
Large Scale Data Engineering

Group 14: Face-Join

Azim Afroozeh
Student number: 2639408

VunetID: aah770
a.afroozeh@student.vu.nl

Ali Reza Farid Amin
Student number: 2611785

VunetID: afn530
alireza@student.uva.nl

Paul Klaassens
Student number: 2655141

VunetID: pks215

p.klaassens@student.vu.nl

ABSTRACT
The well known website Flickr hosts a staggering amount of
pictures. We were supplied with a dataset which contained
links and meta data of 100 million of these pictures. By
crawling through these pictures and using face recognition
software we identified faces in these images and matched
them to a variety of famous people. These results are dis-
played on a website showing a ranking of the matches made
on Flickr sorted by their confidence level.

1. BACKGROUND
The art of facial recognition has been researched since the

1970s but has in the recent years seen great improvement
in both accuracy and speed. Face recognition software used
to be dominated by private industry and government large
scale data sets. However recently open source facial recog-
nition software has been showing improvements. In our case
we looked at OpenFace [1]. OpenFace has achieved 92.9%
accuracy on the widely used LFW benchmark. This is near
human accuracy and comes close to the accuracy of the best
private industry models.
In our case not only accuracy but speed is also very impor-
tant because of the large scale of the task at hand. Open-
Face 2.0 halves the execution time by using more efficient
pre-processing, image alignment and smaller models. In ear-
lier facial recognition software the focus was on deriving a
low dimensional face representation by using the ratios of
the distances, areas and angels of the face. However this
approach proved not to be accurate. Later research focused
on using statistics and AI to learn from the data and per-
form well from on the data set. Using the correlations a
Principal Component Analysis [4] was performed to extract
the ’eigenfaces’ which were then used as landmarks.
Currently, the top performing facial recognition software is
in the hands of private corporations and the government.
Two prime examples are FaceNet [3] by Google and Deep-
Face [5] by Facebook. Both use convolutional neural net-
works which are trained using private data sets containing
millions of pictures.
Artificial neural networks are systems that learn, in this case
to recognize a face, without being programmed with specific
rules. A neural network consists of neurons arranged in a
series of layers. The input layer receives the initial data or
information that the network will learn about.The output
layer signals how the network responds to the data. Be-
tween the input and output layer there are one or multiple
hidden layers which make up the core of the neural network.

Figure 1: A simple neural network

An example of a neural network can be seen in figure 1.
In a feedforward neural network, the network consists of
many function compositions and a loss function L which de-
termines how well the network models the data. Training
the model is then an optimization problem, where one seeks
to find the specific set of parameters that minimize the loss
function L.

Before we can input the pictures into the neural network
they will first have to be prepossessed. A face detector is run
on each image and a bounding box for each face is generated.
These faces are then resized to the specifics of a neural net-
work and can be used as input data. This could give issues
as faces of the same person can be looking in different direc-
tions or are exposed to different lighting settings. FaceNet
doesn’t use further transformation and can overcome these
problems by using a large dataset. In contrast OpenFace
uses affine transformation to align the pictures in such a
way that the eyes, nose and mouth are at similar locations
for each picture. Because the input images are normalized
this shrinks the input space and improves the training time.
Another modern technique which is employed is modelling
the image to a 3D model so that it will seem it looks directly
at the camera.

1.1 Triplet loss function
Originally face recognition neural networks used a classi-

fication layer trained over a set of known images and then
took an intermediate layer as a representation to generalize
the facial recognition beyond the set of known images. As
this is both inefficient FaceNet introduced a way to directly
train the output to a m-dimensional embedding by using a
triplet loss function which was based on the work of Wein-
berger et al (2009)[6]. A triplet consists of two matching and

1



one not matching face image and the triplet loss function
tries to separate the matching faces from the not matching
face by using a distance margin. Determining which triplets
are chosen have shown to have a large impact on the perfor-
mance of the network. The triplet loss function is adopted
by Openface and is used to classify the images on a 128
dimension unit hyper sphere.

2. DATASET
The dataset which we were supplied with consists of ten

csv files compressed in BZIP2 format. Each of the files con-
sists approximately 10 million records. Each record contains
a link to a Flickr image and some descriptive data, see table
1.

Table 1: Textual information for each record
Identifier Date taken User NSID

Title Date uploaded User Tags
Description Longitude / Latitude User Nickname

Page Url Photo/video marker Capture device

As a result the entire dataset spanning all ten files gives
us 100 million records to work with. With an average im-
age size of approximately 112 kilobytes the complete set of
downloaded images amounts to 11.200 gigabytes. However,
a large portion of these images were corrupt, of invalid for-
mat or didn’t contain a face. Approximately 18,8% of the
images contained a face which could be aligned and inserted
into our trained model.

3. RESEARCH QUESTIONS
To achieve the projected goal of crawling through the en-

tire Flickr image archive and matching the faces to known
identities the following research questions should be answered:

• Which facial recognition algorithm is sufficient in both
speed and accuracy to get accurate results?

• Because of the large amount of unknown people in
Flickr images should we also include a lot of unknowns
in our training dataset?

• After a model is trained how do we efficiently paral-
lelize the interference on the 100 million Flickr images.

3.1 Project setup
To process such a huge amount of pictures requires a lot

of bandwidth, computing power and time. The general ap-
proach is training a model on a small set of known identities
using a GPU accelerated machine to reduce training times.
Testing the model on a sample of the Flickr images and eval-
uating results. Then improve the model, either by changing
the known identities (training data) or the classifier. After
we were satisfied with a trained model which was sufficient
in both speed and accuracy we can deploy the model. This
would have to be done in a way that the task can be paral-
lelized on a cluster.

3.2 OpenFace
The library that we used for the face recognition is the

aforementioned OpenFace. The preprocessing is performed
using dlib’s pretrained face detector. By using 68 landmarks

Figure 2: Triplet loss

of a face an affine transformation is performed which gener-
ates a face with the eyes and nose on similar locations for
each face. The picture size that we used as input to the
neural network is 96 x 96 pixels.
OpenFace uses a variation of FaceNet’s nn4 network. FaceNet’s
approach is to create an embedding f(x) from an image
x onto a m-dimensional space: Rm which lives on an m-
dimensional hypersphere: ‖f(x)2‖ = 1. This is done in such
a way that the euclidean distance between faces of the same
identity is small and the distance between different identities
is larger. We define xai to be the anchor face of an identity,
xpi be a face of the same identity and xni be face of any other
identity (negative). Now if we want the faces of the same
identity closer to each other than any image by a margin of
α we arrive at:

‖f(xai ))− f(xpi )‖22 + α < ‖f(xai )− f(xni )‖22 (1)

∀(f(xai )), f(xpi ), f(xni )) ∈ T (2)

where T is all possible triplets in our training data. This
gives us the following loss function L which is minimized in
the deep neural network:

L =
∑
T

[‖f(xai )− f(xpi )‖22 − ‖f(xai ))− f(xni )‖22 + α] (3)

An illustration of this is shown in figure 2. Computing
over all triplets would be computationally exhausting and
would give us many triplets which are easily satisfied and
do not contribute to the training. Therefore it is wise to
select triplets which can improve the model. By selecting
faces from the same identify which are furthest apart (max
‖f(xai )− f(xpi )‖22) and a face from another identify which is

closest to the anchor (min ‖f(xai )− f(xni )‖22) we can create
triplets which violet the constraint and ensure faster con-
vergence. As doing this for the whole training set is not
feasible FaceNet proposes generating triplets every n steps.
The minimum and maximum are computed on the latest
checkpoint on a subset of the data. This is the approach
that is used by OpenFace.

By selecting a number of F faces for each person and a
total number of P persons a mini sample is taken. This
sample consists of N ≈ FP and is send through the neural
network. By selecting anchor pairs this results in N triplets,
where N = Q

(
P
2

)
. Then the triplet loss is computed and the

derivative is mapped back to the image by using a backward
network pass. If a negative image is not found for the anchor
pair it is not used. We used the following values for these
parameters based on OpenFace and FaceNet:

α = 0.2 m = 28
F = 20 P = 15

2



OpenFace uses Torch, Lua and lujajit for the training of
the neural network and interference. Python is used for ar-
ray operations, computer vision and classifying. In particu-
lar the libraries numpy, OpenCV and scikit-learn were used.
Scikit-learn provides you with a number of different classi-
fiers, were OpenFace favours the linear SVM we also con-
sider the Radial SVM. By evaluating the squared euclidean
distance of new unknown images to it’s closest match in the
training set we can evaluate the chance that it is actually
the same person. If the squared euclidean distance is below
a certain threshold the person is the same, otherwise it is
different. OpenFace reports this as the confidence level that
a pair is the same person.

3.3 Training data
The pictures which would go through or trained model

would contain a lot images with unknown people. To not
get too many false positives it would make sense to make
our training data mimic the real dataset which is model
was being trained for. We collected data from a number of
sources:

• PubFig1 is a large dataset consisting of 58,797 images
of 200 famous persons

• Adience collection2 is a dataset of 26,580 pictures of
unknown identities in real-word imagining conditions

• GRAZ dataset3 consists of a collection of persons, bikes
and cars pictures split into GRAZ01 and GRAZ02,
only the person images were used

• Labeled Faces in the Wild4 (LFW) is a widely used
dataset consisting of 13,000 images for 5749 persons

• Out of curiosity images we added images of two per-
sons at the VU to training set to attempt to find them
on Flickr

The PubFig dataset would constitute the famous people that
we wanted to find in the Flickr images archive and the other
datasets are used as unknowns to reduce the false positives.
The LFW contained a large number of the persons which
were present in PubFig, those were removed. After removing
the corrupt pictures and aligning the faces properly we were
left with the following number of classes and pictures: The

Table 2: Number of aligned pictures per dataset

Dataset Identities Total pictures Picture/identity

PubFig 200 23765 118,8
Adience 2192 20127 9,2
GRAZ 216 432 2,0
LFW 5587 17152 3,1
VU 2 21 10,5

Total 8197 61497 28,7

total number of unknown identities are thus 7,997 identities
and 37,732 pictures while there are 200 famous people with
a total of 23,765 images.
1http://www.cs.columbia.edu/CAVE/databases/pubfig/
2https://talhassner.github.io/home/projects/Adience/Adience-
data.html
3http://pascal.inrialpes.fr/data/human/
4http://vis-www.cs.umass.edu/lfw/

3.4 Training the model
To train the model we first tried to use SageMaker, an

Amazon managed platform that enables you to train and
deploy your machine learning model at any scale. It sup-
plies you with a variety of machine learning algorithms and
also allows you to add your own. Adding the OpenFace
algorithm as a pre-build docker container we tried to im-
port it into SageMaker to let SageMaker handle the scaling.
By using the NVIDIA docker the intent was to improve the
training speed by using GPU powered devices. However the
NVIDIA docker with OpenFace proved to be not compati-
ble and we abonded SageMaker for a single EC2-instance.
Instead of using NVIDIA docker we installed OpenFace na-
tively on a p2.8xlarge instance. Torch allows the network to
be executed on a GPU by utilizing CUDA. As the p2.8xlarge
instances comes with 8 Nvidia K80 GPUs this accelerated
training of the network enough to make it feasible to train
the model using the complete dataset discussed in section
3.3.

3.5 Amazon Web Services (AWS) for Big Data
After training the model it would have to be deployed on

a system where it could run in parallel to make it possible to
go through all 100 million pictures in time. As we were given
access to the SURFsara cluster we tried to install OpenFace
on it to deploy the model. However, we were met with many
dependencies issues which we not able to fix. We found
another solution by utilizing the numerous services that are
being offered by AWS. The following services were used:

• EC2: Amazon Elastic Compute Cloud (Amazon EC2)
is a web service that provides secure, re-sizable com-
pute capacity in the cloud. It is designed to make web-
scale cloud computing easier for developers. Amazon
EC2 provides a wide selection of instance types opti-
mized to fit different use cases. Instance types com-
prise varying combinations of CPU, memory, storage,
and networking capacity. T2 instances are bur-stable
Performance Instances that provide a baseline level of
CPU performance with the ability to burst above the
baseline. We used 100 t2.medium EC2s and on each
of them we run 20 dockers. Each docker runs with
the minimum of 128 MG memory and maximum of
700 MG byte memory. Based on our calculation we
don’t need more than 700Mg. So with the help of set-
ting minimums and maximums we were able to run 20
dockers on each t2.medium instances.

• ECS: Amazon Elastic Container Service (Amazon ECS)
is a highly scalable, high-performance container or-
chestration service that supports Docker containers
and allows you to easily run and scale containerized ap-
plications on AWS. A Docker container is a standard-
ized unit of software development, containing every-
thing that a software application needs to run: code,
runtime, system tools, system libraries, etc.

• Task Definition: The task definition is a text file, in
JSON format, that describes one or more containers,
up to a maximum of ten, that form one application.
Examples of task definition parameters are which con-
tainers to use, which launch type to use, which ports
should be opened for the application, and what data
volumes should be used with the containers in the task.

3



• Task: A task is the instantiation of a task definition
within a cluster.

• Auto Scaling: The service provides a simple, power-
ful user interface that lets you build scaling plans for
resources including Amazon EC2 instances and Spot
Fleets, Amazon ECS tasks, Amazon DynamoDB ta-
bles and indexes and Amazon Aurora Replicas.

• EFS: Amazon Elastic File System (Amazon EFS) pro-
vides simple, scalable, elastic file storage for use with
AWS Cloud services and on-premises resources.

4. EXPERIMENTS AND RESULTS
Before deploying the model on the complete dataset and

potentially wasting a lot of resources we first wanted to be
sure that it performed well.

4.1 Creating a classification model
The first step was to determine a classifier as OpenFace

supplies you with a range of different classifiers to pick from.
We tested the Linear SVM, Radial SVM, Gaussian Naive
Bayes, GMM and DecisionTree classifiers, the results are
displayed in table 3. In a controlled environment we tested
the classifiers to see their respective accuracies and average
confidence for both known and unknown identities. This was
done by testing the trained models on new images of identi-
ties it was trained on and by sampling in unknowns as well.
As can be seen from the results in table 3 the DecisionTree
classifiers performed worse than the rest, with the linear and
Radial SVM showing very similar results, this concides with
the results which were observed by the OpenFace research.

Table 3: Accuracy per different classifier

Classifier Average Confidence Accuracy

Radial SVM 0,448 92,9%
DecisionTree 0,693 48,5%
Gaussian 0,996 92,0%
Linear SVM 0,446 92,7%

To test the model discussed in section 3.4 we downloaded
a sample of 10,000 Flickr images which were run through
the trained model. The results were abysmal though so we
had to tweak our initial approach.
Instead of adding a large number of unknowns to the train-
ing data we altered the approach and focused on a smaller
number of known identities. We used the 60 identities of
the development set of PubFig as training data. As an al-
ternative we also used 50 and 100 identities of the LFW fun-
neled dataset, where the identities with the most amount of
pictures were chosen. Both linear SVM and radial SVM
were considered. Radial SVM results have shown to be
marginally better than the linear SVM, however this comes
at the cost of extra computations.

As there were no more unknowns in the model we would
need to determine a threshold confidence level γ for which a
match to a famous person was credible. To compute baseline
values for the confidence levels we ran 100 images of known
identities through the models and calculated the average
confidence level. We did the same for 100 images of unknown
identities. All of these images were not used in training the
models, the results are summarized in table 4.

Table 4: Average confidence levels for unknown and
known identities

Linear SVM Radial SVM

Training set Unknown Known Unknown Known

PubFig dev 0.252 0.557 0.248 0.542
LFW 100 0.133 0.446 0.104 0.448

Once again we evaluate the results of the trained models
by testing them on a sample of 10.000 Flickr images. By tak-
ing γ = 0.55 for the PubFig model there were 103 matches
with approximately 90% of them being matched to Miley
Cyrus. Even though the confidence levels were very high for
some of the matches (> 0.9) the people didn’t resemble Mi-
ley Cyrus in the slightest to the human eye. This result was
apparent both when using the linear and radial classifiers.
The LFW-100 model performed a lot better. The matched
Flickr images all had a striking resemblance to the famous
identity. As the LFW-100 trainig set combined with the Ra-
dial SVM classifier gave us the best results it was selected
to be used on the Flickr image archive.

4.2 Deploying the model
The next step is deploying the LFW-100 model on the

EC2-cluster as discussed in section 3.5.

4.2.1 Implementation
We need to process 100 million number of records, where

in each record the information about the image, including
it’s download URL, and location is specified. We divided
the raw data into a set of data files, where each file includes
10,000 records. Next, we defined a Task as a set of processes
which is applied to a data file to perform face recognition.
These processes are as following:

1. For every record in dataset read the image URL: if
the end of URL ends with ’png’, ’jpg’, or ’gif’, then
download the image from Flicker and store the image
binary. Next, if the size of the image is less than the
threshold of 30 Kb remove the image.

2. For every image in the local image folder, check if there
are any faces in the image using OpenFace face detec-
tion method. Remove the image if no faces are found.

3. For every aligned image in a local image folder, apply
the OpenFace feature detection method to get their
feature vector. This result is stored in feature vectors
in JSON-format.

4. For each feature-vector, apply open-face classifier method,
with our trained model (radial SVM), and store the
result if there are detected matches with a confidence
value equal or higher than a certain threshold (γ).

In the end, the classification result will be stored in a JSON
file with the the name of the data file as it’s identifier. These
steps are executed one after the other, and are called through
a shell script. A global counter is used to select the next data
file to process. Upon execution of the script, the counter
would be incremented, and the corresponding data file would
be selected for processing. This process proved to be very
CPU-intensive, which was the bottleneck of processing the

4



Figure 3: CPU-utilization on AWS

images. By utilizing 100 containers and running 2000 tasks
we processed the dataset in batches of 20 million pictures.
The AWS metrics are displayed in figure 3. Finding the
faces in the pictures proved to be the most CPU intensive
task which increased processing times significantly. Down-
loading the images and calculating the confidence level of
each match was relatively fast. After using Openface docker
on our created cluster, spark was used for analyzing JSON
files. Our extracted JSON file has the following format:

Figure 4: JSON structure

The created JSON files were moved to SURFsara. Our
pipeline in SURFsara is as follows.

• Read all JSON files into one DataFrame

• Sort them with the confidence score and person

• Perform filter action on them to chose which rows have
confidence score more than our threshold

• Join with raw dataset in order to find location

• create new JSON file that will be used in our visual-
ization.

Figure 5: JSON result structure

4.3 Results evaluation
In the final result we collected 2,748,159 matches which

are displayed in a density histogram in figure 6. The average

confidence is 0.084 with a standard deviation of 0.051. The
distribution of the confidence seems to closely follow a Log-
Normal distribution, which is was fitted to the data and is
displayed in red in the figure. The average confidence is
very low as is to be expected when cycling through random
images from Flickr. The figure is cut off at a confidence of
0.5 even though there are matches with higher confidence,
however this is such a small fraction that it was not visible
in the histogram.

Figure 6: CPU-utilization on AWS

We are only interested in the matches with a higher con-
fidence level, about 3,4% of the matches have a confidence
level larger than 0.2. If we take the average confidence level
of the known identities from table 4 and set this as the cut-
off threshold γ we end up with a total of 5012 matches, or
0,18% of the total. These are the matches which are con-
sidered as feasible and are used in the final results and the
visualization. The total number of training images varies
per identity, with a minimum of 14 images and a maximum
of 530 images. It was remarkable that the person with the
most training images (George W. Bush) also had the most
matches in the Flickr archive. To test if there is no bias
to the identities with the most training images the average
confidence and total number of matches per identities was
computed. Then the identities were sorted based on the
number of training images and given a percentile rank of 0
- 1, where George W. Bush is 1 as it is the identity with
the most training images. The percentile rank is plotted
against the average confidence and total number of matches
in figure 7. As can be seen there is no decisive connection
between the number of training images and the total num-
ber of matches or the average confidence level. When we go
to the very top of the percentiles we do see a small increase
in both though, but this proves to not be consistent across
both number of matches and average confidene. As an ex-
ample George W. Bush has by far the most matches but the
average confidence level is below average.

5



Figure 7: Scatter plot based on percentile rank

4.3.1 Visualization
The results of the classification is visualized through a

web-based user interface. The names of the known persons
which the model was trained on are placed on a scrollable
sidebar. By clicking a particular person’s name it will show
the matches that were made for that person in the Flickr
image archive ranked by their confidence level. For the
matches that have location data available to them the lo-
cation is also displayed which links to the pinpointed Flickr
map. Only matches above the confidence threshold are con-
sidered. Upon selecting a particular image in the list, the
original image will be opened in Flickr website.

5. DISCUSSION AND CONCLUSION
During the course of this project we were met with many

issues to get OpenFace to run on a large scale. In the end
a solution was found by training the model on a GPU pow-
ered instance and deploying the model on Amazon’s Elastic
Container Service. Open source facial recognition software is
getting closer to the performance of the private facial recog-
nition software and can also be deployed on a large scale as
is seen in this project. However the extremely large datasets
from social media which Google and Facebook can use to en-
hance their training are still unmatched. Big corporations
have also started to develop image and video recognition as
a service, for example Amazon Rekognition5.
More research should still be done on the best way to train a
model when dealing with facial recognition with a very large
number of unknowns. In our case adding unknowns wors-
ened the model and the best solution was only using known
people and setting a threshold confidence level for matches,
recent discussion on the OpenFace Github6 also didn’t come
to a decisive conclusion.
Which facial recognition software is best fit is also still up
for debate. Very recently a modified OpenFace[2] was re-
leased which incorporate pairs which were discarded to im-
prove both accuracy and performance. Facial recognition
has gone through a lot of developments recently but is far
from solved, this results in a rapidly expanding field led by
the biggest tech corporations.

5https://aws.amazon.com/rekognition/
6https://github.com/cmusatyalab/openface/issues/144

6. REFERENCES
[1] B. Amos, B. Ludwiczuk, and M. Satyanarayanan.

Openface: A general-purpose face recognition library
with mobile applications. 2016.

[2] K. Santoso and G. P. Kusuma. Face recognition using
modified openface. Procedia Computer Science, 135:510
– 517, 2018. The 3rd International Conference on
Computer Science and Computational Intelligence
(ICCSCI 2018) : Empowering Smart Technology in
Digital Era for a Better Life.

[3] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A
unified embedding for face recognition and clustering.
CoRR, abs/1503.03832, 2015.

[4] A. S. Syed Navaz, T. Dhevi Sri, and M. Pratap. Face
recognition using principal component analysis and
neural networks. 3:245–256, 2013.

[5] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf.
Deepface: Closing the gap to human-level performance
in face verification. pages 1701–1708, 2014.

[6] K. Q. Weinberger and L. K. Saul. Distance metric
learning for large margin nearest neighbor classification.
J. Mach. Learn. Res., 10:207–244, June 2009.

6


