

Big Data for Data Science

Data streams and low latency processing

DATA STREAM BASICS

What is a data stream?

- Large data volume, likely structured, arriving at a very high rate
 - Potentially high enough that the machine cannot keep up with it
- Not (only) what you see on youtube
 - Data streams can have structure and semantics, they're not only audio or video

- Definition (Golab and Ozsu, 2003)
 - A data stream is a real-time, continuous, ordered (implicitly by arrival time of explicitly by timestamp) sequence of items. It is impossible to control the order in which items arrive, nor it is feasible to locally store a stream in its entirety.

Why do we need a data stream?

- Online, real-time processing
- Potential objectives
 - Event detection and reaction
 - Fast and potentially approximate online aggregation and analytics at different granularities
- Various applications
 - Network management, telecommunications
 Sensor networks, real-time facilities monitoring
 - Load balancing in distributed systems
 - Stock monitoring, finance, fraud detection
 - Online data mining (click stream analysis)

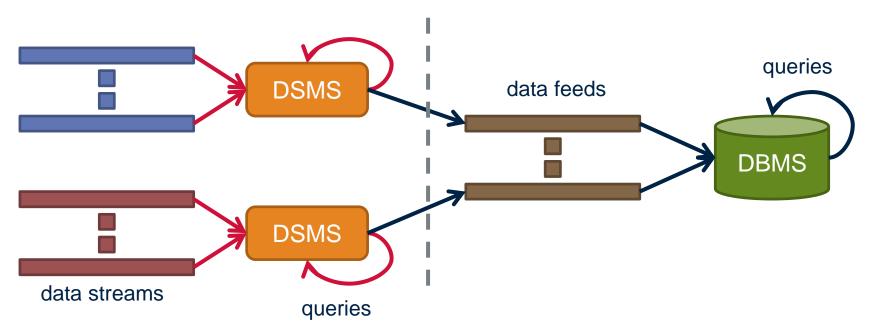
Example uses

- Network management and configuration
 - Typical setup: IP sessions going through a router
 - Large amounts of data (300GB/day, 75k records/second sampled every 100 measurements)
 - Typical queries
 - What are the most frequent source-destination pairings per router?
 - How many different source-destination pairings were seen by router 1 but not by router 2 during the last hour (day, week, month)?
- Stock monitoring
 - Typical setup: stream of price and sales volume
 - Monitoring events to support trading decisions
 - Typical queries
 - Notify when some stock goes up by at least 5%
 - Notify when the price of XYZ is above some threshold and the price of its competitors is below than its 10 day moving average

Structure of a data stream

- Infinite sequence of items (elements)
- One item: structured information, i.e., tuple or object
- Same structure for all items in a stream
- Timestamping
 - Explicit: date/time field in data
 - Implicit: timestamp given when items arrive
- Representation of time
 - Physical: date/time
 - Logical: integer sequence number

Database management vs. data stream management



- Data stream management system (DSMS) at multiple observation points
 - Voluminous streams-in, reduced streams-out
- Database management system (DBMS)
 - Outputs of data stream management system can be treated as data feeds to database

DBMS vs. DSMS

- DBMS
 - Model: persistent relations
 - Relation: tuple set/bag
 - Data update: modifications
 - Query: transient
 - Query answer: exact
 - Query evaluation: arbitrary
 - Query plan: fixed

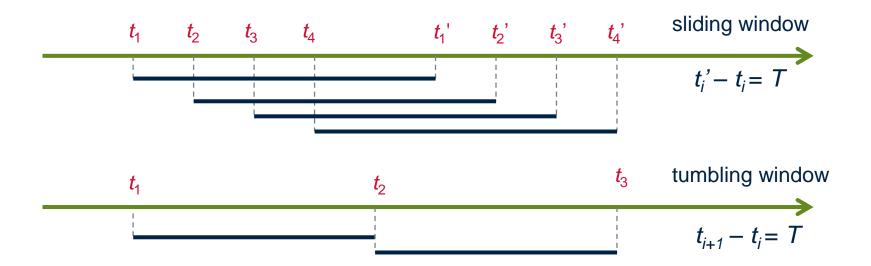
- DSMS
 - Model: transient relations
 - Relation: tuple sequence
 - Data update: appends
 - Query: persistent
 - Query answer: approximate
 - Query evaluation: one pass
 - Query plan: adaptive

Windows

- Mechanism for extracting a finite relation from an infinite stream
- Various window proposals for restricting processing scope
 - Windows based on ordering attributes (e.g., time)
 - Windows based on item (record) counts
 - Windows based on explicit markers (e.g., punctuations) signifying beginning and end
 - Variants (e.g., some semantic partitioning constraint)

Ordering attribute based windows

- Assumes the existence of an attribute that defines the order of stream elements/records (e.g., time)
- Let T be the window length (size) expressed in units of the ordering attribute (e.g., T may be a time window)



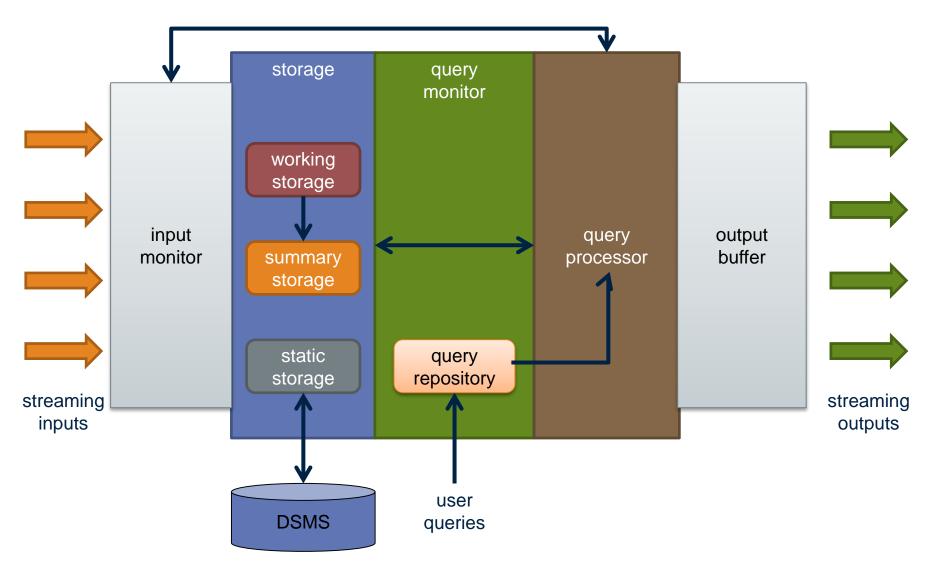
Count-based windows

- Window of size N elements (sliding, tumbling) over the stream
- Problematic with non-unique timestamps associated with stream elements
- Ties broken arbitrarily may lead to non-deterministic output
- Potentially unpredictable with respect to fluctuating input rates
 - But dual of time based windows for constant arrival rates
 - Arrival rate λ elements/time-unit, time-based window of length T, count-based window of size N; $N = \lambda T$

Punctuation-based windows

- Application-inserted "end-of-processing"
 - Each next data item identifies "beginning-of-processing"
- Enables data item-dependent variable length windows
 - Examples: a stream of auctions, an interval of monitored activity
- Utility in data processing: limit the scope of operations relative to the stream
- Potentially problematic if windows grow too large
 - Or even too small: too many punctuations

Putting it all together: architecting a DSMS



STREAM MINING

Data stream mining

- Numerous applications
 - Identify events and take responsive action in real time
 - Identify correlations in a stream and reconfigure system
- Mining query streams: Google wants to know what queries are more frequent today than yesterday
- Mining click streams: Yahoo wants to know which of its pages are getting an unusual number of hits in the past hour
- Big brother
 - Who calls whom?
 - Who accesses which web pages?
 - Who buys what where?
 - All those questions answered in real time
- We will focus on frequent pattern mining

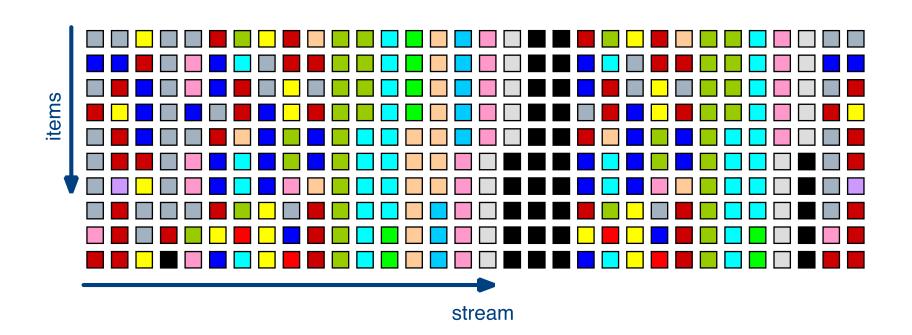
Frequent pattern mining

- Frequent pattern mining refers to finding patterns that occur more frequently than a pre-specified threshold value
 - Patterns refer to items, itemsets, or sequences
 - Threshold refers to the percentage of the pattern occurrences to the total number of transactions
 - Termed as support
- Finding frequent patterns is the first step for association rules
 - $-A \rightarrow B$: A implies B
- Many metrics have been proposed for measuring how strong an association rule is
 - Most commonly used metric: confidence
 - Confidence refers to the probability that set B exists given that A already exists in a transaction
 - confidence($A \rightarrow B$) = support($A \land B$) / support(A)

Frequent pattern mining in data streams

- Frequent pattern mining over data streams differs from conventional one
 - Cannot afford multiple passes
 - Minimised requirements in terms of memory
 - Trade off between storage, complexity, and accuracy
 - You only get one look
- Frequent items (also known as heavy hitters) and itemsets are usually the final output
- Effectively a counting problem
 - We will focus on two algorithms: lossy counting and sticky sampling

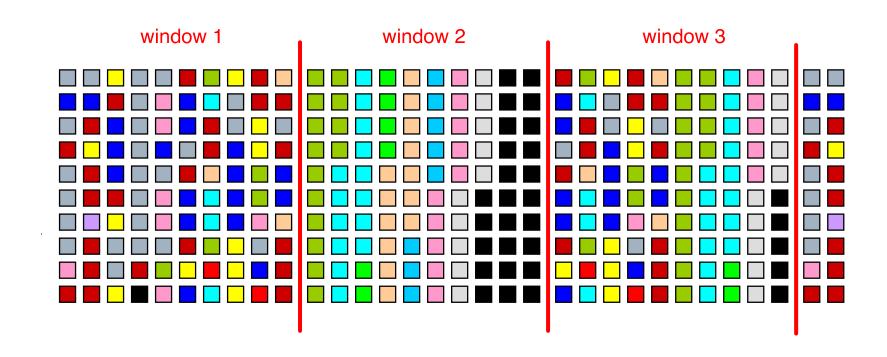
The problem in more detail



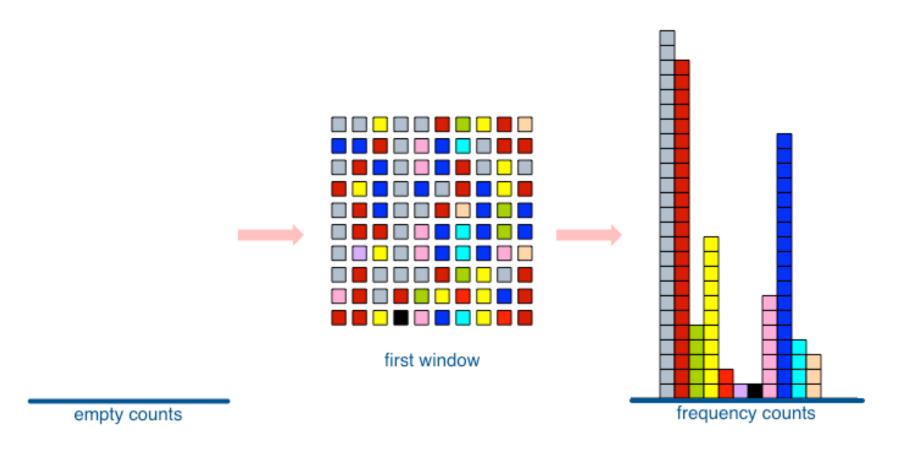
- Problem statement
 - Identify all items whose current frequency exceeds some support threshold s (e.g., 0.1%)

Lossy counting in action

Divide the incoming stream into windows

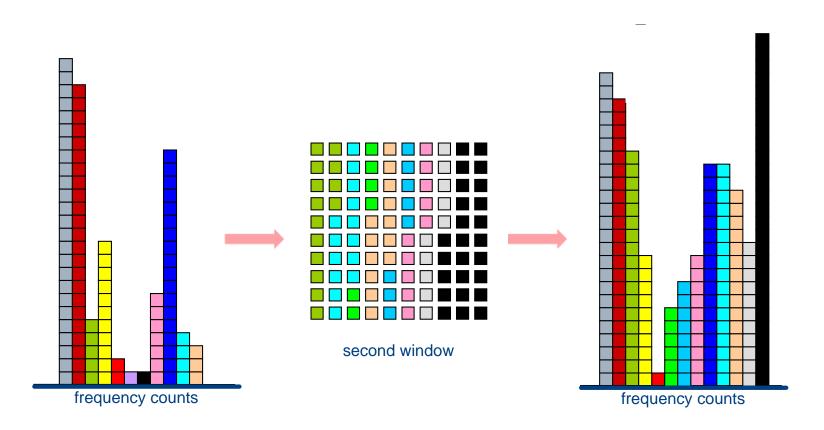


First window comes in



At window boundary, adjust counters

Next window comes in



At window boundary, adjust counters

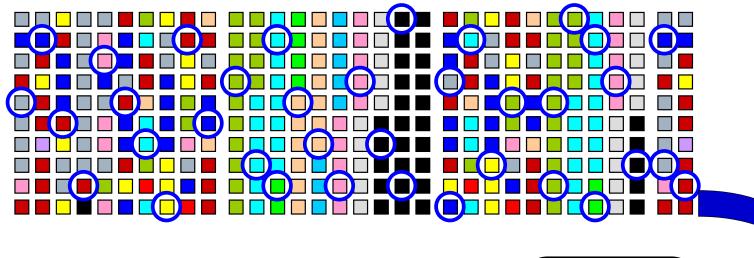
Lossy counting algorithm

- Deterministic technique; user supplies two parameters
 - Support s; error ε
- Simple data structure, maintaining triplets of data items e, their associated frequencies f, and the maximum possible error Δ in f: (e, f, Δ)
- The stream is conceptually divided into buckets of width $w = 1/\varepsilon$
 - Each bucket labelled by a value N/w where N starts from 1 and increases by 1
- For each incoming item, the data structure is checked
 - If an entry exists, increment frequency
 - Otherwise, add new entry with $\Delta = b_{\text{current}} 1$ where b_{current} is the current bucket label
- When switching to a new bucket, all entries with $f + \Delta < b_{current}$ are released

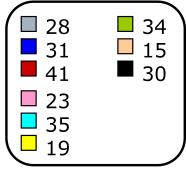
Lossy counting observations

- How much do we undercount?
 - If current size of stream is N
 - ...and window size is 1/ε
 - ...then frequency error ≤ number of windows, *i*.e., εN
- Empirical rule of thumb: set $\varepsilon = 10\%$ of support s
 - Example: given a support frequency s = 1%,
 - ...then set error frequency $\varepsilon = 0.1\%$
- Output is elements with counter values exceeding sN εN
- Guarantees
 - Frequencies are underestimated by at most εN
 - No false negatives
 - False positives have true frequency at least sN-εN
- In the worst case, it has been proven that we need $1/\varepsilon \times \log(\varepsilon N)$ counters

Sticky Sampling



- Create counters by sampling
- Maintain exact counts thereafter



STORM AND LOW-LATENCY PROCESSING

Low latency processing

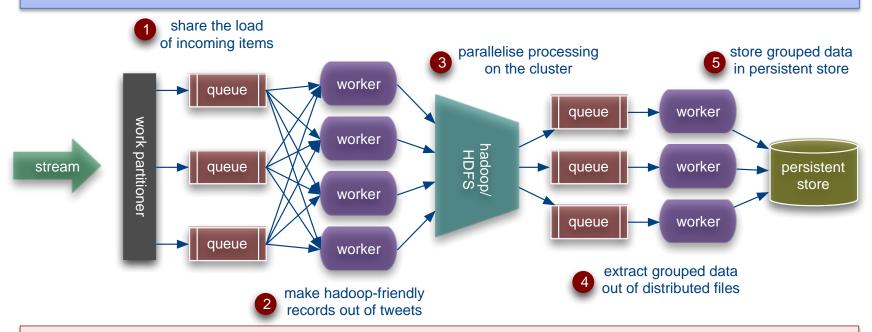
- Similar to data stream processing, but with a twist
 - Data is streaming into the system (from a database, or a network stream, or an HDFS file, or ...)
 - We want to process the stream in a distributed fashion
 - And we want results as quickly as possible
- Numerous applications
 - Algorithmic trading: identify financial opportunities (e.g., respond as quickly as possible to stock price rising/falling
 - Event detection: identify changes in behaviour rapidly
- Not (necessarily) the same as what we have seen so far
 - The focus is not on summarising the input
 - Rather, it is on "parsing" the input and/or manipulating it on the fly

The problem

- Consider the following use-case
- A stream of incoming information needs to be summarised by some identifying token
 - For instance, group tweets by hash-tag; or, group clicks by URL;
 - And maintain accurate counts
- But do that at a massive scale and in real time
- Not so much about handling the incoming load, but using it
 - That's where latency comes into play
- Putting things in perspective
 - Twitter's load is not that high: at 15k tweets/s and at 150 bytes/tweet we're talking about 2.25MB/s
 - Google served 34k searches/s in 2010: let's say 100k searches/s now and an average of 200 bytes/search that's 20MB/s
 - But this 20MB/s needs to filter PBs of data in less than 0.1s; that's an EB/s throughput

A rough approach

- Latency
 - Each point 1 5 in the figure introduces a high processing latency
 - Need a way to transparently use the cluster to process the stream



- Bottlenecks
 - No notion of locality
 - Either a queue per worker per node, or data is moved around
 - What about reconfiguration?
 - If there are bursts in traffic we need to shutdown, reconfigure and redeploy

Storm

- Started up as backtype; widely used in Twitter
- Open-sourced (you can download it and play with it!
 - http://storm-project.net/
- On the surface, Hadoop for data streams
 - Executes on top of a (likely dedicated) cluster of commodity hardware
 - Similar setup to a Hadoop cluster
 - Master node, distributed coordination, worker nodes
 - We will examine each in detail
- But whereas a MapReduce job will finish, a Storm job—termed a topology—runs continuously
 - Or rather, until you kill it

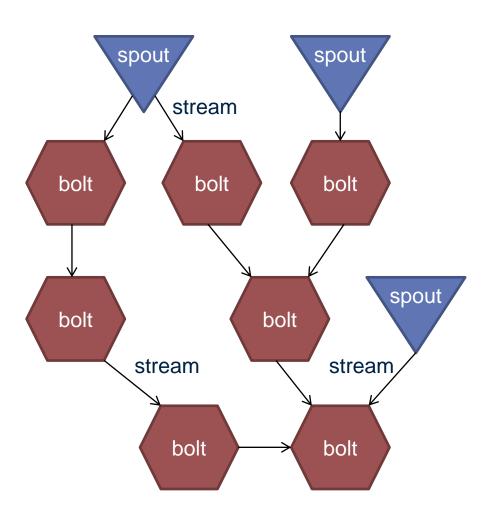
Storm topologies

- A Storm topology is a graph of computation
 - Graph contains nodes and edges
 - Nodes model processing logic (i.e., transformation over its input)
 - Directed edges indicate communication between nodes
 - No limitations on the topology; for instance one node may have more than one incoming edges and more than one outgoing edges
- Storm processes topologies in a distributed and reliable fashion

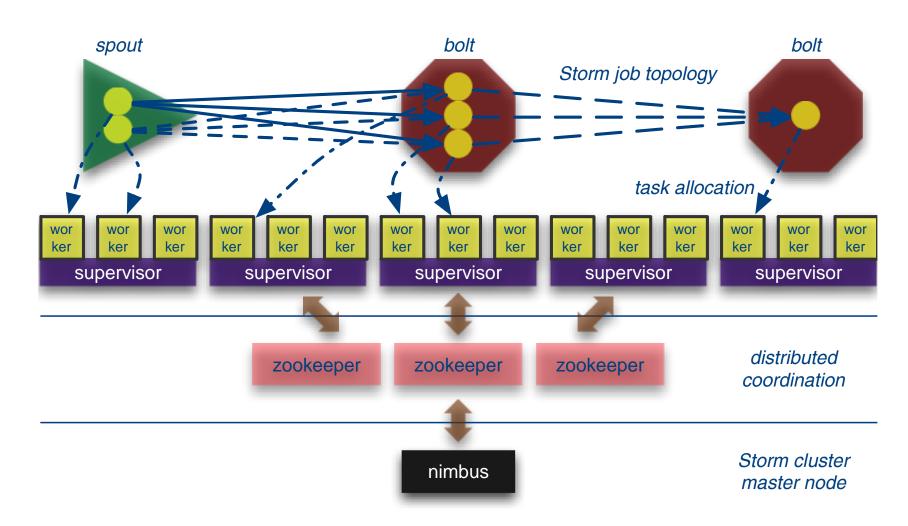
Streams, spouts, and bolts

Streams

- The basic collection abstraction: an unbounded sequence of tuples
- Streams are transformed by the processing elements of a topology
- Spouts
 - Stream generators
 - May propagate a single stream to multiple consumers
- Bolts
 - Subscribe to streams
 - Streams transformers
 - Process incoming streams and produce new ones

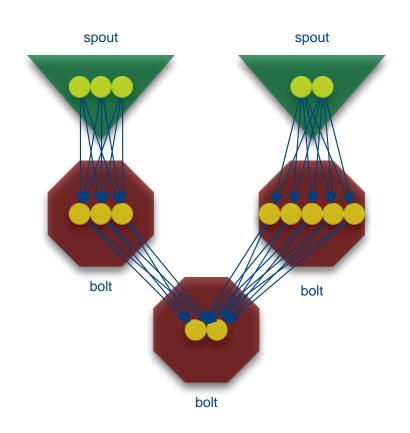


Storm architecture



From topology to processing: stream groupings

- Spouts and bolts are replicated in taks, each task executed in parallel by a worker
 - User-defined degree of replication
 - All pairwise combinations are possible between tasks
- When a task emits a tuple, which task should it send to?
- Stream groupings dictate how to propagate tuples
 - Shuffle grouping: round-robin
 - Field grouping: based on the data value (e.g., range partitioning)



Putting it all together: word count

```
// instantiate a new topology
TopologyBuilder builder = new TopologyBuilder();
// set up a new spout with five tasks
builder.setSpout("spout", new RandomSentenceSpout(), 5);
// the sentence splitter bolt with eight tasks
builder.setBolt("split", new SplitSentence(), 8)
    .shuffleGrouping("spout"); // shuffle grouping for the ouput
// word counter with twelve tasks
builder.setBolt("count", new WordCount(), 12)
    .fieldsGrouping("split", new Fields("word")); // field grouping
// new configuration
Config conf = new Config();
// set the number of workers for the topology; the 5x8x12=480 tasks
// will be allocated round-robin to the three workers, each task
// running as a separate thread
conf.setNumWorkers(3);
// submit the topology to the cluster
StormSubmitter.submitTopology("word-count", conf, builder.createTopology());
```

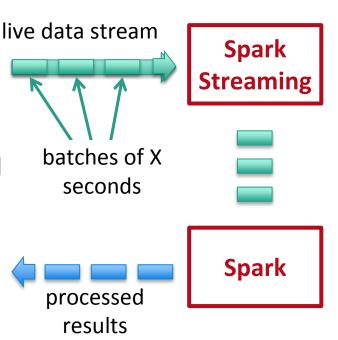

SPARK STREAMING

Discretized Stream Processing

Run a streaming computation as a series of very small, deterministic batch jobs

"MICRO BATCH" approach

- Chop up the live stream into batches of X seconds
- Spark treats each batch of data as RDDs and processes them using RDD operations
- Finally, the processed results of the RDD operations are returned in batches

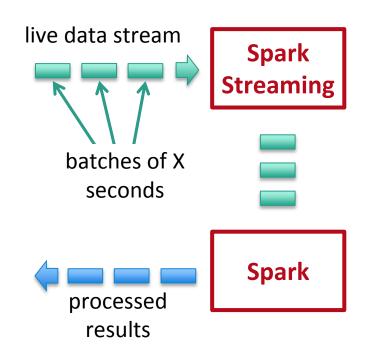


Discretized Stream Processing

Run a streaming computation as a series of very small, deterministic batch jobs

"MICRO BATCH" approach

- Batch sizes as low as ½ second, latency of about 1 second
- Potential for combining batch processing and streaming processing in the same system



```
val tweets = ssc.twitterStream()
```

DStream: a sequence of RDDs representing a stream of data

Twitter Streaming API batch @ t batch @ t+1 batch @ t+2

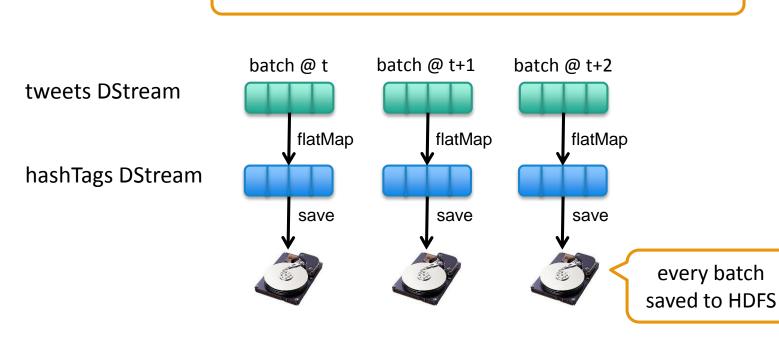
tweets DStream

stored in memory as an RDD (immutable, distributed)

```
val tweets = ssc.twitterStream()
val hashTags = tweets.flatMap (status => getTags(status))
                    transformation: modify data in one DStream to create
 new DStream
                                      another DStream
                                      batch @ t+1
                                                   batch @ t+2
                         batch @ t
   tweets DStream
                                           flatMap
                              flatMap
                                                        flatMap
   hashTags Dstream
                                                               new RDDs created
   [#cat, #dog, ...]
                                                                 for every batch
```

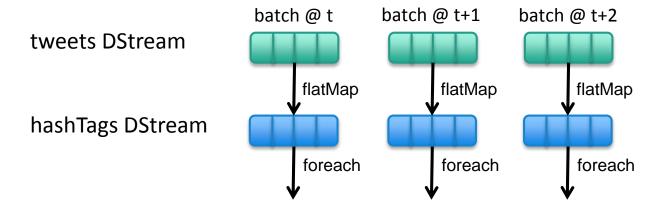
```
val tweets = ssc.twitterStream()
val hashTags = tweets.flatMap (status => getTags(status))
hashTags.saveAsHadoopFiles("hdfs://...")
```

output operation: to push data to external storage



```
val tweets = ssc.twitterStream()
val hashTags = tweets.flatMap (status => getTags(status))
hashTags.foreach(hashTagRDD => { ... })
```

foreach: do whatever you want with the processed data



Write to database, update analytics UI, do whatever you want

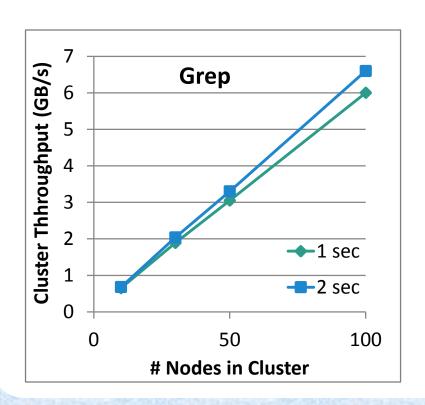
Window-based Transformations

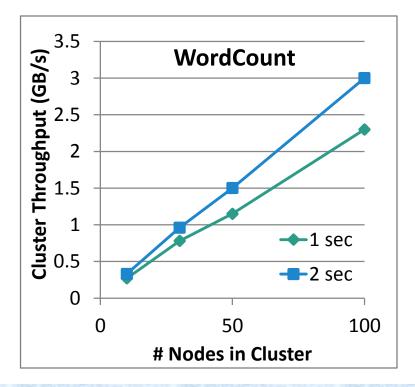
```
val tweets = ssc.twitterStream()
val hashTags = tweets.flatMap (status => getTags(status))
val tagCounts = hashTags.window(Minutes(1), Seconds(5)).countByValue()
                sliding window
                                  window length
                                                 sliding interval
                   operation
                                            window length
        DStream of data
                               sliding interval
```

Performance

Can process **6 GB/sec (60M records/sec)** of data on 100 nodes at **sub-second** latency

Tested with 100 text streams on 100 EC2 instances with 4 cores each

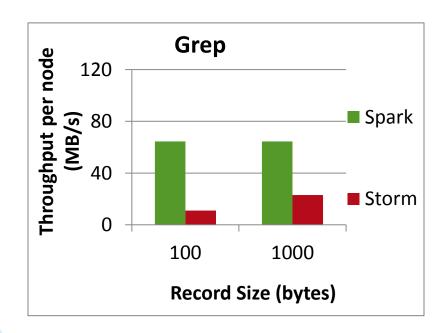


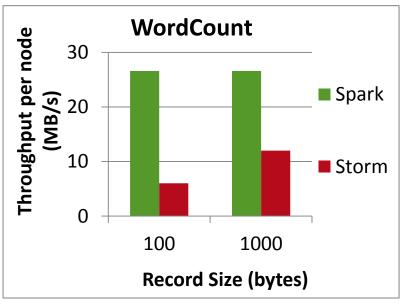


Comparison with Storm and S4

Higher throughput than Storm

- Spark Streaming: 670k records/second/node
- Storm: **115k** records/second/node
- Apache S4: 7.5k records/second/node





Unifying Batch and Stream Processing Models

Spark program on Twitter log file using RDDs

```
val tweets = sc.hadoopFile("hdfs://...")
val hashTags = tweets.flatMap (status => getTags(status))
hashTags.saveAsHadoopFile("hdfs://...")
```

Spark Streaming program on Twitter stream using DStreams

```
val tweets = ssc.twitterStream()
val hashTags = tweets.flatMap (status => getTags(status))
hashTags.saveAsHadoopFiles("hdfs://...")
```

Vision - one stack to rule them all

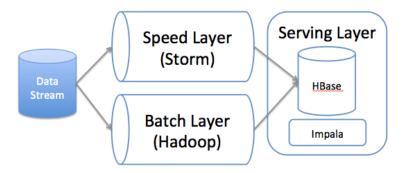
- Explore data interactively using Spark Shell to identify problems
- Use same code in Spark standalone programs to identify problems in production logs
- Use similar code in Spark
 Streaming to identify
 problems in live log streams

```
$ ./spark-shell
scala> val file = sc.hadoopFile("smallLogs")
scala> val filtered = file.filter( .contains("ERROR"))
scala> val mapped = filtered.map(...)
object ProcessProductionData {
   def main(args: Array[String]) {
     val sc = new SparkContext(...)
     val file = sc.hadoopFile("productionLogs")
     val filtered = file.filter( .contains("ERROR"))
     val mapped = filtered.map(...)
   object ProcessLiveStream {
     def main(args: Array[String]) {
       val sc = new StreamingContext(...)
       val stream = sc.kafkaStream(...)
       val filtered = file.filter( .contains("ERROR"))
       val mapped = filtered.map(...)
```

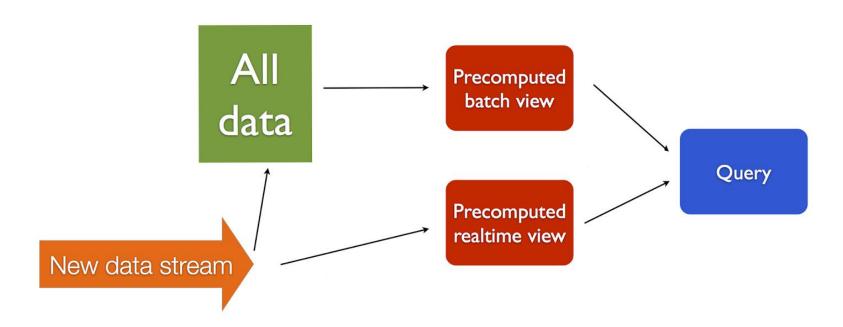

LAMBDA ARCHITECTURE

Lambda Architecture

- apply the (λ) Lambda philosophy in designing big data system
- equation "query = function(all data)" which is the basis of all data systems
- proposed by Nathan Marz (http://nathanmarz.com/)
 - software engineer from Twitter in his "Big Data" book.
- three design principles:
 - 1. human fault-tolerance the system is unsusceptible to data loss or data corruption because at scale it could be irreparable.
 - 2. data immutability store data in it's rawest form immutable and for perpetuity.
 - INSERT/ SELECT/DELETE but no UPDATE!)
 - 3. recomputation with the two principles above it is always possible to (re)-compute results by running a function on the raw data



Lambda Architecture



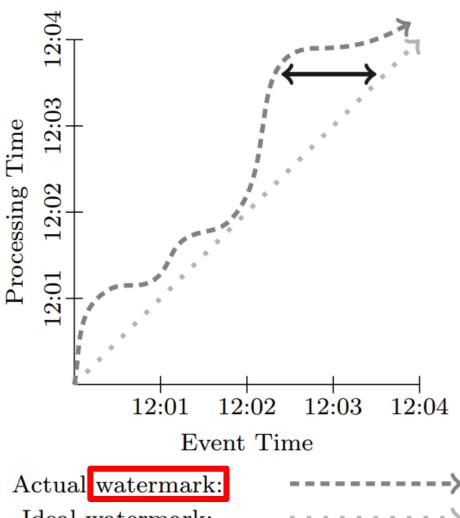
"Lambda Architecture"

GOOGLE DATAFLOW

Google DataFlow

- Allows for the calculation of
 - event-time ordered results,
 - windowed by features of the data themselves,
 - over an unbounded, unordered data source,
 - correctness, latency, and cost tunable across a broad spectrum of combinations.
- Decomposes pipeline implementation across four related dimensions, providing clarity, composability, and flexibility:
 - What results are being computed.
 - Where in event time they are being computed.
 - When in processing time they are materialized.
 - How earlier results relate to later refinements.
- Separates the logical data processing from the underlying physical implementation,
 - allowing the choice of
 - batch
 - micro-batch, or
 - streaming engine to become one of simply correctness, latency, and cost.

DataFlow: Time



Ideal watermark:

Event Time Skew:

Two kinds of time

- Event Time, which is the time at which the event itself actually occurred
- Processing Time, which is the time at which an event is handled by the processing pipeline.

watermark = time before which the system (thinks it) has processed all events

DataFlow: Processing Model

Generalized MapReduce:

ParDo (doFcn)

pretty much = "Map"

- Each input element to be processed (which itself may be a finite collection) is provided to a user-defined function (called a DoFn in Dataflow), which can yield zero or more output elements per input.
- For example, consider an operation which expands all prefixes of the input key, duplicating the value across them:
 - Input: (fix, 1),(fit, 2) •
 - → ParDo(ExpandPrefixes) →
 - Output: (f, 1),(fi, 1),(fix, 1),(f, 2),(fi, 2),(fit, 2)
- GroupByKey

more or less ~ "Reduce"

- for key-grouping (key, value) pairs.
- In the example:
 - Input: (f, 1),(fi, 1),(fix, 1),(f, 2),(fi, 2),(fit, 2)
 - → GroupByKey →
 - Output: (f, [1, 2]),(fi, [1, 2]),(fix, [1]),(fit, [2])

DataFlow: Windowing Model

Many possible window definitions, define one using two methods:

- AssignWindows(T datum) → Set<Windows>
- MergeWindows(Set<Windows>) → Set<Windows>

Example:

- Input: (k, v1, 12:00, [0, ∞)),(k, v2, 12:01, [0, ∞))
- → AssignWindows(Sliding(2min, 1min)) →
- Output:

```
(k, v1, 12:00, [11:59, 12:01)),
(k, v1, 12:00, [12:00, 12:02)),
(k, v2, 12:01, [12:00, 12:02)),
(k, v2, 12:01, [12:01, 12:03))
```


Data Model

MapReduce (Key, Value)

DataFlow

(Key, Value, EventTime, Window)

DataFlow: Windowing Model

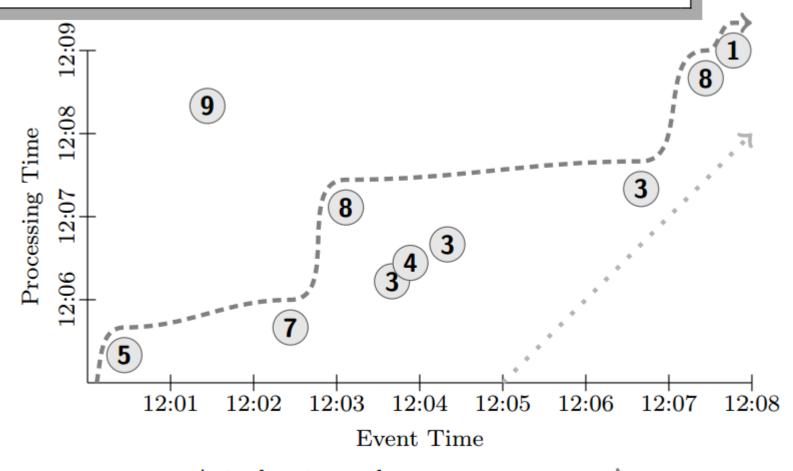
AssignWindows(Sliding(2m, 1m))

Output:

```
(k, v1, 12:00, [11:59, 12:01)),
(k, v1, 12:00, [12:00, 12:02)),
(k, v2, 12:01, [12:00, 12:02)),
(k, v2, 12:01, [12:01, 12:03))
```


Example. When do results get computed?

```
PCollection<KV<String, Integer>> output = input
.apply(Sum.integersPerKey());
```

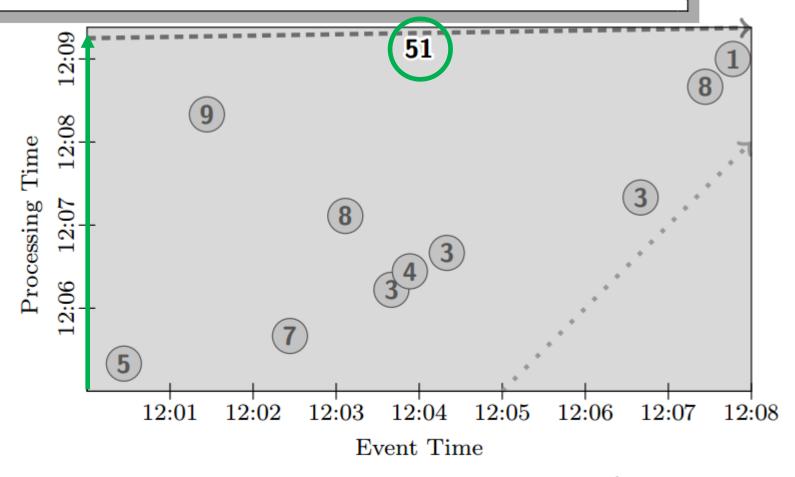


Actual watermark:

Ideal watermark:

Triggering: classical batch execution

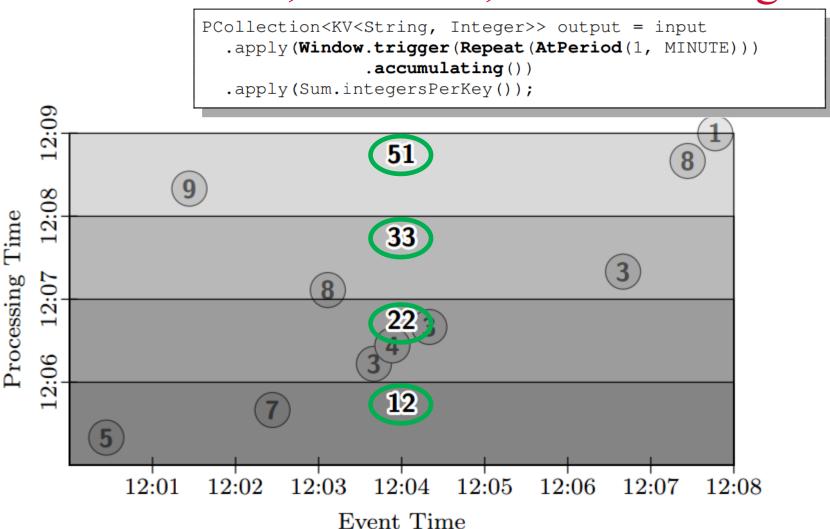
```
PCollection<KV<String, Integer>> output = input
.apply(Sum.integersPerKey());
```



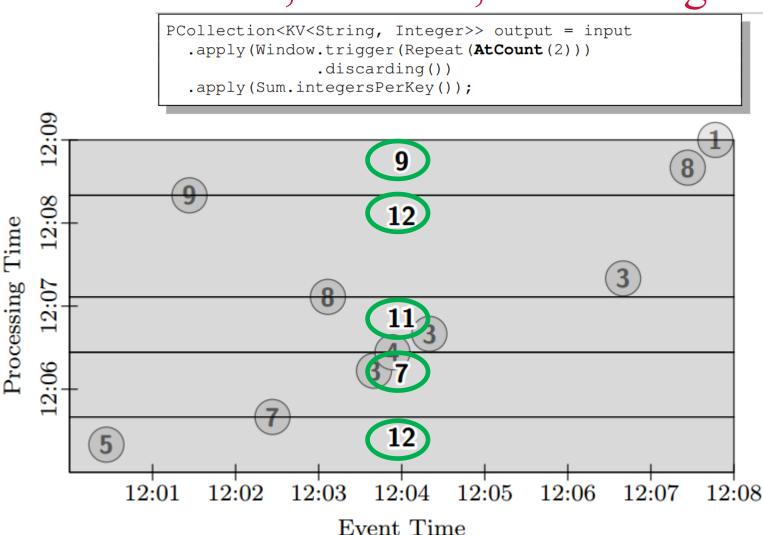
Actual watermark:

Ideal watermark:

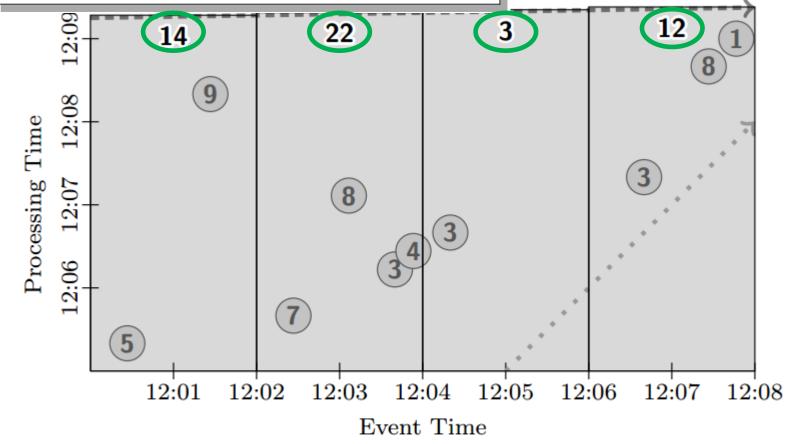
GlobalWindows, AtPeriod, Accumulating



GlobalWindows, AtCount, Discarding



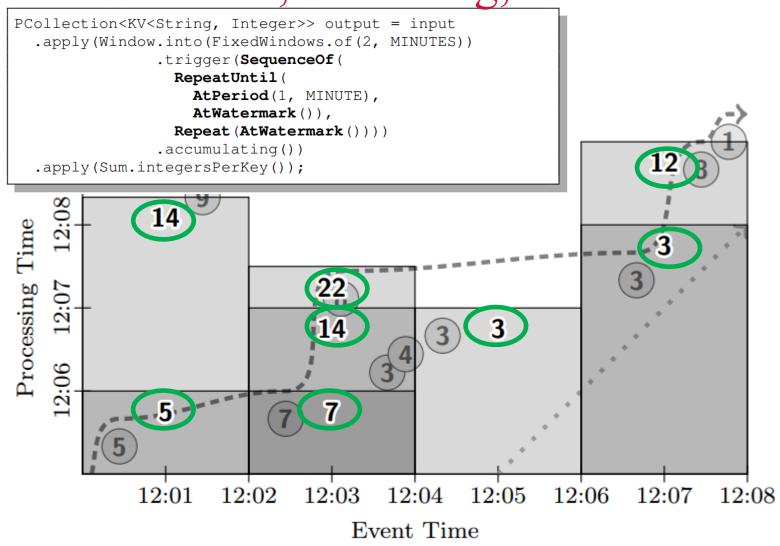
Triggering: FixedWindows, Batch



Actual watermark:

Ideal watermark:

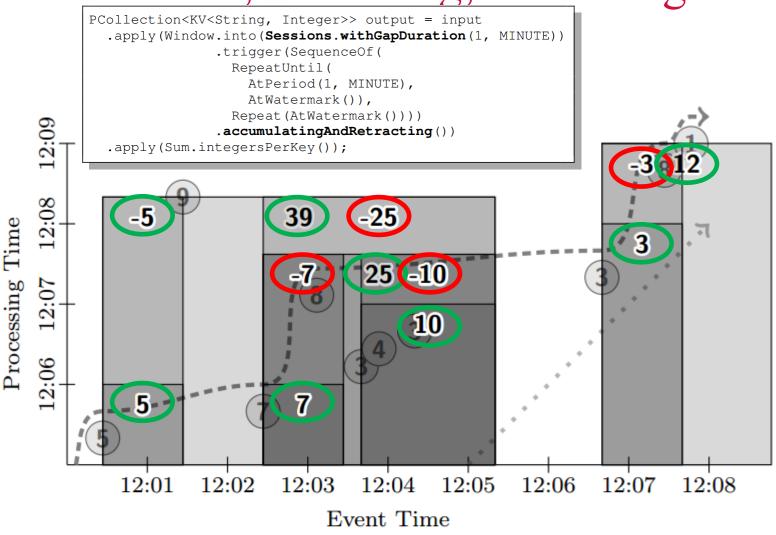
FixedWindows, Streaming, Partial



Actual watermark:

Ideal watermark:

FixedWindows, Streaming, Retracting



Actual watermark:

Ideal watermark:

Summary

- Introduced the notion of data streams and data stream processing
 - DSMS: persistent queries, transient data (opposite of DBMS)
- Described use-cases and algorithms for stream mining
 - Lossy counting
- Introduced frameworks for low-latency stream processing
 - Storm
 - Stream engine, not very Hadoop integrated (separate cluster)
 - Spark Streaming
 - "Micro-batching", re-use of RDD concept
 - Google Dataflow
 - Map-Reduce++ with streaming built-in (advanced windowing)
 - Finegrained control over the freshness of computations
 - Avoids "Lambda Architecture" two systems for batch and streaming