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Big Data for Data Science

Data streams and low latency processing
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DATA STREAM BASICS
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What is a data stream?

• Large data volume, likely structured, arriving at a very high rate

– Potentially high enough that the machine cannot keep up with it 

• Not (only) what you see on youtube

– Data streams can have structure and semantics, they’re not only audio 

or video 

• Definition (Golab and Ozsu, 2003)

– A data stream is a real-time, continuous, ordered (implicitly by arrival 

time of explicitly by timestamp) sequence of items. It is impossible to 

control the order in which items arrive, nor it is feasible to locally store a 

stream in its entirety. 
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Why do we need a data stream?

• Online, real-time processing 

• Potential objectives 

– Event detection and reaction 

– Fast and potentially approximate online aggregation and analytics at 

different granularities

• Various applications 

– Network management, telecommunications

Sensor networks, real-time facilities monitoring

– Load balancing in distributed systems

– Stock monitoring, finance, fraud detection

– Online data mining (click stream analysis) 
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Example uses
• Network management and configuration

– Typical setup: IP sessions going through a router

– Large amounts of data (300GB/day, 75k records/second sampled every 100 

measurements)

– Typical queries

• What are the most frequent source-destination pairings per router?

• How many different source-destination pairings were seen by router 1 but 

not by router 2 during the last hour (day, week, month)?

• Stock monitoring

– Typical setup: stream of price and sales volume 

– Monitoring events to support trading decisions

– Typical queries

• Notify when some stock goes up by at least 5%

• Notify when the price of XYZ is above some threshold and the price of its 

competitors is below than its 10 day moving average
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Structure of a data stream

• Infinite sequence of items (elements) 

• One item: structured information, i.e., tuple or object

• Same structure for all items in a stream

• Timestamping

– Explicit: date/time field in data 

– Implicit: timestamp given when items arrive

• Representation of time 

– Physical: date/time

– Logical: integer sequence number
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Database management vs. data stream management

• Data stream management system (DSMS) at multiple observation points

– Voluminous streams-in, reduced streams-out

• Database management system (DBMS)

– Outputs of data stream management system can be treated as data 

feeds to database

DSMS

DSMS

DBMS

data streams
queries

queries
data feeds
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DBMS vs. DSMS

• DBMS

– Model: persistent relations 

– Relation: tuple set/bag

– Data update: modifications 

– Query: transient 

– Query answer: exact

– Query evaluation: arbitrary 

– Query plan: fixed 

• DSMS

– Model: transient relations 

– Relation: tuple sequence 

– Data update: appends

– Query: persistent 

– Query answer: approximate

– Query evaluation: one pass 

– Query plan: adaptive 
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Windows

• Mechanism for extracting a finite relation from an infinite stream

• Various window proposals for restricting processing scope

– Windows based on ordering attributes (e.g., time) 

– Windows based on item (record) counts

– Windows based on explicit markers (e.g., punctuations) signifying 

beginning and end

– Variants (e.g., some semantic partitioning constraint)
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Ordering attribute based windows

• Assumes the existence of an attribute that defines the order of stream 

elements/records (e.g., time)

• Let T be the window length (size) expressed in units of the ordering 

attribute (e.g., T may be a time window)

t1 t2 t3 t4 t1' t2’ t3’ t4’

t1 t2
t3

sliding window

tumbling window

ti’ – ti = T

ti+1 – ti = T
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Count-based windows

• Window of size N elements (sliding, tumbling) over the stream

• Problematic with non-unique timestamps associated with stream elements

• Ties broken arbitrarily may lead to non-deterministic output

• Potentially unpredictable with respect to fluctuating input rates 

– But dual of time based windows for constant arrival rates

– Arrival rate λ elements/time-unit, time-based window of length T, count-

based window of size N; N = λT

t1 t2 t3t1' t2’ t3’ t4’
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Punctuation-based windows

• Application-inserted “end-of-processing”

– Each next data item identifies “beginning-of-processing”

• Enables data item-dependent variable length windows

– Examples: a stream of auctions, an interval of monitored activity

• Utility in data processing: limit the scope of operations relative to the 

stream

• Potentially problematic if windows grow too large

– Or even too small: too many punctuations
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Putting it all together: architecting a DSMS

storage query

monitor

query

processor

input

monitor

output

buffer

streaming

inputs

streaming

outputs

working

storage

summary

storage

static

storage

query

repository

DSMS

user

queries
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STREAM MINING
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Data stream mining

• Numerous applications

– Identify events and take responsive action in real time

– Identify correlations in a stream and reconfigure system

• Mining query streams: Google wants to know what queries are more 

frequent today than yesterday

• Mining click streams: Yahoo wants to know which of its pages are getting 

an unusual number of hits in the past hour

• Big brother

– Who calls whom?

– Who accesses which web pages?

– Who buys what where?

– All those questions answered in real time

• We will focus on frequent pattern mining
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Frequent pattern mining

• Frequent pattern mining refers to finding patterns that occur more 

frequently than a pre-specified threshold value 

– Patterns refer to items, itemsets, or sequences 

– Threshold refers to the percentage of the pattern occurrences to the 

total number of transactions

• Termed as support 

• Finding frequent patterns is the first step for association rules 

– A→B: A implies B 

• Many metrics have been proposed for measuring how strong an 

association rule is 

– Most commonly used metric: confidence 

– Confidence refers to the probability that set B exists given that A 

already exists in a transaction 

• confidence(A→B) = support(A∧B) / support(A) 
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Frequent pattern mining in data streams

• Frequent pattern mining over data streams differs from conventional one 

– Cannot afford multiple passes

• Minimised requirements in terms of memory 

• Trade off between storage, complexity, and accuracy

• You only get one look 

• Frequent items (also known as heavy hitters) and itemsets are usually the 

final output 

• Effectively a counting problem

– We will focus on two algorithms: lossy counting and sticky sampling 
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The problem in more detail

• Problem statement

– Identify all items whose current frequency exceeds some support 

threshold s (e.g., 0.1%) 
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Lossy counting in action

• Divide the incoming stream into windows
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First window comes in

• At window boundary, adjust counters
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Next window comes in

• At window boundary, adjust counters

Next Window

+

Frequency
Counts

second window

frequency counts

Frequenc
y
Counts

frequency counts
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Lossy counting algorithm

• Deterministic technique; user supplies two parameters 

– Support s; error ε

• Simple data structure, maintaining triplets of data items e, their associated 

frequencies f, and the maximum possible error ∆ in f : (e, f, ∆) 

• The stream is conceptually divided into buckets of width w = 1/ε

– Each bucket labelled by a value N/w where N starts from 1 and 

increases by 1 

• For each incoming item, the data structure is checked 

– If an entry exists, increment frequency

– Otherwise, add new entry with ∆ = bcurrent − 1 where bcurrent is the 

current bucket label 

• When switching to a new bucket, all entries with f + ∆ < bcurrent are released 
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Lossy counting observations

• How much do we undercount? 

– If current size of stream is N 

– ...and window size is 1/ε

– ...then frequency error ≤ number of windows, i.e., εN

• Empirical rule of thumb: set ε = 10% of support s 

– Example: given a support frequency s = 1%, 

– …then set error frequency ε = 0.1% 

• Output is elements with counter values exceeding sN − εN

• Guarantees 

– Frequencies are underestimated by at most εN

– No false negatives

– False positives have true frequency at least sN−εN

• In the worst case, it has been proven that we need 1/ε× log (εN ) counters 
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Sticky Sampling
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STORM AND LOW-LATENCY 
PROCESSING
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Low latency processing

• Similar to data stream processing, but with a twist

– Data is streaming into the system (from a database, or a network 

stream, or an HDFS file, or …)

– We want to process the stream in a distributed fashion

– And we want results as quickly as possible

• Numerous applications

– Algorithmic trading: identify financial opportunities (e.g., respond as 

quickly as possible to stock price rising/falling

– Event detection: identify changes in behaviour rapidly

• Not (necessarily) the same as what we have seen so far

– The focus is not on summarising the input

– Rather, it is on “parsing” the input and/or manipulating it on the fly
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The problem
• Consider the following use-case

• A stream of incoming information needs to be summarised by some identifying token

– For instance, group tweets by hash-tag; or, group clicks by URL;

– And maintain accurate counts

• But do that at a massive scale and in real time

• Not so much about handling the incoming load, but using it

– That's where latency comes into play

• Putting things in perspective

– Twitter's load is not that high: at 15k tweets/s and at 150 bytes/tweet we're 

talking about 2.25MB/s

– Google served 34k searches/s in 2010: let's say 100k searches/s now and an 

average of 200 bytes/search that's 20MB/s

– But this 20MB/s needs to filter PBs of data in less than 0.1s; that's an EB/s 

throughput
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A rough approach
• Latency

– Each point 1 − 5 in the figure introduces a high processing latency 

– Need a way to transparently use the cluster to process the stream 

• Bottlenecks

– No notion of locality

• Either a queue per worker per node, or data is moved around

– What about reconfiguration?

• If there are bursts in traffic we need to shutdown, reconfigure and redeploy
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Storm

• Started up as backtype; widely used in Twitter

• Open-sourced (you can download it and play with it!

– http://storm-project.net/

• On the surface, Hadoop for data streams

– Executes on top of a (likely dedicated) cluster of commodity hardware

– Similar setup to a Hadoop cluster

• Master node, distributed coordination, worker nodes

• We will examine each in detail

• But whereas a MapReduce job will finish, a Storm job—termed a 

topology—runs continuously

– Or rather, until you kill it

http://storm-project.net/
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Storm topologies

• A Storm topology is a graph of computation

– Graph contains nodes and edges 

– Nodes model processing logic (i.e., transformation over its input)

– Directed edges indicate communication between nodes

– No limitations on the topology; for instance one node may have more 

than one incoming edges and more than one outgoing edges

• Storm processes topologies in a distributed and reliable fashion
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Streams, spouts, and bolts
• Streams

– The basic collection abstraction: an 

unbounded sequence of tuples 

– Streams are transformed by the 

processing elements of a topology 

• Spouts

– Stream generators

– May propagate a single stream to 

multiple consumers

• Bolts

– Subscribe to streams

– Streams transformers 

– Process incoming streams and 

produce new ones

bolt bolt bolt

bolt bolt

bolt bolt

spoutspout

spout

stream

stream stream
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Storm architecture
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From topology to processing: stream groupings

• Spouts and bolts are replicated in 

taks, each task executed in 

parallel by a worker 

– User-defined degree of 

replication 

– All pairwise combinations are 

possible between tasks 

• When a task emits a tuple, which 

task should it send to? 

• Stream groupings dictate how to 

propagate tuples 

– Shuffle grouping: round-robin

– Field grouping: based on the 

data value (e.g., range 

partitioning) 

spout spout

boltbolt

bolt
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Putting it all together: word count
// instantiate a new topology

TopologyBuilder builder = new TopologyBuilder();

// set up a new spout with five tasks

builder.setSpout("spout", new RandomSentenceSpout(), 5);

// the sentence splitter bolt with eight tasks

builder.setBolt("split", new SplitSentence(), 8)

.shuffleGrouping("spout"); // shuffle grouping for the ouput

// word counter with twelve tasks

builder.setBolt("count", new WordCount(), 12)

.fieldsGrouping("split", new Fields("word")); // field grouping 

// new configuration

Config conf = new Config();

// set the number of workers for the topology; the 5x8x12=480 tasks

// will be allocated round-robin to the three workers, each task

// running as a separate thread

conf.setNumWorkers(3);

// submit the topology to the cluster

StormSubmitter.submitTopology("word-count", conf, builder.createTopology());
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SPARK STREAMING



Discretized Stream Processing

Run a streaming computation as a series of very small, 
deterministic batch jobs  “MICRO BATCH” approach

39

Spark

Spark
Streaming

batches of X 
seconds

live data stream

processed 
results

 Chop up the live stream into batches of X 
seconds 

 Spark treats each batch of data as RDDs and 
processes them using RDD operations

 Finally, the processed results of the RDD 
operations are returned in batches



Discretized Stream Processing 

Run a streaming computation as a series of very small, 
deterministic batch jobs  “MICRO BATCH” approach

40

 Batch sizes as low as ½ second, latency 
of about 1 second

 Potential for combining batch 
processing and streaming processing 
in the same system

Spark

Spark
Streaming

batches of X 
seconds

live data stream

processed 
results



Example – Get hashtags from Twitter 

val tweets = ssc.twitterStream()

DStream: a sequence of RDDs representing a stream of data

batch @ t+1batch @ t batch @ t+2

tweets DStream

stored in memory as an RDD 
(immutable, distributed)

Twitter Streaming API



Example – Get hashtags from Twitter 

val tweets = ssc.twitterStream()

val hashTags = tweets.flatMap (status => getTags(status))

flatMap flatMap flatMap

…

transformation: modify data in one DStream to create 
another DStream

new DStream

new RDDs created 
for every batch 

batch @ t+1batch @ t batch @ t+2

tweets DStream

hashTags Dstream
[#cat, #dog, … ]



Example – Get hashtags from Twitter  

val tweets = ssc.twitterStream()

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.saveAsHadoopFiles("hdfs://...")

output operation: to push data to external storage

flatMap flatMap flatMap

save save save

batch @ t+1batch @ t batch @ t+2

tweets DStream

hashTags DStream

every batch 
saved to HDFS



Example – Get hashtags from Twitter  

val tweets = ssc.twitterStream()

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.foreach(hashTagRDD => { ... })

foreach: do whatever you want with the processed data

flatMap flatMap flatMap

foreach foreach foreach

batch @ t+1batch @ t batch @ t+2

tweets DStream

hashTags DStream

Write to database, update analytics 
UI, do whatever you want



DStream of data

Window-based Transformations

val tweets = ssc.twitterStream()

val hashTags = tweets.flatMap (status => getTags(status))

val tagCounts = hashTags.window(Minutes(1), Seconds(5)).countByValue()

sliding window 
operation

window length sliding interval

window length

sliding interval



Performance

Can process 6 GB/sec (60M records/sec) of data on 100 nodes at 
sub-second latency

- Tested with 100 text streams on 100 EC2 instances with 4 cores each
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Comparison with Storm and S4

Higher throughput than Storm

- Spark Streaming: 670k records/second/node

- Storm: 115k records/second/node

- Apache S4: 7.5k records/second/node

0

10

20

30

100 1000

Th
ro

u
gh

p
u

t 
p

e
r 

n
o

d
e

 
(M

B
/s

)

Record Size (bytes)

WordCount

Spark

Storm

0

40

80

120

100 1000

Th
ro

u
gh

p
u

t 
p

e
r 

n
o

d
e

 
(M

B
/s

)

Record Size (bytes)

Grep

Spark

Storm



Unifying Batch and Stream Processing Models

Spark program on Twitter log file using RDDs

val tweets = sc.hadoopFile("hdfs://...")

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.saveAsHadoopFile("hdfs://...")

Spark Streaming program on Twitter stream using DStreams

val tweets = ssc.twitterStream()

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.saveAsHadoopFiles("hdfs://...")



Vision - one stack to rule them all

 Explore data interactively 
using Spark Shell to identify 
problems

 Use same code in Spark stand-
alone programs to identify 
problems in production logs

 Use similar code in Spark 
Streaming to identify 
problems in live log streams

$ ./spark-shell
scala> val file = sc.hadoopFile(“smallLogs”)
...
scala> val filtered = file.filter(_.contains(“ERROR”))
...
scala> val mapped = filtered.map(...)
...object ProcessProductionData {

def main(args: Array[String]) {
val sc = new SparkContext(...)
val file = sc.hadoopFile(“productionLogs”)
val filtered = file.filter(_.contains(“ERROR”))
val mapped = filtered.map(...)
...

}
} object ProcessLiveStream {

def main(args: Array[String]) {
val sc = new StreamingContext(...)
val stream = sc.kafkaStream(...)
val filtered = file.filter(_.contains(“ERROR”))
val mapped = filtered.map(...)
...

}
}



event.cwi.nl/lsde2015event.cwi.nl/lsde

LAMBDA ARCHITECTURE
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Lambda Architecture
• apply the (λ) Lambda philosophy in designing big data system 

• equation “query = function(all data)” which is the basis of all data systems 

• proposed by Nathan Marz (http://nathanmarz.com/)

– software engineer from Twitter in his “Big Data” book. 

• three design principles: 

1. human fault-tolerance – the system is unsusceptible to data loss or data corruption 

because at scale it could be irreparable. 

2. data immutability – store data in it’s rawest form immutable and for perpetuity. 

• INSERT/ SELECT/DELETE but no UPDATE !)

3. recomputation – with the two principles above it is always possible to (re)-compute results 

by running a function on the raw data

http://nathanmarz.com/
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Lambda Architecture
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GOOGLE DATAFLOW
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Google DataFlow
• Allows for the calculation of 

– event-time ordered results, 

– windowed by features of the data themselves, 

– over an unbounded, unordered data source, 

– correctness, latency, and cost tunable across a broad spectrum of combinations. 

• Decomposes pipeline implementation across four related dimensions, providing clarity, 

composability, and flexibility: 

– What results are being computed. 

– Where in event time they are being computed. 

– When in processing time they are materialized. 

– How earlier results relate to later refinements. 

• Separates the logical data processing from the underlying physical implementation,

– allowing the choice of 

• batch

• micro-batch, or 

• streaming engine to become one of simply correctness, latency, and cost. 
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DataFlow: Time

Two kinds of time

• Event Time, which is 

the time at which the 

event itself actually 

occurred

• Processing Time, 

which is the time at 

which an event is 

handled by the 

processing pipeline.

watermark = time before 

which the system (thinks it) 

has processed all events
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DataFlow: Processing Model
Generalized MapReduce:

• ParDo (doFcn) pretty much = “Map”

– Each input element to be processed (which itself may be a finite collection) is provided to a 

user-defined function (called a DoFn in Dataflow), which can yield zero or more output 

elements per input. 

– For example, consider an operation which expands all prefixes of the input key, duplicating 

the value across them: 

• Input: (fix, 1),(fit, 2) 

 ParDo(ExpandPrefixes) 

• Output: (f, 1),(fi, 1),(fix, 1),(f, 2),(fi, 2),(fit, 2) 

• GroupByKey more or less ~ “Reduce”

– for key-grouping (key, value) pairs. 

– In the example:

• Input: (f, 1),(fi, 1),(fix, 1),(f, 2),(fi, 2),(fit, 2) 

 GroupByKey 

• Output: (f, [1, 2]),(fi, [1, 2]),(fix, [1]),(fit, [2]) 
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DataFlow: Windowing Model
Many possible window definitions, define one using two methods:

• AssignWindows(T datum)  Set<Windows>

• MergeWindows(Set<Windows>)  Set<Windows>

Example:

• Input: (k, v1, 12:00, [0, ∞)),(k, v2, 12:01, [0, ∞)) 

 AssignWindows( Sliding(2min, 1min))  

• Output:

(k, v1, 12:00, [11:59, 12:01)), 

(k, v1, 12:00, [12:00, 12:02)), 

(k, v2, 12:01, [12:00, 12:02)), 

(k, v2, 12:01, [12:01, 12:03)) 
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Data Model

• MapReduce

(Key,Value)

• DataFlow

(Key, Value, EventTime, Window)
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DataFlow: Windowing Model

AssignWindows( Sliding(2m, 1m)) 

• Output:

(k, v1, 12:00, [11:59, 12:01)), 

(k, v1, 12:00, [12:00, 12:02)), 

(k, v2, 12:01, [12:00, 12:02)), 

(k, v2, 12:01, [12:01, 12:03)) 
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Example. When do results get computed?
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Triggering: classical batch execution
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GlobalWindows, AtPeriod, Accumulating
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GlobalWindows, AtCount, Discarding
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Triggering: FixedWindows, Batch
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FixedWindows, Streaming, Partial 
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FixedWindows, Streaming, Retracting
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Summary

• Introduced the notion of data streams and data stream processing

– DSMS: persistent queries, transient data (opposite of DBMS)

• Described use-cases and algorithms for stream mining

– Lossy counting

• Introduced frameworks for low-latency stream processing

– Storm

• Stream engine, not very Hadoop integrated (separate cluster)

– Spark Streaming

• “Micro-batching”, re-use of RDD concept

– Google Dataflow

• Map-Reduce++ with streaming built-in (advanced windowing) 

• Finegrained control over the freshness of computations

• Avoids “Lambda Architecture” – two systems for batch and streaming


