
event.cwi.nl/lsde

Big Data for Data Science

Data streams and low latency processing



event.cwi.nl/lsde2015event.cwi.nl/lsde

DATA STREAM BASICS



event.cwi.nl/lsde2015event.cwi.nl/lsde

What is a data stream?

• Large data volume, likely structured, arriving at a very high rate

– Potentially high enough that the machine cannot keep up with it 

• Not (only) what you see on youtube

– Data streams can have structure and semantics, they’re not only audio 

or video 

• Definition (Golab and Ozsu, 2003)

– A data stream is a real-time, continuous, ordered (implicitly by arrival 

time of explicitly by timestamp) sequence of items. It is impossible to 

control the order in which items arrive, nor it is feasible to locally store a 

stream in its entirety. 



event.cwi.nl/lsde2015event.cwi.nl/lsde

Why do we need a data stream?

• Online, real-time processing 

• Potential objectives 

– Event detection and reaction 

– Fast and potentially approximate online aggregation and analytics at 

different granularities

• Various applications 

– Network management, telecommunications

Sensor networks, real-time facilities monitoring

– Load balancing in distributed systems

– Stock monitoring, finance, fraud detection

– Online data mining (click stream analysis) 



event.cwi.nl/lsde2015event.cwi.nl/lsde

Example uses
• Network management and configuration

– Typical setup: IP sessions going through a router

– Large amounts of data (300GB/day, 75k records/second sampled every 100 

measurements)

– Typical queries

• What are the most frequent source-destination pairings per router?

• How many different source-destination pairings were seen by router 1 but 

not by router 2 during the last hour (day, week, month)?

• Stock monitoring

– Typical setup: stream of price and sales volume 

– Monitoring events to support trading decisions

– Typical queries

• Notify when some stock goes up by at least 5%

• Notify when the price of XYZ is above some threshold and the price of its 

competitors is below than its 10 day moving average



event.cwi.nl/lsde2015event.cwi.nl/lsde

Structure of a data stream

• Infinite sequence of items (elements) 

• One item: structured information, i.e., tuple or object

• Same structure for all items in a stream

• Timestamping

– Explicit: date/time field in data 

– Implicit: timestamp given when items arrive

• Representation of time 

– Physical: date/time

– Logical: integer sequence number



event.cwi.nl/lsde2015event.cwi.nl/lsde

Database management vs. data stream management

• Data stream management system (DSMS) at multiple observation points

– Voluminous streams-in, reduced streams-out

• Database management system (DBMS)

– Outputs of data stream management system can be treated as data 

feeds to database

DSMS

DSMS

DBMS

data streams
queries

queries
data feeds



event.cwi.nl/lsde2015event.cwi.nl/lsde

DBMS vs. DSMS

• DBMS

– Model: persistent relations 

– Relation: tuple set/bag

– Data update: modifications 

– Query: transient 

– Query answer: exact

– Query evaluation: arbitrary 

– Query plan: fixed 

• DSMS

– Model: transient relations 

– Relation: tuple sequence 

– Data update: appends

– Query: persistent 

– Query answer: approximate

– Query evaluation: one pass 

– Query plan: adaptive 



event.cwi.nl/lsde2015event.cwi.nl/lsde

Windows

• Mechanism for extracting a finite relation from an infinite stream

• Various window proposals for restricting processing scope

– Windows based on ordering attributes (e.g., time) 

– Windows based on item (record) counts

– Windows based on explicit markers (e.g., punctuations) signifying 

beginning and end

– Variants (e.g., some semantic partitioning constraint)



event.cwi.nl/lsde2015event.cwi.nl/lsde

Ordering attribute based windows

• Assumes the existence of an attribute that defines the order of stream 

elements/records (e.g., time)

• Let T be the window length (size) expressed in units of the ordering 

attribute (e.g., T may be a time window)

t1 t2 t3 t4 t1' t2’ t3’ t4’

t1 t2
t3

sliding window

tumbling window

ti’ – ti = T

ti+1 – ti = T



event.cwi.nl/lsde2015event.cwi.nl/lsde

Count-based windows

• Window of size N elements (sliding, tumbling) over the stream

• Problematic with non-unique timestamps associated with stream elements

• Ties broken arbitrarily may lead to non-deterministic output

• Potentially unpredictable with respect to fluctuating input rates 

– But dual of time based windows for constant arrival rates

– Arrival rate λ elements/time-unit, time-based window of length T, count-

based window of size N; N = λT

t1 t2 t3t1' t2’ t3’ t4’



event.cwi.nl/lsde2015event.cwi.nl/lsde

Punctuation-based windows

• Application-inserted “end-of-processing”

– Each next data item identifies “beginning-of-processing”

• Enables data item-dependent variable length windows

– Examples: a stream of auctions, an interval of monitored activity

• Utility in data processing: limit the scope of operations relative to the 

stream

• Potentially problematic if windows grow too large

– Or even too small: too many punctuations



event.cwi.nl/lsde2015event.cwi.nl/lsde

Putting it all together: architecting a DSMS

storage query

monitor

query

processor

input

monitor

output

buffer

streaming

inputs

streaming

outputs

working

storage

summary

storage

static

storage

query

repository

DSMS

user

queries



event.cwi.nl/lsde2015event.cwi.nl/lsde

STREAM MINING



event.cwi.nl/lsde2015event.cwi.nl/lsde

Data stream mining

• Numerous applications

– Identify events and take responsive action in real time

– Identify correlations in a stream and reconfigure system

• Mining query streams: Google wants to know what queries are more 

frequent today than yesterday

• Mining click streams: Yahoo wants to know which of its pages are getting 

an unusual number of hits in the past hour

• Big brother

– Who calls whom?

– Who accesses which web pages?

– Who buys what where?

– All those questions answered in real time

• We will focus on frequent pattern mining



event.cwi.nl/lsde2015event.cwi.nl/lsde

Frequent pattern mining

• Frequent pattern mining refers to finding patterns that occur more 

frequently than a pre-specified threshold value 

– Patterns refer to items, itemsets, or sequences 

– Threshold refers to the percentage of the pattern occurrences to the 

total number of transactions

• Termed as support 

• Finding frequent patterns is the first step for association rules 

– A→B: A implies B 

• Many metrics have been proposed for measuring how strong an 

association rule is 

– Most commonly used metric: confidence 

– Confidence refers to the probability that set B exists given that A 

already exists in a transaction 

• confidence(A→B) = support(A∧B) / support(A) 



event.cwi.nl/lsde2015event.cwi.nl/lsde

Frequent pattern mining in data streams

• Frequent pattern mining over data streams differs from conventional one 

– Cannot afford multiple passes

• Minimised requirements in terms of memory 

• Trade off between storage, complexity, and accuracy

• You only get one look 

• Frequent items (also known as heavy hitters) and itemsets are usually the 

final output 

• Effectively a counting problem

– We will focus on two algorithms: lossy counting and sticky sampling 



event.cwi.nl/lsde2015event.cwi.nl/lsde

The problem in more detail

• Problem statement

– Identify all items whose current frequency exceeds some support 

threshold s (e.g., 0.1%) 



event.cwi.nl/lsde2015event.cwi.nl/lsde

Lossy counting in action

• Divide the incoming stream into windows



event.cwi.nl/lsde2015event.cwi.nl/lsde

First window comes in

• At window boundary, adjust counters



event.cwi.nl/lsde2015event.cwi.nl/lsde

Next window comes in

• At window boundary, adjust counters

Next Window

+

Frequency
Counts

second window

frequency counts

Frequenc
y
Counts

frequency counts



event.cwi.nl/lsde2015event.cwi.nl/lsde

Lossy counting algorithm

• Deterministic technique; user supplies two parameters 

– Support s; error ε

• Simple data structure, maintaining triplets of data items e, their associated 

frequencies f, and the maximum possible error ∆ in f : (e, f, ∆) 

• The stream is conceptually divided into buckets of width w = 1/ε

– Each bucket labelled by a value N/w where N starts from 1 and 

increases by 1 

• For each incoming item, the data structure is checked 

– If an entry exists, increment frequency

– Otherwise, add new entry with ∆ = bcurrent − 1 where bcurrent is the 

current bucket label 

• When switching to a new bucket, all entries with f + ∆ < bcurrent are released 



event.cwi.nl/lsde2015event.cwi.nl/lsde

Lossy counting observations

• How much do we undercount? 

– If current size of stream is N 

– ...and window size is 1/ε

– ...then frequency error ≤ number of windows, i.e., εN

• Empirical rule of thumb: set ε = 10% of support s 

– Example: given a support frequency s = 1%, 

– …then set error frequency ε = 0.1% 

• Output is elements with counter values exceeding sN − εN

• Guarantees 

– Frequencies are underestimated by at most εN

– No false negatives

– False positives have true frequency at least sN−εN

• In the worst case, it has been proven that we need 1/ε× log (εN ) counters 



event.cwi.nl/lsde2015event.cwi.nl/lsde

Sticky Sampling



event.cwi.nl/lsde2015event.cwi.nl/lsde

STORM AND LOW-LATENCY 
PROCESSING



event.cwi.nl/lsde2015event.cwi.nl/lsde

Low latency processing

• Similar to data stream processing, but with a twist

– Data is streaming into the system (from a database, or a network 

stream, or an HDFS file, or …)

– We want to process the stream in a distributed fashion

– And we want results as quickly as possible

• Numerous applications

– Algorithmic trading: identify financial opportunities (e.g., respond as 

quickly as possible to stock price rising/falling

– Event detection: identify changes in behaviour rapidly

• Not (necessarily) the same as what we have seen so far

– The focus is not on summarising the input

– Rather, it is on “parsing” the input and/or manipulating it on the fly



event.cwi.nl/lsde2015event.cwi.nl/lsde

The problem
• Consider the following use-case

• A stream of incoming information needs to be summarised by some identifying token

– For instance, group tweets by hash-tag; or, group clicks by URL;

– And maintain accurate counts

• But do that at a massive scale and in real time

• Not so much about handling the incoming load, but using it

– That's where latency comes into play

• Putting things in perspective

– Twitter's load is not that high: at 15k tweets/s and at 150 bytes/tweet we're 

talking about 2.25MB/s

– Google served 34k searches/s in 2010: let's say 100k searches/s now and an 

average of 200 bytes/search that's 20MB/s

– But this 20MB/s needs to filter PBs of data in less than 0.1s; that's an EB/s 

throughput



event.cwi.nl/lsde2015event.cwi.nl/lsde

A rough approach
• Latency

– Each point 1 − 5 in the figure introduces a high processing latency 

– Need a way to transparently use the cluster to process the stream 

• Bottlenecks

– No notion of locality

• Either a queue per worker per node, or data is moved around

– What about reconfiguration?

• If there are bursts in traffic we need to shutdown, reconfigure and redeploy

w
o
rk

 p
a

rtitio
n
e

r

stream

queue

queue

queue

worker

worker

worker

worker

queue

queue

queue

worker

worker

worker
h
a

d
o
o

p
/

H
D

F
S

persistent 
store

1

3

4
make hadoop-friendly
records out of tweets2

share the load
of incoming items

parallelise processing
on the cluster

extract grouped data
out of distributed files 

5
store grouped data
in persistent store 



event.cwi.nl/lsde2015event.cwi.nl/lsde

Storm

• Started up as backtype; widely used in Twitter

• Open-sourced (you can download it and play with it!

– http://storm-project.net/

• On the surface, Hadoop for data streams

– Executes on top of a (likely dedicated) cluster of commodity hardware

– Similar setup to a Hadoop cluster

• Master node, distributed coordination, worker nodes

• We will examine each in detail

• But whereas a MapReduce job will finish, a Storm job—termed a 

topology—runs continuously

– Or rather, until you kill it

http://storm-project.net/


event.cwi.nl/lsde2015event.cwi.nl/lsde

Storm topologies

• A Storm topology is a graph of computation

– Graph contains nodes and edges 

– Nodes model processing logic (i.e., transformation over its input)

– Directed edges indicate communication between nodes

– No limitations on the topology; for instance one node may have more 

than one incoming edges and more than one outgoing edges

• Storm processes topologies in a distributed and reliable fashion



event.cwi.nl/lsde2015event.cwi.nl/lsde

Streams, spouts, and bolts
• Streams

– The basic collection abstraction: an 

unbounded sequence of tuples 

– Streams are transformed by the 

processing elements of a topology 

• Spouts

– Stream generators

– May propagate a single stream to 

multiple consumers

• Bolts

– Subscribe to streams

– Streams transformers 

– Process incoming streams and 

produce new ones

bolt bolt bolt

bolt bolt

bolt bolt

spoutspout

spout

stream

stream stream



event.cwi.nl/lsde2015event.cwi.nl/lsde

Storm architecture

nimbus

zookeeperzookeeper zookeeper

supervisor

wor

ker

supervisor

wor

ker

supervisor

wor

ker

supervisor

wor

ker

supervisor

wor

ker

spout bolt bolt

Storm cluster
master node

distributed
coordination

Storm job topology

task allocation

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker

wor

ker



event.cwi.nl/lsde2015event.cwi.nl/lsde

From topology to processing: stream groupings

• Spouts and bolts are replicated in 

taks, each task executed in 

parallel by a worker 

– User-defined degree of 

replication 

– All pairwise combinations are 

possible between tasks 

• When a task emits a tuple, which 

task should it send to? 

• Stream groupings dictate how to 

propagate tuples 

– Shuffle grouping: round-robin

– Field grouping: based on the 

data value (e.g., range 

partitioning) 

spout spout

boltbolt

bolt



event.cwi.nl/lsde2015event.cwi.nl/lsde

Putting it all together: word count
// instantiate a new topology

TopologyBuilder builder = new TopologyBuilder();

// set up a new spout with five tasks

builder.setSpout("spout", new RandomSentenceSpout(), 5);

// the sentence splitter bolt with eight tasks

builder.setBolt("split", new SplitSentence(), 8)

.shuffleGrouping("spout"); // shuffle grouping for the ouput

// word counter with twelve tasks

builder.setBolt("count", new WordCount(), 12)

.fieldsGrouping("split", new Fields("word")); // field grouping 

// new configuration

Config conf = new Config();

// set the number of workers for the topology; the 5x8x12=480 tasks

// will be allocated round-robin to the three workers, each task

// running as a separate thread

conf.setNumWorkers(3);

// submit the topology to the cluster

StormSubmitter.submitTopology("word-count", conf, builder.createTopology());



event.cwi.nl/lsde2015event.cwi.nl/lsde

SPARK STREAMING



Discretized Stream Processing

Run a streaming computation as a series of very small, 
deterministic batch jobs  “MICRO BATCH” approach

39

Spark

Spark
Streaming

batches of X 
seconds

live data stream

processed 
results

 Chop up the live stream into batches of X 
seconds 

 Spark treats each batch of data as RDDs and 
processes them using RDD operations

 Finally, the processed results of the RDD 
operations are returned in batches



Discretized Stream Processing 

Run a streaming computation as a series of very small, 
deterministic batch jobs  “MICRO BATCH” approach

40

 Batch sizes as low as ½ second, latency 
of about 1 second

 Potential for combining batch 
processing and streaming processing 
in the same system

Spark

Spark
Streaming

batches of X 
seconds

live data stream

processed 
results



Example – Get hashtags from Twitter 

val tweets = ssc.twitterStream()

DStream: a sequence of RDDs representing a stream of data

batch @ t+1batch @ t batch @ t+2

tweets DStream

stored in memory as an RDD 
(immutable, distributed)

Twitter Streaming API



Example – Get hashtags from Twitter 

val tweets = ssc.twitterStream()

val hashTags = tweets.flatMap (status => getTags(status))

flatMap flatMap flatMap

…

transformation: modify data in one DStream to create 
another DStream

new DStream

new RDDs created 
for every batch 

batch @ t+1batch @ t batch @ t+2

tweets DStream

hashTags Dstream
[#cat, #dog, … ]



Example – Get hashtags from Twitter  

val tweets = ssc.twitterStream()

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.saveAsHadoopFiles("hdfs://...")

output operation: to push data to external storage

flatMap flatMap flatMap

save save save

batch @ t+1batch @ t batch @ t+2

tweets DStream

hashTags DStream

every batch 
saved to HDFS



Example – Get hashtags from Twitter  

val tweets = ssc.twitterStream()

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.foreach(hashTagRDD => { ... })

foreach: do whatever you want with the processed data

flatMap flatMap flatMap

foreach foreach foreach

batch @ t+1batch @ t batch @ t+2

tweets DStream

hashTags DStream

Write to database, update analytics 
UI, do whatever you want



DStream of data

Window-based Transformations

val tweets = ssc.twitterStream()

val hashTags = tweets.flatMap (status => getTags(status))

val tagCounts = hashTags.window(Minutes(1), Seconds(5)).countByValue()

sliding window 
operation

window length sliding interval

window length

sliding interval



Performance

Can process 6 GB/sec (60M records/sec) of data on 100 nodes at 
sub-second latency

- Tested with 100 text streams on 100 EC2 instances with 4 cores each

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100

C
lu

st
e

r 
Th

ro
u

gh
p

u
t 

(G
B

/s
)

# Nodes in Cluster

WordCount

1 sec

2 sec
0

1

2

3

4

5

6

7

0 50 100

C
lu

st
e

r 
Th

h
ro

u
gh

p
u

t 
(G

B
/s

)

# Nodes in Cluster

Grep

1 sec

2 sec



Comparison with Storm and S4

Higher throughput than Storm

- Spark Streaming: 670k records/second/node

- Storm: 115k records/second/node

- Apache S4: 7.5k records/second/node

0

10

20

30

100 1000

Th
ro

u
gh

p
u

t 
p

e
r 

n
o

d
e

 
(M

B
/s

)

Record Size (bytes)

WordCount

Spark

Storm

0

40

80

120

100 1000

Th
ro

u
gh

p
u

t 
p

e
r 

n
o

d
e

 
(M

B
/s

)

Record Size (bytes)

Grep

Spark

Storm



Unifying Batch and Stream Processing Models

Spark program on Twitter log file using RDDs

val tweets = sc.hadoopFile("hdfs://...")

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.saveAsHadoopFile("hdfs://...")

Spark Streaming program on Twitter stream using DStreams

val tweets = ssc.twitterStream()

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.saveAsHadoopFiles("hdfs://...")



Vision - one stack to rule them all

 Explore data interactively 
using Spark Shell to identify 
problems

 Use same code in Spark stand-
alone programs to identify 
problems in production logs

 Use similar code in Spark 
Streaming to identify 
problems in live log streams

$ ./spark-shell
scala> val file = sc.hadoopFile(“smallLogs”)
...
scala> val filtered = file.filter(_.contains(“ERROR”))
...
scala> val mapped = filtered.map(...)
...object ProcessProductionData {

def main(args: Array[String]) {
val sc = new SparkContext(...)
val file = sc.hadoopFile(“productionLogs”)
val filtered = file.filter(_.contains(“ERROR”))
val mapped = filtered.map(...)
...

}
} object ProcessLiveStream {

def main(args: Array[String]) {
val sc = new StreamingContext(...)
val stream = sc.kafkaStream(...)
val filtered = file.filter(_.contains(“ERROR”))
val mapped = filtered.map(...)
...

}
}



event.cwi.nl/lsde2015event.cwi.nl/lsde

LAMBDA ARCHITECTURE



event.cwi.nl/lsde2015event.cwi.nl/lsde

Lambda Architecture
• apply the (λ) Lambda philosophy in designing big data system 

• equation “query = function(all data)” which is the basis of all data systems 

• proposed by Nathan Marz (http://nathanmarz.com/)

– software engineer from Twitter in his “Big Data” book. 

• three design principles: 

1. human fault-tolerance – the system is unsusceptible to data loss or data corruption 

because at scale it could be irreparable. 

2. data immutability – store data in it’s rawest form immutable and for perpetuity. 

• INSERT/ SELECT/DELETE but no UPDATE !)

3. recomputation – with the two principles above it is always possible to (re)-compute results 

by running a function on the raw data

http://nathanmarz.com/


event.cwi.nl/lsde2015event.cwi.nl/lsde

Lambda Architecture



event.cwi.nl/lsde2015event.cwi.nl/lsde

GOOGLE DATAFLOW



event.cwi.nl/lsde2015event.cwi.nl/lsde

Google DataFlow
• Allows for the calculation of 

– event-time ordered results, 

– windowed by features of the data themselves, 

– over an unbounded, unordered data source, 

– correctness, latency, and cost tunable across a broad spectrum of combinations. 

• Decomposes pipeline implementation across four related dimensions, providing clarity, 

composability, and flexibility: 

– What results are being computed. 

– Where in event time they are being computed. 

– When in processing time they are materialized. 

– How earlier results relate to later refinements. 

• Separates the logical data processing from the underlying physical implementation,

– allowing the choice of 

• batch

• micro-batch, or 

• streaming engine to become one of simply correctness, latency, and cost. 



event.cwi.nl/lsde2015event.cwi.nl/lsde

DataFlow: Time

Two kinds of time

• Event Time, which is 

the time at which the 

event itself actually 

occurred

• Processing Time, 

which is the time at 

which an event is 

handled by the 

processing pipeline.

watermark = time before 

which the system (thinks it) 

has processed all events



event.cwi.nl/lsde2015event.cwi.nl/lsde

DataFlow: Processing Model
Generalized MapReduce:

• ParDo (doFcn) pretty much = “Map”

– Each input element to be processed (which itself may be a finite collection) is provided to a 

user-defined function (called a DoFn in Dataflow), which can yield zero or more output 

elements per input. 

– For example, consider an operation which expands all prefixes of the input key, duplicating 

the value across them: 

• Input: (fix, 1),(fit, 2) 

 ParDo(ExpandPrefixes) 

• Output: (f, 1),(fi, 1),(fix, 1),(f, 2),(fi, 2),(fit, 2) 

• GroupByKey more or less ~ “Reduce”

– for key-grouping (key, value) pairs. 

– In the example:

• Input: (f, 1),(fi, 1),(fix, 1),(f, 2),(fi, 2),(fit, 2) 

 GroupByKey 

• Output: (f, [1, 2]),(fi, [1, 2]),(fix, [1]),(fit, [2]) 



event.cwi.nl/lsde2015event.cwi.nl/lsde

DataFlow: Windowing Model
Many possible window definitions, define one using two methods:

• AssignWindows(T datum)  Set<Windows>

• MergeWindows(Set<Windows>)  Set<Windows>

Example:

• Input: (k, v1, 12:00, [0, ∞)),(k, v2, 12:01, [0, ∞)) 

 AssignWindows( Sliding(2min, 1min))  

• Output:

(k, v1, 12:00, [11:59, 12:01)), 

(k, v1, 12:00, [12:00, 12:02)), 

(k, v2, 12:01, [12:00, 12:02)), 

(k, v2, 12:01, [12:01, 12:03)) 



event.cwi.nl/lsde2015event.cwi.nl/lsde

Data Model

• MapReduce

(Key,Value)

• DataFlow

(Key, Value, EventTime, Window)



event.cwi.nl/lsde2015event.cwi.nl/lsde

DataFlow: Windowing Model

AssignWindows( Sliding(2m, 1m)) 

• Output:

(k, v1, 12:00, [11:59, 12:01)), 

(k, v1, 12:00, [12:00, 12:02)), 

(k, v2, 12:01, [12:00, 12:02)), 

(k, v2, 12:01, [12:01, 12:03)) 



event.cwi.nl/lsde2015event.cwi.nl/lsde

Example. When do results get computed?



event.cwi.nl/lsde2015event.cwi.nl/lsde

Triggering: classical batch execution



event.cwi.nl/lsde2015event.cwi.nl/lsde

GlobalWindows, AtPeriod, Accumulating



event.cwi.nl/lsde2015event.cwi.nl/lsde

GlobalWindows, AtCount, Discarding



event.cwi.nl/lsde2015event.cwi.nl/lsde

Triggering: FixedWindows, Batch



event.cwi.nl/lsde2015event.cwi.nl/lsde

FixedWindows, Streaming, Partial 



event.cwi.nl/lsde2015event.cwi.nl/lsde

FixedWindows, Streaming, Retracting



event.cwi.nl/lsde2015event.cwi.nl/lsde

Summary

• Introduced the notion of data streams and data stream processing

– DSMS: persistent queries, transient data (opposite of DBMS)

• Described use-cases and algorithms for stream mining

– Lossy counting

• Introduced frameworks for low-latency stream processing

– Storm

• Stream engine, not very Hadoop integrated (separate cluster)

– Spark Streaming

• “Micro-batching”, re-use of RDD concept

– Google Dataflow

• Map-Reduce++ with streaming built-in (advanced windowing) 

• Finegrained control over the freshness of computations

• Avoids “Lambda Architecture” – two systems for batch and streaming


