
event.cwi.nl/lsde

Big Data for Data Science
Cloud Computing

www.cwi.nl/~boncz/badswww.cwi.nl/~boncz/bigdatacourseevent.cwi.nl/lsde

Cloud computing

• What?

– Computing resources as a metered service (“pay as you go”)

– Ability to dynamically provision virtual machines

• Why?

– Cost: capital vs. operating expenses

– Scalability: “infinite” capacity

– Elasticity: scale up or down on demand

• Does it make sense?

– Benefits to cloud users

– Business case for cloud providers

http://www.cwi.nl/~boncz/bigdatacourse

www.cwi.nl/~boncz/badswww.cwi.nl/~boncz/bigdatacourseevent.cwi.nl/lsde

Enabling technology: virtualisation

Hardware

Operating System

App App App

Traditional Stack

Hardware

OS

App App App

Hypervisor

OS OS

Virtualized Stack

http://www.cwi.nl/~boncz/bigdatacourse

www.cwi.nl/~boncz/badswww.cwi.nl/~boncz/bigdatacourseevent.cwi.nl/lsde

Everything as a service

• Utility computing = Infrastructure as a Service (IaaS)

– Why buy machines when you can rent cycles?

– Examples: Amazon’s EC2, Rackspace

• Platform as a Service (PaaS)

– Give me nice API and take care of the maintenance, upgrades

– Example: Google App Engine

• Software as a Service (SaaS)

– Just run it for me!

– Example: Gmail, Salesforce

http://www.cwi.nl/~boncz/bigdatacourse

www.cwi.nl/~boncz/badswww.cwi.nl/~boncz/bigdatacourseevent.cwi.nl/lsde

Several Historical Trends (1/3)

• Shared Utility Computing

– 1960s – MULTICS – Concept of a Shared Computing Utility

– 1970s – IBM Mainframes – rent by the CPU-hour. (Fast/slow switch.)

• Data Center Co-location

– 1990s-2000s – Rent machines for months/years, keep them close to

the network access point and pay a flat rate. Avoid running your own

building with utilities!

• Pay as You Go

– Early 2000s - Submit jobs to a remote service provider where they run

on the raw hardware. Sun Cloud ($1/CPU-hour, Solaris +SGE) IBM

Deep Capacity Computing on Demand (50 cents/hour)

http://www.cwi.nl/~boncz/bigdatacourse

www.cwi.nl/~boncz/badswww.cwi.nl/~boncz/bigdatacourseevent.cwi.nl/lsde

Several Historical Trends (2/3)

• Virtualization

– 1960s – OS-VM, VM-360 – Used to split mainframes into logical

partitions.

– 1998 – VMWare – First practical implementation on X86, but at

significant performance hit.

– 2003 – Xen paravirtualization provides much perf, but kernel must

assist.

– Late 2000s – Intel and AMD add hardware support for virtualization.

http://www.cwi.nl/~boncz/bigdatacourse

www.cwi.nl/~boncz/badswww.cwi.nl/~boncz/bigdatacourseevent.cwi.nl/lsde

Several Historical Trends (3/3)

• Minicomputers (1960-1990)

– IBM AS/400, DEC VAX

• The age of the x86 PC (1990-2010)

– IBM PC, Windows (1-7)

– Linux takes the server market (2000-)

– Hardware innovation focused on Gaming/Video (GPU), Laptop

• Mobile and Server separate (2010-)

– Ultramobile (tablet,phone) . ARM

– Server x86 still but much more influence on hardware design

• Parallel processing galore (software challenge!)

• Large utility computing provides build their own hardware

– Amazon SSD cards (FusionIO)

– Google network Routers

http://www.cwi.nl/~boncz/bigdatacourse

www.cwi.nl/~boncz/badswww.cwi.nl/~boncz/bigdatacourseevent.cwi.nl/lsde

Big picture overview

• Client requests are

handled in the first

tier by

– PHP or ASP pages

– Associated logic

• These lightweight

services are fast

and very nimble

• Much use of caching:

the second tier

1
11

1
1

1

1

1

1 Index
DB

2
2

Shards

2
2

2

2
2

2

user

user

http://www.cwi.nl/~boncz/bigdatacourse

www.cwi.nl/~boncz/badswww.cwi.nl/~boncz/bigdatacourseevent.cwi.nl/lsde

In the outer tiers replication is key

• We need to replicate

– Processing

• Each client has what seems to be a private, dedicated server (for a

little while)

– Data

• As much as possible!

• Server has copies of the data it needs to respond to client requests

without any delay at all

– Control information

• The entire system is managed in an agreed-upon way by a

decentralised cloud management infrastructure

http://www.cwi.nl/~boncz/bigdatacourse

www.cwi.nl/~boncz/badswww.cwi.nl/~boncz/bigdatacourseevent.cwi.nl/lsde

What about the shards?

• The caching components running in tier two are central to the

responsiveness of tier-one services

• Basic idea is to always used cached data if at all possible

– So the inner services (here, a database and a search index stored in a

set of files) are shielded from the online load

– We need to replicate data within our cache to spread loads and provide

fault-tolerance

– But not everything needs to be fully replicated

– Hence we often use shards with just a few replicas

http://www.cwi.nl/~boncz/bigdatacourse

www.cwi.nl/~boncz/badswww.cwi.nl/~boncz/bigdatacourseevent.cwi.nl/lsde

Read vs. write

• Parallelisation works fine, so long as we are reading

• If we break a large read request into multiple read requests for sub-

components to be run in parallel, how long do we need to wait?

– Answer: as long as the slowest read

• How about breaking a large write request?

– Duh… we still wait till the slowest write finishes

• But what if these are not sub-components, but alternative copies of the

same resource?

– Also known as replicas

– We wait the same time, but when do we make the individual writes

visible?

Replication solves one problem but introduces another

http://www.cwi.nl/~boncz/bigdatacourse

www.cwi.nl/~boncz/badswww.cwi.nl/~boncz/bigdatacourseevent.cwi.nl/lsde

More on updating replicas in parallel

• Several issues now arise

– Are all the replicas applying updates in the same order?

• Might not matter unless the same data item is being changed

• But then clearly we do need some agreement on order

– What if the leader replies to the end user but then crashes and it turns

out that the updates were lost in the network?

• Data center networks are surprisingly lossy at times

• Also, bursts of updates can queue up

• Such issues result in inconsistency

17

http://www.cwi.nl/~boncz/bigdatacourse

www.cwi.nl/~boncz/badswww.cwi.nl/~boncz/bigdatacourseevent.cwi.nl/lsde

Eric Brewer’s CAP theorem

• In a famous 2000 keynote talk at ACM PODC, Eric Brewer proposed that

– “You can have just two from Consistency, Availability and Partition

Tolerance”

• He argues that data centres need very fast response, hence availability is

paramount

• And they should be responsive even if a transient fault makes it hard to

reach some service

• So they should use cached data to respond faster even if the cached entry

cannot be validated and might be stale!

• Conclusion: weaken consistency for faster response

• We will revisit this as we go along

http://www.cwi.nl/~boncz/bigdatacourse

www.cwi.nl/~boncz/badswww.cwi.nl/~boncz/bigdatacourseevent.cwi.nl/lsde

Is inconsistency a bad thing?

• How much consistency is really needed in the first tier of the cloud?

– Think about YouTube videos. Would consistency be an issue here?

– What about the Amazon “number of units available” counters. Will

people notice if those are a bit off?

• Probably not unless you are buying the last unit

• End even then, you might be inclined to say “oh, bad luck”

http://www.cwi.nl/~boncz/bigdatacourse

www.cwi.nl/~boncz/badswww.cwi.nl/~boncz/bigdatacourseevent.cwi.nl/lsde

CASE STUDY:
AMAZON WEB SERVICES

http://www.cwi.nl/~boncz/bigdatacourse

www.cwi.nl/~boncz/badswww.cwi.nl/~boncz/bigdatacourseevent.cwi.nl/lsde

Amazon AWS

• Grew out of Amazon’s need to rapidly provision and configure machines of

standard configurations for its own business.

• Early 2000s – Both private and shared data centers began using

virtualization to perform “server consolidation”

• 2003 – Internal memo by Chris Pinkham describing an “infrastructure

service for the world.”

• 2006 – S3 first deployed in the spring, EC2 in the fall

• 2008 – Elastic Block Store available.

• 2009 – Relational Database Service

• 2012 – DynamoDB

http://www.cwi.nl/~boncz/bigdatacourse

www.cwi.nl/~boncz/badswww.cwi.nl/~boncz/bigdatacourseevent.cwi.nl/lsde

Terminology

• Instance = One running virtual machine.

• Instance Type = hardware configuration: cores, memory, disk.

• Instance Store Volume = Temporary disk associated with instance.

• Image (AMI) = Stored bits which can be turned into instances.

• Key Pair = Credentials used to access VM from command line.

• Region = Geographic location, price, laws, network locality.

• Availability Zone = Subdivision of region the is fault-independent.

http://www.cwi.nl/~boncz/bigdatacourse

www.cwi.nl/~boncz/badswww.cwi.nl/~boncz/bigdatacourseevent.cwi.nl/lsde

Amazon AWS

http://www.cwi.nl/~boncz/bigdatacourse

www.cwi.nl/~boncz/badswww.cwi.nl/~boncz/bigdatacourseevent.cwi.nl/lsde

EC2 Architecture

EBS S3

AMI

Instance Instance Instance

Firewall

Internet

EC2 Private

IP
Private

IP

Public IP

snapshotManager

SSH

http://www.cwi.nl/~boncz/bigdatacourse

www.cwi.nl/~boncz/badswww.cwi.nl/~boncz/bigdatacourseevent.cwi.nl/lsde

http://www.cwi.nl/~boncz/bigdatacourse

www.cwi.nl/~boncz/badswww.cwi.nl/~boncz/bigdatacourseevent.cwi.nl/lsde

EC2 Pricing Model

• Free Usage Tier

• On-Demand Instances

–Start and stop instances whenever you like, costs are
rounded up to the nearest hour. (Worst price)

• Reserved Instances

–Pay up front for one/three years in advance. (Best price)

–Unused instances can be sold on a secondary market.

• Spot Instances

–Specify the price you are willing to pay, and instances get
started and stopped without any warning as the marked
changes. (Kind of like Condor!)

http://www.cwi.nl/~boncz/bigdatacourse

www.cwi.nl/~boncz/badswww.cwi.nl/~boncz/bigdatacourseevent.cwi.nl/lsde

Free Usage Tier

• 750 hours of EC2 running Linux, RHEL, or SLES t2.micro instance usage

• 750 hours of EC2 running Microsoft Windows Server t2.micro instance

usage

• 750 hours of Elastic Load Balancing plus 15 GB data processing

• 30 GB of Amazon Elastic Block Storage in any combination of General

Purpose (SSD) or Magnetic, plus 2 million I/Os (with Magnetic) and 1 GB

of snapshot storage

• 15 GB of bandwidth out aggregated across all AWS services

• 1 GB of Regional Data Transfer

http://www.cwi.nl/~boncz/bigdatacourse

www.cwi.nl/~boncz/badswww.cwi.nl/~boncz/bigdatacourseevent.cwi.nl/lsde

http://www.cwi.nl/~boncz/bigdatacourse

www.cwi.nl/~boncz/badswww.cwi.nl/~boncz/bigdatacourseevent.cwi.nl/lsde

Simple Storage Service (S3)

• A bucket is a container for objects and describes location, logging,

accounting, and access control. A bucket can hold any number of objects,

which are files of up to 5TB. A bucket has a name that must be globally

unique.

• Fundamental operations corresponding to HTTP actions:

– http://bucket.s3.amazonaws.com/object

– POST a new object or update an existing object.

– GET an existing object from a bucket.

– DELETE an object from the bucket

– LIST keys present in a bucket, with a filter.

• A bucket has a flat directory structure (despite the appearance given by

the interactive web interface.)

http://www.cwi.nl/~boncz/bigdatacourse

www.cwi.nl/~boncz/badswww.cwi.nl/~boncz/bigdatacourseevent.cwi.nl/lsde

S3 Weak Consistency Model

Direct quote from the Amazon developer API:

“Updates to a single key are atomic….”

“Amazon S3 achieves high availability by replicating data across multiple servers

within Amazon's data centers. If a PUT request is successful, your data is safely

stored. However, information about the changes must replicate across Amazon

S3, which can take some time, and so you might observe the following

behaviors:

– A process writes a new object to Amazon S3 and immediately attempts to read it.

Until the change is fully propagated, Amazon S3 might report "key does not exist."

– A process writes a new object to Amazon S3 and immediately lists keys within its

bucket. Until the change is fully propagated, the object might not appear in the list.

– A process replaces an existing object and immediately attempts to read it. Until the

change is fully propagated, Amazon S3 might return the prior data.

– A process deletes an existing object and immediately attempts to read it. Until the

deletion is fully propagated, Amazon S3 might return the deleted data.”

http://www.cwi.nl/~boncz/bigdatacourse

www.cwi.nl/~boncz/badswww.cwi.nl/~boncz/bigdatacourseevent.cwi.nl/lsde

http://www.cwi.nl/~boncz/bigdatacourse

www.cwi.nl/~boncz/badswww.cwi.nl/~boncz/bigdatacourseevent.cwi.nl/lsde

http://www.cwi.nl/~boncz/bigdatacourse

www.cwi.nl/~boncz/badswww.cwi.nl/~boncz/bigdatacourseevent.cwi.nl/lsde

http://www.cwi.nl/~boncz/bigdatacourse

www.cwi.nl/~boncz/badswww.cwi.nl/~boncz/bigdatacourseevent.cwi.nl/lsde

Elastic Block Store

• An EBS volume is a virtual disk of a fixed size with a block read/write

interface. It can be mounted as a filesystem on a running EC2 instance

where it can be updated incrementally. Unlike an instance store, an

EBS volume is persistent.

• (Compare to an S3 object, which is essentially a file that must be

accessed in its entirety.)

• Fundamental operations:

– CREATE a new volume (1GB-1TB)

– COPY a volume from an existing EBS volume or S3 object.

– MOUNT on one instance at a time.

– SNAPSHOT current state to an S3 object.

http://www.cwi.nl/~boncz/bigdatacourse

www.cwi.nl/~boncz/badswww.cwi.nl/~boncz/bigdatacourseevent.cwi.nl/lsde

S3 Weak Consistency Model

Direct quote from the Amazon developer API:

“Updates to a single key are atomic….”

“Amazon S3 achieves high availability by replicating data across multiple servers

within Amazon's data centers. If a PUT request is successful, your data is safely

stored. However, information about the changes must replicate across Amazon

S3, which can take some time, and so you might observe the following

behaviors:

– A process writes a new object to Amazon S3 and immediately attempts to read it.

Until the change is fully propagated, Amazon S3 might report "key does not exist."

– A process writes a new object to Amazon S3 and immediately lists keys within its

bucket. Until the change is fully propagated, the object might not appear in the list.

– A process replaces an existing object and immediately attempts to read it. Until the

change is fully propagated, Amazon S3 might return the prior data.

– A process deletes an existing object and immediately attempts to read it. Until the

deletion is fully propagated, Amazon S3 might return the deleted data.”

http://www.cwi.nl/~boncz/bigdatacourse

www.cwi.nl/~boncz/badswww.cwi.nl/~boncz/bigdatacourseevent.cwi.nl/lsde

Elastic Block Store

• An EBS volume is a virtual disk of a fixed size with a block read/write

interface. It can be mounted as a filesystem on a running EC2 instance

where it can be updated incrementally. Unlike an instance store, an

EBS volume is persistent.

• (Compare to an S3 object, which is essentially a file that must be

accessed in its entirety.)

• Fundamental operations:

– CREATE a new volume (1GB-1TB)

– COPY a volume from an existing EBS volume or S3 object.

– MOUNT on one instance at a time.

– SNAPSHOT current state to an S3 object.

http://www.cwi.nl/~boncz/bigdatacourse

www.cwi.nl/~boncz/badswww.cwi.nl/~boncz/bigdatacourseevent.cwi.nl/lsde

EBS is approx. 3x more expensive by volume
and 10x more expensive by IOPS than S3.

http://www.cwi.nl/~boncz/bigdatacourse

www.cwi.nl/~boncz/badswww.cwi.nl/~boncz/bigdatacourseevent.cwi.nl/lsde

S3

How does storage work on AWS?

Hardware

OS

App App App

Hypervisor

OS OS

Virtualized

Stack

S3

Hardware

OS

App App App

Hypervisor

OS OS

Virtualized

Stack

S3

Hardware

OS

App App App

Hypervisor

OS OS

Virtualized

Stack

S3

Hardware

OS

App App App

Hypervisor

OS OS

Virtualized

Stack

S3

Hardware

OS

App App App

Hypervisor

OS OS

Virtualized

Stack

S3

Hardware

OS

App App App

Hypervisor

OS OS

Virtualized

Stack

S3

S3

Hypervisor

App

OS

S3S3

http://www.cwi.nl/~boncz/bigdatacourse

www.cwi.nl/~boncz/badswww.cwi.nl/~boncz/bigdatacourseevent.cwi.nl/lsde

How does AWS work

• S3 the cornerstone for reliable storage

– Data blocks are replicated over the cluster

– All (many) nodes in the Amazon clusters contribute their disk to S3

• S3 is not the only Amazon service on the machines

• Instead of ‘hypervisor’ likely a barebones Linux-a-like OS

• File-system (EBS and also HDFS) is an abstraction on top S3

– if nodes go down or instances hang, the data is safe in S3

– disk access speed depends on network and caching (!)

• Private disk storage is an expensive extra

– One can get access to dedicated (flash) disk, for controllable I/O

– Amazon makes no persistence or reliability guarantees (when you
boot, it is empty). Makes it hard to use.

http://www.cwi.nl/~boncz/bigdatacourse

www.cwi.nl/~boncz/badswww.cwi.nl/~boncz/bigdatacourseevent.cwi.nl/lsde

Use Glacier for Cold Data

• Glacier is structured like S3: a vault is a container for an arbitrary number

of archives. Policies, accounting, and access control are associated with

vaults, while an archive is a single object.

• However:

– All operations are asynchronous and notified via SNS.

– Vault listings are updated once per day.

– Archive downloads may take up to four hours.

– Only 5% of total data can be accessed in a given month.

• Pricing:

– Storage: $0.01 per GB-month

– Operations: $0.05 per 1000 requests

– Data Transfer: Like S3, free within AWS.

• S3 Policies can be set up to automatically move data into Glacier.

http://www.cwi.nl/~boncz/bigdatacourse

www.cwi.nl/~boncz/badswww.cwi.nl/~boncz/bigdatacourseevent.cwi.nl/lsde

Summary

• Utility Computing – Cloud Computing for rent

• Cloud Computing infrastructures

– Virtualization

– Caching, Replication, Sharding

– Eric Brewer’ CAP theorem: can’t have:

• Consistency & Availability & Partition-tolerance

• Amazon Web Services tour

– EC2: Instance types, pricing models, & other terminology

– Storage: EBS/S3/Glacier

http://www.cwi.nl/~boncz/bigdatacourse

