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Abstract

Flood defence is a topic of major importance in the Netherlands where large parts of the country
lie below sea level. To prevent severe catastrophes, a complex systems of dikes has been constructed
to keep the water under control. Based on the AHN2 LiDAR point-cloud dataset, we aim at
identifying critical regions in the Netherlands that rely heavily on the protection through dikes.
This is achieved by generating a digital elevation model, developing a framework for automatic
dike detection from raw point cloud data, and combining both into an interactive visualisation that
allows to explore the consequences of a dike breach. Facing the massive volume of the given dataset
we propose a cloud-computing approach based on Apache Spark and its Python API. Our proposed
pipeline is based on distributed point-cloud rasterisation, a variety of image processing techniques
and geometric graph analysis.
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1. Introduction

In The Netherlands, where large parts of the
country lie below sea level, it is estimated that ap-
proximately 2/3 of the landscape is susceptible to
flooding, making the issue of flooding analysis, pre-
vention and control extremely important for its resi-
dents. There are a number of methods used for flood
control such as dams, floodgates and most predomi-
nantly utilised in The Netherlands, dikes.

A dike is a raised ridge that is constructed par-
allel to the river or shore. In situations where the
water level adjacent to the dike raises unexpectedly,
the dikes prevent the water level from spreading to
the area on the other side, thereby preventing de-
struction of land and property.

Located across The Netherlands are large systems
of connected dikes, some natural, some man-made,
providing effective flooding control. However, what
would happen if one of those Dike systems were to be
compromised, be it through natural erosion, natural
disasters or human intervention?

When considering disaster situations such as
flooding, it is important to not only evaluate the
effectiveness of preventative approaches but also to
consider the impact of these approaches failing.

In that regard, this project targets 3 main goals.
To create a coarse grained elevation map of The
Netherlands, to develop a framework for automatic

detection of dike systems, and using these two data
products, to create an interactive flooding simulation
predicting the flooding zone if these dike systems were
to fail.

Developing such complex products on the scale
of an entire country is generally an unattainable goal
without various rich data sources to drive the anal-
ysis and simulations. However, with the increasing
amount of geospatial data being collected and made
openly available, projects such as this become in-
creasingly possible. The raw geospatial data sets
come in a variety of formats, depending on the pur-
pose and acquisition technique. Among them, point-
cloud data in LAS format is extremely rich in infor-
mation and can be used to model accurate 3D sur-
faces and to extract complex spatial features.

The disadvantage of this data boom however, is
that it is no longer feasible to operate on this data us-
ing single commodity or even high performance com-
puters, as the data volume often spans into the or-
der of terabytes. Thus, there is an emerging require-
ment for efficient big data processing techniques for
working with geospatial data in order to truly bene-
fit from it. With this in mind the aim of our project
is not only to investigate potential flooding hazards,
but also to investigate various techniques for efficient
processing of large volumes of geospatial data.

To accomplish our task we will utilise the Apache
Spark framework[1] for large scale data processing.
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The dataset we are working with is the AHN2 dataset
which consists of approximately 10 Terabytes of
point-cloud data, effectively mapping the entirety of
The Netherlands to a 20cm resolution. In order to be
able to store and even process such a large amount
of data we will deploy our processing pipeline on the
Surfsara Hadoop cluster, consisting of 170 compute
nodes totaling to a 1370 CPU cores, backed by 2.3
Petabytes of storage capacity.

The remainder of the paper is laid out as fol-
lows. In Section 2 we will discuss work related to
our own. Our research questions will be presented
in detail in Section 3. Section 4 provides further in-
sight into the data that will be used as a source for
this project. We will present the setup of our Project
in Section 5 where we will discuss how we accom-
plished our goals. Section 6 evaluates and discusses
the results of our experiments. Finally in Section 7
we present our conclusions.

2. Related Work

Our work falls into three categories, flooding as-
sessment in The Netherlands, geographic information
science (GIS) and massive point cloud processing us-
ing cloud computing. In the following we present rel-
evant related work from all of these areas of research.

2.1. Flooding Assessment in The Netherlands

With flooding being an omnipresent danger,
flooding analysis in The Netherlands is a well stud-
ied area, with many different initiatives such as the
national Delta Programme [2] aiming at optimized
flood defences, or the Floris project [3] exploring top-
ics like risk analysis, loss of life, cost benefit analysis,
uncertainty modelling etc. The main starting point
for such studies is the identification of potential weak
links in dike rings, which may be caused by over-
topping or loss of stability due to erosion, sliding or
piping [4], followed by a complex analysis of conse-
quences.
For an accurate identification of regions being af-
fected by a potential dike breach simulations are used
to predict flooded areas. Such simulations range from
simple intersection of the water level plane with a sur-
face model of the landscape [5] to sophisticated 3D
solutions based on the Navier-Stokes equations and
turbulence modelling [6].
Our work differs from the described ones in that our
analysis is not based on existing terrain models and
mapped dike systems, but rather aims to automati-
cally generate these from raw data and perform basic
flood plain predictions. In that sense, our project

can be seen as ground work that transforms available
data sources into products to be used in higher level
flooding analysis.

2.2. GIS Methodology and Tools
This leads us to the topic of GIS technologies that

facilitate raw geospatial data processing and gen-
eration of geographical models. Methods used for
transforming 3D points into a digital elevation model
(DEM) can be grouped into two stages. First, points
need to be filtered to separate ground points from
non-ground points. Since ground point features de-
pend strongly on the terrain type, a variety of ap-
proaches has been studied and evaluated on diverse
terrains. Lowest elevation sampling [7] is a simple
initialization procedure that assumes that bare earth
points are usually the lowest features in a local neigh-
bourhood. More sophisticated ground filtering ap-
proaches build on weighted linear least squares in-
terpolation developed by Pfeifer [8], slope-based fil-
ter developed by Vosselman [9], or filtering based on
mathematical morphology [10]. Second, the resulting
points need to be combined into an elevation model.
Two model types dominate the research in this area:
raster DEMs which can be searched and analysed by
simple kernels, and so called Triangulated Irregular
Networks (TIN) which allow for accelerated search for
neighbouring points [7]. These models are created by
interpolating between the irregularly spaced ground
points. Here, one of the most popular interpolation
methods is Inverse Distance Weighting which uses the
weighted average of points in a neighbourhood, where
points closer to the location of interest dominate [11].

Identification of ground-points as well as auto-
matic dike detection falls into the category of geospa-
tial classification. Here, two main approaches can be
found in literature: classification based on raw point
features, and image classification based on rasterised
data. Bao et al [12] present an interesting approach
for separating ground and vegetation in point-clouds
by analysing skewness of the intensity distribution.

In general, a variety of powerful GIS software li-
braries is available, such as ArcGis, QGIS and Point
Cloud Library (PCL), that provide tools for conver-
sion, rasterisation, segmentation, object identifica-
tion, spatial indexing and more. However, they are
designed for standalone environments only and are
hence not feasible for large-scale analysis.

2.3. Large-Scale Point Cloud Processing
In contrast to the well-established point-cloud

tools for single machines, only little research has
been conducted on massive point-cloud process-
ing using distributed computing technologies [13].
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Apache Spark frameworks for geospatial data such
as GeoSpark and Geotrellis provide functionalities
for spatial RDDs of raster and vector data provid-
ing special SQL queries such as distance based joins
as well as efficient spatial indexing. However, they
do not come with any LAS point-cloud support. To
our knowledge, the only Spark library designed for
LAS file import is IQmulus which relies on an out-
dated version of Spark. Facing these challenges, sev-
eral designs of efficient frameworks for distributed
point-cloud processing has been proposed in the past
years. Boehm et al [14] utilise an Apache Spark
based approach similar to our own. By encoding a
list of point cloud files as an RDD and distributing it
amongst workers, point cloud segments can be indi-
vidually read and processed concurrently. Wang et al
[15] take a different approach to point cloud process-
ing, by using a MapReduce based approach. While
this approach proves to be efficient for single trans-
formations, repeated operations on the point cloud
can prove challenging due to the limitations of the
MapReduce framework. Liu et al [13] provide the
specification and implementation of a Spark library
for ingestion of large point clouds. While our initial
data exploration was based on the library produced
by the authors, our final solution moves away from
this approach due to technical incompatibilities, but
utilises the core concept of distributing the loading of
data to many workers.

3. Research Questions

The main goal of this research is to summarize
the Dutch terrain in form of a DEM and to detect
a topology of dike systems that protect critical areas
below sea level. These goals will be achieved based on
the AHN2 point-cloud dataset, which imposes major
challenges due to its sheer volume. With this in mind,
we formulate the following questions to be answered:

• How can we efficiently load and process the
point-cloud data on the Surfsara Hadoop Clus-
ter, transforming the data into a workable for-
mat and reducing it to a feasible volume?

• How can we transform the unstructured point
records into a DEM that appropriately repre-
sents the regional ground levels?

• Is it possible to develop a framework for auto-
matic detection of dike systems that is solely
based on point-cloud elevation data?

• Can we, based on the DEM and the topology
of dike systems, make predictions about sce-
narios in which one or multiple dikes breach?

Which areas would be flooded and how would
these flood plains change with rising sea level?

The results are to be summarised into an interac-
tive visualisation which facilitates exploration of the
Dutch terrain, the detected dikes, as well as predicted
flood plains.

4. Data

The AHN2 dataset is a large 3D point cloud scan
of the entirety of The Netherlands, collected over a
number of years using airborne LiDAR technology.
By utilising lasers, and calculating the time taken
for a projected laser beam to return, in combination
with GPS positioning, distance data can be inferred
and highly accurate X, Y, Z points of the ground as
well as features such as vegetation and buildings are
extracted. This highly detailed elevation data has
many uses, from generating accurate 3D models to
detecting abnormalities on the ground, fig 1 shows
an example visualisation of such point cloud data.

Figure 1 A point cloud visualisation of a sample file
from the AHN2 dataset

The entire dataset consists of billions of 3D
points, resulting in a total of over 10 Terrabytes on
disk space. The data is organised into 225 tiles,
each approximately spanning a 6.5 x 5 km area, with
each tile further divided into a variable number of
data files. The x and y co-ordinates translate to the
Amersfoort co-ordinate system, which is one of the
reference co-ordinate systems used in The Nether-
lands [16].

The average density of measurements is about 10
points per 1m2, ranging from detailed descriptions
of buildings with hundreds of points per m2 to very
sparse representations of water bodies.

A major challenge of this data set is the fact that
the points are completely unclassified. In contrast
to the recent generation AHN3, there is no distinc-
tion between ground, water, trees and buildings and
therefore points must be classified or filtered before
they can be used in order to avoid distorted results.
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For the purposes of this project we are only con-
cerned with the ground level. Performing a quick
analysis of some data samples, fig 2 shows that the
distribution of height values is highly skewed, indi-
cating a clear distinction between ubiquitous ground
points and small-scale landscape features with vary-
ing heights. However, the points relevant for dike
detection are expected to lie in the same histogram
range as irrelevant objects like medium height veg-
etation. We will come back to this issue in Section
5.
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Figure 2 Distribution of ground point heights in a sam-
ple of the AHN2 dataset

The second big challenge in working with this
particular dataset is the format in which the data is
provided. The LAS format is an open format for LI-
DAR data containing binary data split into a header
block, a meta-information block, and the actual point
data record [17]. However, storing 10TB of raw data
in practise is not feasible and therefore the data is
compressed using a special compression algorithm op-
timised for point clouds, leaving us with 1.6TB of raw
data in compressed LAZ format. While this might
sound like a big advantage, as we will see, the com-
pressed format is more difficult to work with and fur-
thermore the extra decompression step using the Las-
Tools suite adds a non negligible delay in processing
when the data is on this scale.

5. Project Setup

The envisaged data product, as well as the data
used to drive the project are quite large in scale. With
this in mind, we split the process into 5 stages. In
stage 1 - Preprocessing we will tackle the challenge
posed by the massive size of the dataset, and rework
it into a more usable format. Building on this, in
stage 2 we create a Digital Elevation Model (DEM)
of the terrain using the processed data from stage 1.
Following on from this in stage 3 we aim to extract
dike segments as polygon information by detecting ar-
eas of increased height surrounding bodies of water.

From there, in stage 4 we run a connected component
algorithms in order to detect the dike segments that
belong to a single dike system. And finally in stage
5 we aim to bring the data generated from stage 2, 3
and 4 together in a Browser based interactive simu-
lation.

5.1. Preprocessing

The resolution of the points in the AHN2 dataset
is far higher then what is realistically required in or-
der to reliably achieve our goals. While larger reso-
lution may at first sights appear beneficial, in real-
ity the increased data size and its associated com-
putational costs outweighs the benefits of the in-
creased richness of detail. Moreover, the given point
cloud data is completely unstructured and needs to
be transformed into a cleaner data structure.

With the above in mind, we chose to reduce the
data to a 2D raster with a 1m× 1m resolution. This
means that all measurements falling into a particular
1m2 sampling window are represented by one single
point on the raster, where the window size is cho-
sen such that it facilitates efficient processing while
still retaining sufficient information for dike detec-
tion. With the aim of identifying the regional ground
level, we implemented minimum elevation sampling
by aggregating points within the window and assign-
ing the minimum of all height values in the point
group to the respective raster point, discarding un-
desirable small-scale structures with higher elevation.
Knowing that the resolution of the original unstruc-
tured data is approximately 10 points per 1m2, this
rasterisation process allows us not only to project the
measurements onto a regular 2D grid space but also
to reduce the amount of data by almost factor 10.

The sampling of the tiles is an inherently parallel
problem, as each tile is composed of on average 300
files which can be sampled individually without the
need for explicit co-ordination, thereby reducing the
network overhead. With this in mind Spark was the
preferred framework of choice. A list of files inside of
a tile is first converted to Spark’s Resilient Dataset
Distribution(RDD) format. The RDD is then parti-
tioned and distributed across the workers in such a
way that each worker task involves reading on aver-
age 2 files (partitions = num files/2). Subsequently
a flatMap operation is invoked on the RDD such that
each file name is converted into a list of sampled
points. The resulting list of lists is then flattened.

The workers map task has a degree of complexity
to it for a number of reasons. Primary complication
being the compressed point cloud files that it must
be able to read. While Laspy, the tool we are us-
ing for reading our point cloud data has compressed
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file support, its compression support is implemented
in a rather unusual way. In order for compressed
reading to be successful the worker must have a bi-
nary called LasZip (part of the LasTools suite [18])
placed somewhere on its PATH. This external depen-
dency makes the worker task more complicated as the
LasZip binary must be recompiled to match the linux
architecture that the workers run on and be shipped
to the worker nodes when the spark job is submitted.
With this out of the way, upon receiving the task, the
worker looks up the file in HDFS and downloads it to
his local temporary directory. Here the file is decom-
pressed and loaded into memory where it is sampled
using the previously outlined procedure. Note that
the sampling process is solely implemented through
Spark SQL queries working on the point RDD. The
overall structure of the preprocessing stage is illus-
trated in fig 3.

On completion of stage 1 we effectively reduce the
data volume from 10TB to 150GB. Bringing the size
of individual tiles down to <1GB per tile, on average.
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Figure 3 Overview of the sampling architecture, Par-
allel task execution is driven by Spark framework, with
HDFS being utilised as a datastore. Each worker is is-
sued a task of ingesting point cloud files. While ingesting
data is sub sampled to reduce resolution and the resulting
RDD is written back to HDFS

5.2. DEM Generation

Generating the DEM follows from the points sam-
pled in the preprocessing stage. The minimum ele-
vation sampling constitutes already the first step of
DEM construction as it filters out non-ground mea-
surements and it yields evenly spaced grid points.
Facing the lack of Spark point-cloud frameworks, we
refrained from implementing complex interpolation-
based methods from literature which would require

computationally expensive repetitive searches for
neighbouring points in the unstructured dataframe.
Instead, we opted for an image processing approach,
where raster points are inserted into a Python numpy
matrix on which kernel convolution can efficiently be
applied in order to obtain raster elevation data rep-
resenting a smooth surface. We claim that, for our
purpose of generating a coarse grain elevation map
of the Netherlands which provides information about
areas being susceptible to flooding, it is not essential
to create an highly accurate surface model including
information about local terrain slopes; but a mapping
of medium scale regions to discrete height levels is
sufficient. Inspired by the Inverse Distance Weight-
ing interpolation approach, we decided to base the
definition of these regions of equal height on a the ap-
plication of a Gaussian filter kernel which essentially
sets the value of each raster point to the weighted
average of its neighbours, favouring the nearest ones
[19]. This reduces noise due to small-scale features
that deviate from the general ground level of a region
and that had not been discarded through minimum
elevation sampling.

To obtain a model that represents areas of equal
height, we define a number of height bins spanning
the entire elevation range of the Dutch terrain (−50m
up to 300m). These bins are unevenly distributed,
such that heights close to sea level, which are more
important for flooding analysis, are represented in
more fine grained steps than larger elevations.

Due to the fact that the tiles obtained by stage 1
are still quite large in size, generating a DEM outright
from an entire tile is not only unfeasible, but also
means losing out on the high level of parallelism facili-
tated by using Spark. Therefore, each tile is first sub-
divided into spatially contiguous blocks of 500x500
points using Sparks Dataframe groupby functionality
before the actual processing is done, allowing us to
utilise the cluster once again for processing.

Following this, a user defined function (UDF) is
applied to each of the blocks. Each worker can ap-
ply the UDF on a block independently of the other
workers, making this problem embarrassingly parallel
similar to the sampling problem in the preprocessing
stage.

The process for transforming a chunk of X,Y,Z
points into a partial DEM is implemented as fol-
lows. Initially, each worker transforms the chunk into
a numpy matrix in order to benefit from a number
of efficient matrix operations and image transforma-
tions that Python’s numpy, scipy and scikit-image
libraries offer. Next a downsampling function is ap-
plied to reduce both the amount of computation per
block and the size of the final overall DEM. During
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the downsampling first a Gaussian filter is applied to
avoid aliasing effects, and afterwards a block of 10x10
points is merged into one by extracting the median
height value. Following this, another Gaussian filter
is used to obtain a smooth image representation of the
ground surface. Finally, the heights are binned into
discrete values, and the resulting DEM is returned to
the Spark Driver. The driver, inserts the returned
blocks into an image representing the entire tile and
the discrete height levels are mapped to RGB colours,
resulting in an elevation map in PNG format.

Note that due to the distributed processing of
individual blocks artifacts at the block edges may oc-
cur. A more accurate approach avoiding such arti-
facts would involve halo exchange from neighbouring
blocks such that smoothing of edge points would con-
sider their actual neighbours in the overall picture
instead of approximating their values using the edge
values them selves. However, this would imply signif-
icant communication overhead and thus counteract
Spark’s notion of data partitioning to facilitate fast
querying.

Finally, we apply the same approach used to gen-
erate the raster DEM to extract a vector representa-
tion of areas of equal height, which will be easier to
incorporate into flood prediction. The only difference
is that for this purpose we operate on the scale of the
entire dataset, which means that all sampled tiles are
loaded at once and more radical downsampling is ap-
plied to allow for concurrent processing of the entire
dataset. The resulting raster DEM is separated into
collections of areas at 8 distinct height levels close to
sea level, represented by 8 binary images. Then for
each level ordered lists of contour points are extracted
which are transformed back to the original Amers-
foort co-ordinates, and converted to a string rep-
resentation of polygon objects in Well-Known Text
(WKT) format, a markup language widely used for
representing vector geometry objects through their
coordinates. Being of regular string type, these ob-
jects can then be collected into a Spark DataFrame at
the Spark driver, which can easily be converted into a
GeoPandas dataframe containing all identified poly-
gons. The vector DEM in form of a set of polygons is
then written to GeoJSON, a format commonly used
to encode geographic data structures in form of ge-
ometric objects, and thereby presents a concise and
workable product which can easily be used for further
analysis and visualization.

5.3. Dike Detection

The dike detection process begins similarly to
DEM generation, the same general approach is
adopted where sampled tiles are divided into blocks,

distributed among workers which then apply image
processing techniques to their chunk of data. The
main difference is that for reliable detection of dike
segments a larger area of operation is needed in order
to distinguish between long but thin dikes and other
small features of similar height. Therefore, the tile is
first further downsampled in its entirety by grouping
10x10 areas of points and retaining only the mean
height value. The newly sampled tile is then divided
into blocks of 500x500 points, representing physical
regions of 5km by 5km.

To identify dike points, we decided to follow an
image classification approach based on edge detec-
tion and segmentation. A dike is a raised ridge with
a crest between 2 and 5 meters width and with slopes
to both water side and protected land side, resulting
in a base width of up to 50 meters. Depending on the
dike type, sea dike, river dike or lake dike, the crest
is usually between 5 and 10 meters above the sur-
rounding ground level [20]. With this knowledge, we
expect dikes in the raster image to appear as bands of
points with increased height value exhibiting a strong
gradient alongside both edges. The discrete Laplace
filter [19], approximating the second spatial deriva-
tive, is able to detect exactly these areas of strong
intensity change together with the orientation of gra-
dients. Hence, after Laplace filtering the dike edges
manifest as pixel values around zero, whereas pixels
close to the edges take negative values if they are on
the higher side of the edge, and positive values if they
are on the lower side. With the dikes being long but
narrow structures, it is reasonable to assume that the
entirety of the dike appears as negative pixel values,
forming segments that can be extracted by simple
thresholding.

From the technical perspective, a new UDF for
dike detection is used to perform a transformation
operation on the grouped data chunks. As before,
a worker starts by transforming the assigned chunk
into a matrix. Listing 1 describes the process of iden-
tifying potential dike segments in such a chunk. The
first step is to identify the ground level ZG. By gener-
ating a histogram of heights for the given matrix the
most frequent height bin is selected as the ground
level. Following this, all of the heights in the grid
are clipped to the range [ZG, ZG + 5], mapping all
heights below ZG to ZG and all heights 5 meters or
more above ground level to ZG + 5 and effectively
removing elevation features outside the height range
of interest for dike detection. Then downsampling
by factor 2 is performed to further decrease the com-
putational cost per block and a Gaussian Filter is
applied to reduce noise.
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def dike_detection_udf(chunk):

np_matrix = numpy.matrix(chunk)

# limit height values to relevant range

clipped = clip(np_matrix, Z_G, Z_G + 5)

# Change resolution from 500x500 to 50x50

sampled = downsample(clipped)

# Apply a Gaussian Filter to smooth points

smoothed = gauss_filter(sampled)

# Detect edges

edges = laplace_filter(smoothed)

binary = edges < threshold

# Close small gaps

closed = binary_closing(binary)

# Extract contours points

polygons = find_contours(closed)

return polygons

Listing 1 Pseudocode of the UDF outlining the opera-
tions for transforming point grid into potential dike seg-
ments

Once the transformed height map is smoothed,
the Laplace filter and thresholding is applied resulting
in a binary image of potential dike segments. How-
ever, the identification is not perfect. There are un-
connected segments that belong to a single system
and small segmented ’noise’ objects appear in the im-
age. In order to make connecting dike components
as easy as possible in the next stage, we apply mor-
phology operators based on mathematical set theory
[21]. More precisely, binary closing, a sequence of
dilation and erosion, is used to close small gaps be-
tween detected segments. Additionally, all segments
that have no contact to the image borders are dis-
carded, as dikes are expected to stretch over large
areas comprising multiple blocks and even tiles.

While the resulting binary image identifies dike
segments, it is not in a useful or space-efficient for-
mat, due to the fact that the image includes very
large irrelevant areas around dike segments. Hence,
the next step is to extract the dike segment contours
as an ordered list of points, which are then trans-
formed in the same way as described in Section 5.2
to obtain a GeoPandas dataframe containing all iden-
tified polygons.

5.4. Dike Connectivity Analysis
The potential dike segments obtained by the pro-

cess described in the previous section rely solely on
detection within a limited area of 5 by 5 kilometers.
However, the Dutch dikes form a large connected sys-
tem of closed dike rings and long dike lines along

rivers. Therefore, our next step is to raise dike detec-
tion to a higher level. Based on the collected poly-
gons from the previous stage, we create a geomet-
ric network [22] which is a graph structure consisting
of nodes representing geometric objects in space, in
our case individual polygons, and edges describing
their spatial relationship. If two polygons intersect
or touch each other, they are connected in the graph.
This data structure allows us to identify connected
components that most probably belong to a larger
system of dikes, and to remove isolated segments.

Working on a tile level, the graph can be ob-
tained by applying a spatial join to the GeoPandas
dataframe with itself, which yields all pairs of inter-
secting polygons. Due to the filtering of irrelevant
segments and closing of gaps between adjacent seg-
ments in the previous stage, the resulting number of
collected polygons from all blocks is relatively small
and thus GeoPandas’ spatial dataframe queries are
preferable to Spark’s distributed operations. The re-
sulting joined dataframe contains all required edge
information to create the geometric network using
Python’s networkx. Finally, a connected component
algorithm is applied to obtain sets of connected seg-
ments which are then combined into a single polygon
object. Again, polygons that do not have contact
with the tile border are discarded to further reduce
the amount of false positives.

As a last step, the output from all individual tiles
is combined by applying the described connectivity
analysis once more, this time to the overall set of
segments obtained from the tile-level analysis. This
allows us to filter out more isolated segments that
probably do not belong to any larger dike system, and
merge adjacent segments into single components.

The final set of detected dike segments is written
to GeoJSON.

5.5. Visualisation

The visualisation of the generated DEM and dike
segments was created by overlaying our data on top
of a map of The Netherlands. To this end we utilised
the MapBox service [23].

Mapbox provides a powerful map API that al-
lows its users to perform a wide range of tasks from
simple data visualisation, as is our use case to more
complicated navigation and live data interactions.

The visualisation procedure is straight forward,
we initialised a Mapbox map, centred around The
Netherlands and set the co-ordinate system to the
Amersfoort co-ordinate system as this is how our
dataset is indexed. Following this, the DEM data in
image format was added to the maps source data us-
ing Mapbox.addSource() . The position of our DEM
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was encoded as bounding co-ordinates (xmin, ymin,
xmax, ymax) into the file name. Once the source
is loaded into the map object it can be easily over-
layed using Mapbox.addLayer() . Dike overlay as
well as overlay of flood plains follow this approach.
In contrast to the DEM in PNG format, co-ordinate
information for these polygon objects is encoded di-
rectly in the GeoJSON objects. We allow the user
to freely combine the different layers by switching in-
dividual components on and off which facilitates the
exploration of the Dutch topology as well as different
flooding scenarios.

The polygon representations of both dikes and
vector DEM plains facilitate a fast loading process of
data as their spatial information is compressed into
only few contour points. To allow for smooth interac-
tion with the layered map we refrained from using our
high resolution tile-based raster DEM but use an ad-
justed version in slightly lower resolution where tiles
are merged into one single DEM.

6. Evaluation and Experiments

Due to manifold technical obstacles arising dur-
ing this project, the focus of our work lies on design
and implementation of the data processing pipeline
and generation of the targeted data product. There-
fore, the extent of experiments performed on the final
output is limited. With this in mind, this section will
focus on validation of our results based on reference
data. For both DEM and dikes we provide a side
by side comparison of our output with the reference.
Finally, preliminary experiments with our data prod-
ucts are presented and discussed.

6.1. DEM Evaluation

In order to evaluate the generated DEM we per-
formed a visual comparison of the generated eleva-
tion images versus a reference elevation map of The
Netherlands provided directly by AHN.

Figure 4 shows a comparison between the DEM
generated by our pipeline (bottom) and the refer-
ence elevation map (top). From both comparisons,
on tile-level and on country-level, we can see that
overall quality of the generated DEM is pleasingly
high. While our DEM’s do not capture the same
level of height transitions our intentions were to cre-
ate a course grained elevation map and as such our
goal was effectively accomplished.

Figure 4 Reference elevation map (top) compared
against our generated elevation map (bottom)

6.2. Dike Detection Evaluation

To evaluate dike detection, reference dike data
was acquired from the Dutch Rijkswaterstaat [24],
a government organisation dealing with the design,
construction and management of infrastructure fa-
cilities within The Netherlands. The reference data
comes in form of a shape file and consists of con-
nected line segments representing the dikes. In order
to achieve an accurate comparison, the reference data
was segmented into tiles according to the AHN2 tile
structure.

First, a qualitative evaluation was performed.
For the sake of brevity this procedure is based on
taking a random sample of the generated tiles and
comparing them with the reference tiles. Fig 5 shows
what we believe to be adequate representations of
the best (top), average (middle) and worst (bottom)
case of true positive outputs from our detection algo-
rithm. From the figure we can see that throughout,
the difference is generally the amount of erroneously
detected dikes that is introduced through irrelevant
elevated features surrounding the dikes, which is un-
derstandable considering that our algorithm is based
on height detection. In the worst case however, as
well as seeing a lot of noise we do see loss of dike in-
formation. This could potentially be alleviated by de-
creasing the minimum height threshold for dike clas-
sification but would as a side effect introduce further
false positives into an already noisy result.
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Figure 5 Best (top) Average(middle) and
Worst(bottom) case outputs of our dike detection
algorithm

Second, we provide a quantitative reliability as-
sessment of our dike detection framework. More
specifically, the number of detected dike segments
overlapping with the reference dikes (TPdetected) as
well as the number of reference dike segments that
overlaps with our detected dikes (TPref ) are deter-
mined and compared to the total counts (Ndetected,
Nref ) respectively. With this we define the following
two measures of classification accuracy: Precision de-
scribes the fraction of detected segments that actually
match true dikes, and miss rate gives us the fraction
of reference segments that could not be detected by
our classification method. Note that for these mea-
sures we consider individual segments before appli-
cation of connectivity analysis. The equations and
the actual results are presented in the following equa-
tions:

precision =
TPdetected

Ndetected
=

147

206
= 71.36% (1)

miss rate =
Nref − TPref

Nref
=

1051

1845
= 56.96% (2)

In line with the visual examination, the precision
of 71.36% underlines that the majority of our dike
segments has correctly been classified, while there is
still a significant amount of cases where other elevated
features like bridges or roads are wrongly identified
as dikes in areas where there are no dikes whatsoever.
Apart from that, the high miss rate of 56.95% shows
that our approach clearly suffers from missing a lot
of true dike segments.

A visual overall comparison between the reference
dike systems and our results supports the outcomes
of the accuracy evaluation. Fig 6 shows that our dike
detection framework is able to capture the rough lay-
out of Dutch dike systems. Especially sea dikes along
the west coast as well as in the north and around the
Ijsselmeer could be detected with pleasing reliability.
However, in line with the measured miss rate, fig 6
illustrates weaknesses of our approach as dike lines
tend to be fragmented, with a significant amount of
segments missing in between. Moreover, we see that
most false positive detections occur in urban areas.
Another significant part of false detections appear as
straight lines at tile borders where smoothing and
edge detection are obstructed by missing halo points
from neighbouring tiles. While applying overall con-
nectivity analysis reduces the number of false posi-
tives, it also results in loss of true dike segments due
to fragmentation.

6.3. Experiments

In a preliminary experiment we examine which
regions of the Netherlands would be flooded if there
was no protection through dikes at all. Based on
the generated vector DEM data, we identify all areas
lying below sea level and present them in fig 7. Ad-
ditionally, areas at height levels up to 3 meters above
sea level are visualised in steps of 0.5 meters.

From the figure it becomes very clear that the
Netherlands rely heavily on their dike systems. With-
out this protection all areas below sea level that are
in some way connected to the sea would be flooded.
This applies especially to the surroundings of the Ijs-
selmeer, comprising the provinces of North Holland,
west Friesland and Flevoland, as well as South Hol-
land. From our polygon model we estimate that 9213
km2 would be affected by such a catastrophe. Inter-
estingly, a rising sea level only leads to a moderate
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Figure 6 Overall comparison between reference dike data (grey) and our
results (blue). Left: without overall connectivity analysis. Right: only con-
nected components comprising at least 3 segments.

Figure 7 Critical areas that lie be-
low (dark red) or up to 3 meters above
sea level (lighter red).

increase in the flooded area. Our model predicts an
area of 11981 km2 being flooded if the sea level rises
by 0.5 meter, 14773 km2 for 1 meter.

7. Conclusions

To sum up, the project has been continuously
driven by challenges posed by the massive size of the
dataset. Many powerful tools could not be applied
because they do not support the LAS/LAZ format
and/or are not compatible with the Surfsara cluster
configuration. However, we were able to overcome
these challenges by developing a distributed process-
ing pipeline that combines the potential of Apache
Spark’s resilient distributed datasets with the algo-
rithmic strengths of standalone libraries like Python’s
scikit-image and geopandas.

Based on this technical approach, we successfully
generated an image-based raster DEM of the entire
Netherlands which provides coarse grained but reli-
able information about regions of equal height level,
filtering out irrelevant non-ground features like build-
ings and vegetation. The same framework was ap-
plied to obtain additional vector-based information
about these areas of equal height, which proved to be
a space-efficient representation that can immediately
be used for preliminary flood analysis.

From the analysis perspective, dike detection
turned out to be the most challenging part of this
research. The high resolution of the raw data in-
cluding lots of irrelevant information together with
its unfeasible volume made it difficult to appropri-
ately reduce the data to a workable amount that still

includes the small-scale dike details needed for au-
tomatic classification. Our edge detection approach
was able to reliably detect dominant sea dikes where
the surrounding terrain is relatively homogeneous.
However, smaller river dikes in more urban areas re-
main a challenge due to distorting features such as
elevated roads, bridges and large constructions. In
these cases, finding appropriate parameter values for
Gaussian smoothing and thresholding is non-trivial
and needs further optimisation.

Flooding analysis had to be limited to prelimi-
nary flood plain prediction as more sophisticated sim-
ulations based on dike breaches would require not
only highly accurate detection of fully connected dike
systems but also deeper studying of flood dynamics.

Considering the discussed challenges, this project
has great potential for further research. Future work
might focus on three different aspects. First, special
effort should be made to build tools for distributed
point-cloud processing, and implementation should
be moved to a up-to-date cluster architecture which
facilitates full functionality of geospatial Spark li-
braries like Geotrellis and GeoSpark. Second, more
time should be spent on optimising automatic de-
tection of dike systems. Intelligent parameter tun-
ing, incorporation of machine learning based on local
point features or deep learning appraoches are con-
ceivable. And third, with improved outcomes based
on the first two aspects, it is desirable to apply true
flood simulations to the geospatial models, includ-
ing water flow modelling, susceptablity of dikes and
more. Insights from such studies are expected to be
vital for the Dutch and the existence of their country,
as improvements in flood defense rely more and more

10



on high-throughput computational simulations.
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Appendix A Work Distribution

Table 1 Who worked an which parts of this project?

Preprocessing Maki Gradecak
DEM Generation Fiona Lippert
Dike Detection Fiona Lippert
Visualization Maki Gradecak and Peter Petkanic
Report Maki Gradecak and Fiona Lippert
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