also very well. Due
to the partitioning and the inverted list, the search is fast
and reliable. However, due to the large search index and
denormalization a lot of storage is required.

Regarding the project’s cost and timeline, it is also evi-
dent, that most activities were planned too optimistic and
took longer than expected. Also costs can be very hard to
predict, especially, when prices are not constant but influ-
enced by the current market demand. Therefore, careful
analysis of the data at hand is crucial and also having some
additional information on the history of market prices for
cloud computing is benefical.

Reflecting upon the overall personal effect of the LSDE
project, it is evident that this project did not only taught
us how to handle large amount of data with Spark, but in-
volved searching and experimenting with sophisticated data
structures and algorithms. Additionally, we learned more
about how image classification with CNNs is done. There-
fore, LSDE was a huge step towards a broad and also deeper
knowledge of Big Data processing fundamentals, while mak-
ing each one of us acquainted with relevant side areas, such
as web development, machine learning and distributed data
processing.

Therefore, we truly believe that this work gives an ap-
propriate answer to our given research question. We down-
loaded all images available in the given time using Spark’s
UDFs to scale easily, we classified over 89 million images
during the course of this project, and made the search index
available through a static search interface.

Finally, the implemented solutions still showed some short-
coming which could be improved in the future. First, clas-
sification is occasionally not accurate. Maybe cross-model
classification might yield better results. Also, the keyword
search could be improved to support more than one key-
word at a time. The main challenge would be, how to move
processing away from the web-based client to precalculat-
ing results while also maintaining a reasonable size of the
search index. Also, a Word2Vec model could be trained on
the used ImageNet classes, to provide a more sophisticated
search experience. All necessary frameworks ane methods
to do so exist already, such as TensorFlow.js to run pre-
trained model in the browser or approaches using data from
Wikipedia to train the Word2Vec model. We believe this
would have even further improved our search, so that users
would not even realize that the search index was precalcu-
lated.

13

5. REFERENCES
[1] The multimedia commons initiative, 2015.

[2] Amazon Web Services. Amazon web services simple
monthly calculator.

[3] M. Aubert, A. Brumm, M. Ramli, T. Sutikna, E. W.
Saptomo, B. Hakim, M. J. Morwood, G. D. van den
Bergh, L. Kinsley, and A. Dosseto. Pleistocene cave
art from sulawesi, indonesia. Nature, 514(7521):223,
2014.

[4] D. C. Ciresan, U. Meier, J. Masci, L. M. Gambardella,
and J. Schmidhuber. Flexible, high performance
convolutional neural networks for image classification.
In Twenty-Second International Joint Conference on
Artificial Intelligence, 2011.

[5] Google. How content id works - youtube help, 2019.

[6] A. Hern. Revealed: catastrophic effects of working as
a facebook moderator, 2019.

[7] S. Kalkowski, C. Schulze, A. Dengel, and D. Borth.
Real-time analysis and visualization of the yfcc100m
dataset. In Proceedings of the 2015 Workshop on
Community-Organized Multimodal Mining:
Opportunities for Novel Solutions, pages 25–30. ACM,
2015.

[8] G. King. Big data is not about the data! Presentation
(Harvard University USA, 19 November 2013), 2013.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton.
Imagenet classification with deep convolutional neural
networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[10] L. Shannon. Tumblr will ban all adult content on
december 17th, 2018.

[11] B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde,
K. Ni, D. Poland, D. Borth, and L.-J. Li. YFCC100M:
The new data in multimedia research.
Communications of the ACM, 59(2):64–73, 2016.

[12] Vishwesh Shrimali. Pytorch for beginners: Image
classification using pre-trained models.

APPENDIX
A. Glossary
ACM The Association for Computing Machinery (ACM)

is a educational and scientific computing society that
delivers resources that advance computing as a science
and a profession.

ContentID YoutTube ContentID is a system that auto-
matically detects videos that are protected by copy-
right.

Exif The Exchangeable image file format specifies a stan-
dard how metadata from cameras, scanners and other
media devices are handled and stored within a media
file.

B. Acronyms
ANN Artifical Neural Network

API Application Programming Interface

CNN Convolutional Neural Network

Table 6: Raw Data File Schema
Column Name Data Type
id long
user nsid string
user nickname string
date taken date
date uploaded integer
capture device string
title string
description string
user tags string
machine tags string
longitude string
latitude integer
accuracy integer
photo video page url integer
photo video download url string
license name string
license url string
photo video server id string
photo video farm id integer
photo video secret integer
photo video server id string
photo video secret string
photo video extension string
photo video marker short

DBFS Databricks File System

LSDE Large Scale Data Engineering

UDF User Defined Function

YFCC100M Yahoo Flickr Creative Commons 100 Million

C. RAW DATA FILE SCHEMA
In Table 6 the raw table schema is listed. Only eight

columns, namely id, user nsid, photo video server id, photo
video farm id, photo video secret, photo video server id,
photo video secret and photo video extension were relevant
for the visualization. Based on these eight columns all re-
quired URLs could be constructed and each image uniquely
identified.

14

7. Enter keyword not in
search space

8. First Page displays
100 items max

9. Go to next page

4. View Results of
Autocomplete

5. Select Label from
Label Cloud

6. Select Random Label
with Dice Bu�on

1. Open Visualization 2. Enter Input 3. Autocomplete

Figure 13: Testing Screens 1 to 9

15

13. Confidence And
Image Resolu�on
Change

14. Redirect to Flickr 15. Desktop View

16. Mobile View 17. Multi Keyword
Search

10. Go to previous page 11. Jump to last page 12. Jump to first page

Figure 14: Testing Screens 10 to 17

16

Table 7: Contribution Overview 1/2
Part Person Percentage
Paper
Abstract Abhinav Shankar

Corneliu Soficu
Leonard Herold

50%
0%
50%

Introduction Abhinav Shankar
Corneliu Soficu
Leonard Herold

0%
0%
100%

Related Work Abhinav Shankar
Corneliu Soficu
Leonard Herold

50%
0%
50%

Design And Development - Overview Abhinav Shankar
Corneliu Soficu
Leonard Herold

0%
0%
100%

Design And Development - Initial Data Analysis Abhinav Shankar
Corneliu Soficu
Leonard Herold

0%
0%
100%

Design And Development - Flickr Image Downloader Abhinav Shankar
Corneliu Soficu
Leonard Herold

0%
0%
100%

Design And Development - Image Classification Abhinav Shankar
Corneliu Soficu
Leonard Herold

0%
90%
10%

Design And Development - Transform And Index Abhinav Shankar
Corneliu Soficu
Leonard Herold

0%
0%
100%

Design And Development - Search Interface Abhinav Shankar
Corneliu Soficu
Leonard Herold

70%
0%
30%

Design And Development - Validation And Testing Abhinav Shankar
Corneliu Soficu
Leonard Herold

30%
0%
70%

Design And Development - Project Plan Abhinav Shankar
Corneliu Soficu
Leonard Herold

40%
0%
60%

Design And Development - Project Budget Abhinav Shankar
Corneliu Soficu
Leonard Herold

30%
0%
70%

Conclusion Abhinav Shankar
Corneliu Soficu
Leonard Herold

0%
0%
100%

Total Abhinav Shankar
Corneliu Soficu
Leonard Herold

23%
8%
69%

17

Table 8: Contribution Overview 2/2
Part Person Percentage
Code Parts
Benchmarks (Effort Factor 0.9) Abhinav Shankar

Corneliu Soficu
Leonard Herold

0%
100%
0%

Initial Data Analysis (Effort Factor 0.9) Abhinav Shankar
Corneliu Soficu
Leonard Herold

10%
0%
90%

Downloader Abhinav Shankar
Corneliu Soficu
Leonard Herold

0%
0%
100%

Classification Abhinav Shankar
Corneliu Soficu
Leonard Herold

0%
80%
20%

Transform And Index Abhinav Shankar
Corneliu Soficu
Leonard Herold

5%
5%
90%

Total Abhinav Shankar
Corneliu Soficu
Leonard Herold

3%
37%
60%

Visualization
Coding (Effort Factor 0.9) Abhinav Shankar

Corneliu Soficu
Leonard Herold

12%
3%
85%

Deployment (Effort Factor 0.1) Abhinav Shankar
Corneliu Soficu
Leonard Herold

0%
0%
100%

Weighed Total Abhinav Shankar
Corneliu Soficu
Leonard Herold

10.8%
2.7%
86.5%

18

