Large-Scale Data Engineering

SQL on Big Data
THE DEBATE: DATABASE SYSTEMS VS MAPREDUCE
A major step backwards?

- MapReduce is a step backward in database access
 - Schemas are good
 - Separation of the schema from the application is good
 - High-level access languages are good
- MapReduce is poor implementation
 - Brute force and only brute force (no indexes, for example)
- MapReduce is not novel
- MapReduce is missing features
 - Bulk loader, indexing, updates, transactions…
- MapReduce is incompatible with DMBS tools
Known and unknown unknowns

• Databases only help if you know what questions to ask
 – “Known unknowns”
• What’s if you don’t know what you’re looking for?
 – “Unknown unknowns”
ETL: redux

- Often, with noisy datasets, ETL is the analysis!
- Note that ETL necessarily involves brute force data scans
- L, then E and T?
Structure of Hadoop warehouses

Don’t normalize!

Source: Wikipedia (Star Schema)
Relational databases vs. MapReduce

• Relational databases:
 – Multipurpose: analysis and transactions; batch and interactive
 – Data integrity via ACID transactions
 – Lots of tools in software ecosystem (for ingesting, reporting, etc.)
 – Supports SQL (and SQL integration, e.g., JDBC)
 – Automatic SQL query optimization

• MapReduce (Hadoop):
 – Designed for large clusters, fault tolerant
 – Data is accessed in “native format”
 – Supports many query languages
 – Programmers retain control over performance
 – Open source

Source: O’Reilly Blog post by Joseph Hellerstein (11/19/2008)
Philosophical differences

• Parallel relational databases
 – Schema on write
 – Failures are relatively infrequent
 – “Possessive” of data
 – Mostly proprietary

• MapReduce
 – Schema on read
 – Failures are relatively common
 – In situ data processing
 – Open source
MapReduce vs. RDBMS: grep

SELECT * FROM Data WHERE field LIKE '%XYZ%';

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.
SELECT pageURL, pageRank
FROM Rankings WHERE pageRank > X;

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.
MapReduce vs. RDBMS: aggregation

```
SELECT sourceIP, SUM(adRevenue)
FROM UserVisits GROUP BY sourceIP;
```

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.
MapReduce vs. RDBMS: join

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.
Why?

• Schemas are a good idea
 – Parsing fields out of flat text files is slow
 – Schemas define a contract, decoupling logical from physical

• Schemas allow for building efficient auxiliary structures
 – Value indexes, join indexes, etc.

• Relational algorithms have been optimised for the underlying system
 – The system itself has complete control of performance-critical decisions
 – Storage layout, choice of algorithm, order of execution, etc.
Storage layout: row vs. column stores

Row store

Column store
Storage layout: row vs. column stores

• Row stores
 – Easy to modify a record
 – Might read unnecessary data when processing

• Column stores
 – Only read necessary data when processing
 – Tuple writes require multiple accesses
Advantages of column stores

• Read efficiency
 – If only need to access a few columns, no need to drag around the rest of the values

• Better compression
 – Repeated values appear more frequently in a column than repeated rows appear

• Vectorised processing
 – Leveraging CPU architecture-level support

• Opportunities to operate directly on compressed data
 – For instance, when evaluating a selection; or when projecting a column
Why not in Hadoop?

No reason why not

Source: He et al. (2011) RCFile: A Fast and Space-Efficient Data Placement Structure in MapReduce-based Warehouse Systems. ICDE.
Some small steps forward

• MapReduce is a step backward in database access:
 – Schemas are good ✔
 – Separation of the schema from the application is good ✔
 – High-level access languages are good ?

• MapReduce is poor implementation
 – Brute force and only brute force (no indexes, for example) ✔

• MapReduce is not novel ✔

• MapReduce is missing features
 – Bulk loader, indexing, updates, transactions… ?

• MapReduce is incompatible with DMBS tools

Source: Blog post by DeWitt and Stonebraker
MODERN SQL-ON-HADOOP SYSTEMS
Analytical Database Systems

<table>
<thead>
<tr>
<th>Parallel (MPP)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Teradata</td>
<td>Paraccel</td>
</tr>
<tr>
<td>Pivotal</td>
<td></td>
</tr>
<tr>
<td>Vertica</td>
<td>Redshift</td>
</tr>
<tr>
<td>Oracle (IMM)</td>
<td>Netteza</td>
</tr>
<tr>
<td>DB2-BLU</td>
<td>InfoBright</td>
</tr>
<tr>
<td>SQLserver</td>
<td>Vectorwise</td>
</tr>
<tr>
<td>(columnstore)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>open source:</th>
</tr>
</thead>
<tbody>
<tr>
<td>MySQL</td>
</tr>
<tr>
<td>MonetDB</td>
</tr>
</tbody>
</table>
SQL-on-Hadoop Systems

Open Source:
• Hive (HortonWorks)
• Impala (Cloudera)
• Drill (MapR)
• Presto (Facebook)

Commercial:
• HAWQ (Pivotal)
• Vortex (Actian)
• Vertica Hadoop (HP)
• BigQuery (IBM)
• DataBricks
• Splice Machine
• CitusData
• InfiniDB Hadoop
“SQL on Hadoop” Systems

- High
- Low

SQL Maturity (performance+features)

Hadoop Integration

- "outside"
- "wrapped legacy"
- "from scratch"

Native

Low
Analytical DB engines for Hadoop

storage
- **columnar storage** + compression
- table partitioning / distribution
- exploiting correlated data

query-processor
- CPU-efficient query engine (vectorized or JIT codegen)
- many-core ready
- rich SQL (+authorization+..)

system
- batch update infrastructure
- scaling with multiple nodes
- MetaStore & file formats
- YARN & elasticity
Columnar Storage

row-store

| Date | Store | Product | Customer | Price |

- easy to add/modify a record
- might read in unnecessary data

column-store

| Date | Store | Product | Customer | Price |

- only need to read in relevant data
- tuple writes require multiple accesses

Query on data and store

Inserting a new record

=> suitable for read-mostly, read-intensive, large data repositories
Analytical DB engines for Hadoop

Storage
- Columnar storage + compression
- Table partitioning / distribution
- Exploiting correlated data

Query-Processor
- CPU-efficient query engine (vectorized or JIT codegen)
- Many-core ready
- Rich SQL (+authorization+..)

System
- Batch update infrastructure
- Scaling with multiple nodes
- MetaStore & file formats
- YARN & elasticity
Columnar Compression

• Trades I/O for CPU
 – A winning proposition currently
 – Even trading RAM bandwidth for CPU wins
 • 64 core machines starved for RAM bandwidth
• Additional column-store synergy:
 – Column store: data of the same distribution close together
 • Better compression rates
 • Generic compression (gzip) vs Domain-aware compression
 – Synergy with vectorized processing (see later)
 compress/decompress/execution, SIMD
 – Can use extra space to store multiple copies of data in different sort orders (see later)
Run-length Encoding

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Product ID</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Q1</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Q1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Q1</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Q1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Q1</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Q1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Q2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Q2</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Q2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Q2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Example
- **Quarter**: Q1
 - Product ID: 1
 - Price: 5
- **Quarter**: Q2
 - Product ID: 1
 - Price: 3

Example 2
- **Quarter**: Q1
 - Product ID: 1
 - Price: 5
- **Quarter**: Q2
 - Product ID: 1
 - Price: 3

Product ID Encoding

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Product ID</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q1, 1, 300)</td>
<td>(1, 1, 5)</td>
<td>5</td>
</tr>
<tr>
<td>(Q2, 301, 350)</td>
<td>(2, 6, 2)</td>
<td>7</td>
</tr>
<tr>
<td>(Q3, 651, 500)</td>
<td>(1, 301, 3)</td>
<td>2</td>
</tr>
<tr>
<td>(Q4, 1151, 600)</td>
<td>(2, 304, 1)</td>
<td>9</td>
</tr>
</tbody>
</table>

Price Encoding

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Product ID</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q1, 1, 300)</td>
<td>(1, 1, 5)</td>
<td>5</td>
</tr>
<tr>
<td>(Q2, 301, 350)</td>
<td>(2, 6, 2)</td>
<td>7</td>
</tr>
<tr>
<td>(Q3, 651, 500)</td>
<td>(1, 301, 3)</td>
<td>2</td>
</tr>
<tr>
<td>(Q4, 1151, 600)</td>
<td>(2, 304, 1)</td>
<td>9</td>
</tr>
</tbody>
</table>
Bitmap Encoding

- For each unique value, \(v \), in column \(c \), create bit-vector \(b \)
 - \(b[i] = 1 \) if \(c[i] = v \)
- Good for columns with few unique values
- Each bit-vector can be further compressed if sparse

<table>
<thead>
<tr>
<th>Product ID</th>
<th>ID: 1</th>
<th>ID: 2</th>
<th>ID: 3</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Dictionary Encoding

- For each unique value create dictionary entry
- Dictionary can be per-block or per-column
- Column-stores have the advantage that dictionary entries may encode multiple values at once

```
Quarter
Q1
Q2
Q4
Q1
Q3
Q1
Q1
Q2
Q4
Q3
```

```
Quarter
0 1 3 0 2 0 0 1 3 2
```

```
Dictionary
0: Q1
1: Q2
2: Q3
3: Q4
```
Differential Encoding

- Encodes values as b bit offset from previous value
- Special escape code (just like frame of reference encoding) indicates a difference larger than can be stored in b bits
 - After escape code, original (uncompressed) value is written
- Performs well on columns containing increasing/decreasing sequences
 - inverted lists
 - timestamps
 - object IDs
 - sorted / clustered columns

```
"Improved Word-Aligned Binary Compression for Text Indexing" Ahn, Moffat, TKDE’06
```
Heavy-Weight Compression Schemes

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Decompression Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>BZIP</td>
<td>10 MB/s</td>
</tr>
<tr>
<td>ZLIB</td>
<td>80 MB/s</td>
</tr>
<tr>
<td>LZO</td>
<td>300 MB/s</td>
</tr>
</tbody>
</table>

- Modern disks (SSDs) can achieve > 1GB/s
- 1/3 CPU for decompression → 3GB/s needed

→ Lightweight compression schemes are better
→ Even better: operate directly on compressed data
Operating Directly on Compressed Data

Examples

- \(\text{SUM}_i(\text{rle-compressed column}[i]) \rightarrow \text{SUM}_g(\text{count}[g] \times \text{value}[g]) \)
- \((\text{country} == \text{“Asia”}) \rightarrow \text{countryCode} == 6\)

Benefits:

- I/O - CPU tradeoff is no longer a tradeoff (CPU also gets improved)
- Reduces memory–CPU bandwidth requirements
- Opens up possibility of operating on multiple records at once
Analytical DB engines for Hadoop

storage
- columnar storage + compression
- table partitioning / distribution
- exploiting correlated data

query-processor
- CPU-efficient query engine (vectorized or JIT codegen)
- many-core ready
- rich SQL (+authorization+..)

system
- batch update infrastructure
- scaling with multiple nodes
- MetaStore & file formats
- YARN & elasticity
Table Partitioning and Distribution

- data is spread based on a Key
 - Functions: Hash, Range, List
- “distribution”
 - Goal: parallelism
 - give each compute node a piece of the data
 - each query has work on every piece (keep everyone busy)
- “partitioning”
 - Goal: data lifecycle management
 - Data warehouse e.g. keeps last six months
 - Every night: load one new day, drop the oldest partition
 - Goal: improve access pattern
 - when querying for May, drop Q1, Q3, Q4 (“partition pruning”)

Which kind of function would you use for which method?
Data Placement in Hadoop

• Each node writes the partitions it owns
 – Where does the data end up, really?
• HDFS default block placement strategy:
 – Node that initiates writes gets first copy
 – 2nd copy on the same rack
 – 3rd copy on a different rack
• Rows from the same record should on the same node
 – Not entirely trivial in column stores
 • Column partitions should be co-located
 – Simple solution:
 • Put all columns together in one file (RCFILE, ORCFILE, Parquet)
 – Complex solution:
 • Replace the default HDFS block placement strategy by a custom one
Popular File Formats in Hadoop

• Good old CSV
 – Textual, easy to parse (but slow), better compress it!
• Sequence Files
 – Binary data, faster to process
• RCfile
 – Hive first attempt at column-store
• ORCfile
 – Columnar compression, MinMax
• Parquet
 – Proposed by Twitter and Cloudera Impala
 – Like ORCfile, no MinMax
Example: Parquet Format

Object model (memory)

Object models are in-memory representations of data.

Object model converters

Object model converters are part of the "parquet-mr" project. They are responsible from mapping between external object models and Parquet's internal data types.

Storage format (disk)

On-disk, Parquet data is in binary form using its own formally-specified columnar file format.

Parquet file format

- A row group stores all the column values for a range of rows in a columnar layout.
- A column chunk contain all the values for an individual column in the row group.
- The footer contains schema details, object model metadata and metadata about the row groups and columns.
Example: Parquet Format

Table Format

```
<table>
<thead>
<tr>
<th>Column</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>owner</td>
<td>string</td>
</tr>
<tr>
<td>ownerPhoneNumbers</td>
<td>string</td>
</tr>
<tr>
<td>contacts.name</td>
<td>string</td>
</tr>
<tr>
<td>contacts.phoneNumber</td>
<td>string</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>AddressBook</th>
</tr>
</thead>
<tbody>
<tr>
<td>owner</td>
</tr>
<tr>
<td>ownerPhoneNumbers</td>
</tr>
<tr>
<td>contacts</td>
</tr>
<tr>
<td>name</td>
</tr>
<tr>
<td>phoneNumber</td>
</tr>
</tbody>
</table>
```

http://dataera.wordpress.com
http://linkedin.com/in/yuechen2
HCatalog (‘‘Hive MetaStore’’)

De-facto Metadata Standard on Hadoop

• Where are the tables? What do they contain? How are they Partitioned?
• Can I read from them? Can I write to them?

SQL-on-Hadoop challenges:

• Reading-writing many file formats
• Opening up the own datastore to foreign tools that read from it

HCatalog makes UDFs less important!
Analytical DB engines for Hadoop

storage
- columnar storage + compression
- table partitioning / distribution
- exploiting correlated data

query-processor
- CPU-efficient query engine (vectorized or JIT codegen)
- many-core ready
- rich SQL (+authorization+..)

system
- batch update infrastructure
- scaling with multiple nodes
- MetaStore & file formats
- YARN & elasticity
Exploiting Natural Order

- Data is often naturally ordered
 - very often, on date
- Data is often correlated
 - orderdate/paydate/shipdate
 - marketing campaigns/date
 - ..correlation is everywhere
 - ..hard to predict

Zone Maps
- Very sparse index
- Keeps MinMax for every column
- Cheap to maintain
- Just widen bounds on each modification

Q: key BETWEEN 13 AND 15?

```
<table>
<thead>
<tr>
<th>zone</th>
<th>KEY</th>
<th>acctno</th>
<th>name</th>
<th>balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>zone 0</td>
<td>00</td>
<td>019</td>
<td>Isabella</td>
<td>269.38</td>
</tr>
<tr>
<td></td>
<td>01</td>
<td>038</td>
<td>Jackson</td>
<td>914.11</td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>072</td>
<td>Lucas</td>
<td>346.61</td>
</tr>
<tr>
<td></td>
<td>03</td>
<td>156</td>
<td>Sophia</td>
<td>266.55</td>
</tr>
<tr>
<td></td>
<td>04</td>
<td>153</td>
<td>Mason</td>
<td>850.90</td>
</tr>
<tr>
<td></td>
<td>05</td>
<td>282</td>
<td>Ethan</td>
<td>521.60</td>
</tr>
<tr>
<td></td>
<td>06</td>
<td>389</td>
<td>Emily</td>
<td>647.38</td>
</tr>
<tr>
<td></td>
<td>07</td>
<td>314</td>
<td>Lily</td>
<td>119.40</td>
</tr>
<tr>
<td>zone 1</td>
<td>08</td>
<td>332</td>
<td>Chloe</td>
<td>526.08</td>
</tr>
<tr>
<td></td>
<td>09</td>
<td>302</td>
<td>Emma</td>
<td>497.19</td>
</tr>
<tr>
<td>zone 2</td>
<td>10</td>
<td>533</td>
<td>Aiden</td>
<td>22.03</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>592</td>
<td>Ava</td>
<td>140.67</td>
</tr>
<tr>
<td>zone 3</td>
<td>12</td>
<td>808</td>
<td>Mia</td>
<td>383.69</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>896</td>
<td>Jacob</td>
<td>899.41</td>
</tr>
</tbody>
</table>
```
Analytical DB engines for Hadoop

storage
- columnar storage + compression
- table partitioning / distribution
- exploiting correlated data

query-processor
- CPU-efficient query engine (vectorized or JIT codegen)
- many-core ready
- rich SQL (+authorization+..)

system
- batch update infrastructure
- scaling with multiple nodes
- MetaStore & file formats
- YARN & elasticity
DBMS Computational Efficiency?

TPC-H 1GB, query 1

- selects 98% of fact table, computes net prices and aggregates all

- Results:
 - C program: ?
 - MySQL: 26.2s
 - DBMS “X”: 28.1s

“MonetDB/X100: Hyper-Pipelining Query Execution” Boncz, Zukowski, Nes, CIDR’05
DBMS Computational Efficiency?

TPC-H 1GB, query 1

- selects 98% of fact table, computes net prices and aggregates all

- Results:
 - C program: 0.2s
 - MySQL: 26.2s
 - DBMS “X”: 28.1s

“MonetDB/X100: Hyper-Pipelining Query Execution” Boncz, Zukowski, Nes, CIDR’05
How Do Query Engines Work?

SELECT id, name
 (age-30)*50 AS bonus
FROM employee
WHERE age > 30
How Do Query Engines Work?

Operators

Iterator interface
- `open()`
- `next()`: tuple
- `close()`
How Do Query Engines Work?

Primitives

Provide computational functionality

All arithmetic allowed in expressions, e.g. Multiplication

mult(int,int) \rightarrow int
Observations:

“Vectorized In Cache Processing”

vector = array of ~100

processed in a tight loop

CPU cache Resident

“MonetDB/X100: Hyper-Pipelining Query Execution” Boncz, Zukowski, Nes, CIDR’05
Observations:

`next()` called much less often \(\rightarrow\) more time spent in primitives less in overhead

CPU Efficiency depends on “nice” code
- out-of-order execution
- few dependencies (control,data)
- compiler support

Compilers like simple loops over arrays
- loop-pipelining
- automatic SIMD
Observations:

next() called much less often ➔ more time spent in primitives less in overhead

<table>
<thead>
<tr>
<th>CPU Efficiency depends on “nice” code</th>
</tr>
</thead>
<tbody>
<tr>
<td>- out-of-order execution</td>
</tr>
<tr>
<td>- few dependencies (control,data)</td>
</tr>
<tr>
<td>- compiler support</td>
</tr>
</tbody>
</table>

Compilers like simple loops over arrays

- loop-pipelining
- automatic SIMD

```
for(i=0; i<n; i++)
res[i] = (col[i] > x)
```

```
for(i=0; i<n; i++)
res[i] = (col[i] - x)
```

```
for(i=0; i<n; i++)
res[i] = (col[i] * x)
```
Varying the Vector size

Less and less iterator.next() and primitive function calls ("interpretation overhead")
Varying the Vector size

Vectors start to exceed the CPU cache, causing additional memory traffic

MonetDB/X100: Hyper-Pipelining Query Execution “ Boncz, Zukowski, Nes, CIDR’05

VLDB 2009 Tutorial
Systems That Use Vectorization

- Actian Vortex (Vectorwise-on-Hadoop)
- Hive, Drill

Vectorization

- Drill operates on more than one record at a time
 - Word-sized manipulations
 - SIMD instructions
 - GCC, LLVM and JVM all do various optimizations automatically
 - Manually code algorithms
- Logical Vectorization
 - Bitmaps allow lightning fast null-checks
 - Avoid branching to speed CPU pipeline
Analytical DB engines for Hadoop

storage
- columnar storage + compression
- table partitioning / distribution
- exploiting correlated data

query-processor
- CPU-efficient query engine (vectorized or JIT codegen)
- many-core ready
- rich SQL (+authorization+..)

system
- batch update infrastructure
- scaling with multiple nodes
- MetaStore & file formats
- YARN & elasticity
Analytical DB engines for Hadoop

storage
- columnar storage + compression
- table partitioning / distribution
- exploiting correlated data

query-processor
- CPU-efficient query engine (vectorized or JIT codegen)
- many-core ready
- analytical SQL (windowing)

system
- batch update infrastructure
- scaling with multiple nodes
- MetaStore & file formats
- YARN & elasticity
Batch Update Infrastructure (Vertica)

Challenge: hard to update columnar compressed data

- **Write Optimized Store (WOS)**
 - Memory based
 - Unsorted / Uncompressed
 - Segmented
 - Low latency / Small quick inserts

- **Read Optimized Store (ROS)**
 - On disk
 - Sorted / Compressed
 - Segmented
 - Large data loaded direct

TUPLE MOVER
Asynchronous Data Transfer

Trickle Load
Batch Update Infrastructure (Hive)

Challenge: HDFS read-only + large block size

Merge During Query Processing
Analytical DB engines for Hadoop

storage
- columnar storage + compression
- table partitioning / distribution
- exploiting correlated data

query-processor
- CPU-efficient query engine (vectorized or JIT codegen)
- many-core ready
- rich SQL (+authorization+..)

system
- batch update infrastructure
- scaling with multiple nodes
- MetaStore & file formats
- YARN & elasticity
SQL-99 OLAP Extensions

• ORDER BY .. PARTITION BY
 – window specifications inside a partition
 • first_value(), last_value(), …
 – Rownum(), dense_rank(), …

```sql
SELECT empno, deptno, sal, 
  AVG(sal) OVER (PARTITION BY deptno) AS avg_dept_sal 
FROM emp;
```

<table>
<thead>
<tr>
<th>EMPNO</th>
<th>DEPTNO</th>
<th>SAL</th>
<th>AVG_DEPT_SAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>7782</td>
<td>10</td>
<td>2450</td>
<td>2916.66667</td>
</tr>
<tr>
<td>7839</td>
<td>10</td>
<td>5000</td>
<td>2916.66667</td>
</tr>
<tr>
<td>7934</td>
<td>10</td>
<td>1300</td>
<td>2916.66667</td>
</tr>
<tr>
<td>7566</td>
<td>20</td>
<td>2975</td>
<td>2175</td>
</tr>
<tr>
<td>7902</td>
<td>20</td>
<td>3000</td>
<td>2175</td>
</tr>
<tr>
<td>7876</td>
<td>20</td>
<td>1100</td>
<td>2175</td>
</tr>
<tr>
<td>7369</td>
<td>20</td>
<td>800</td>
<td>2175</td>
</tr>
<tr>
<td>7788</td>
<td>20</td>
<td>3000</td>
<td>2175</td>
</tr>
<tr>
<td>7521</td>
<td>30</td>
<td>1250</td>
<td>1566.66667</td>
</tr>
<tr>
<td>7844</td>
<td>30</td>
<td>1500</td>
<td>1566.66667</td>
</tr>
<tr>
<td>7499</td>
<td>30</td>
<td>1600</td>
<td>1566.66667</td>
</tr>
<tr>
<td>7900</td>
<td>30</td>
<td>950</td>
<td>1566.66667</td>
</tr>
<tr>
<td>7698</td>
<td>30</td>
<td>2850</td>
<td>1566.66667</td>
</tr>
<tr>
<td>7658</td>
<td>30</td>
<td>1250</td>
<td>1566.66667</td>
</tr>
</tbody>
</table>
Analytical DB engines for Hadoop

storage
- columnar storage + compression
- table partitioning / distribution
- exploiting correlated data

query-processor
- CPU-efficient query engine (vectorized or JIT codegen)
- **many-core ready**
- rich SQL (+authorization+..)

system
- batch update infrastructure
- **scaling with multiple nodes**
- MetaStore & file formats
- YARN & elasticity
Analytical DB engines for Hadoop

storage
- columnar storage + compression
- table partitioning / distribution
- exploiting correlated data

query-processor
- CPU-efficient query engine (vectorized or JIT codegen)
- many-core ready
- rich SQL (+authorization+..)

system
- batch update infrastructure
- scaling with multiple nodes
- MetaStore & file formats
- YARN & elasticity
YARN possibilities and limitations

Containers are used to assign:

- cores
- RAM

Limitations:

- no support for disk I/O, network (thrashing still possible)
- Long-running systems (e.g. DBMS) may want to adjust cores and RAM over time depending on workload ➔ “elasticity”
Conclusion

- SQL-on-Hadoop area is very active
 - many open-source and commercial initiatives
- There are many design dimensions
 - All design dimensions of analytical database systems
 - Column storage, compression, vectorization/JIT, MinMax pushdown, partitioning, parallel scaling, update handling, SQL99, ODBC/JDBC APIs, authorization
 - Hadoop design dimensions
 - HCatalog support, reading from and getting read from other Hadoop tools (/writing to..), file format support, HDFS locality, YARN integration
SQL IN THE CLOUD
- BUT NOT ON HADOOP
Amazon Redshift

• Cloud version of ParAccel, a parallel database
 – ParAccel is hard to manage, maintain
 – Redshift invested in simplying management, using web interface
 • No knobs, kind of elastics, User Defined Functions (python)
 • Highly performant, but storage more expensive than S3 (local disks)
Snowflake

- Brand-new, from-scratch system that works in AWS – RedShift competitor
- Stores data on S3 (cheap!) but caches it in local disks for performance
- Highly elastic, supports UDFs using JavaScript, table snapshots ("clone table")
- Puts JSON documents in automatically recognized table format (queryable)