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1 INTRODUCTION

The Bitcoin, currently the world’s most popular virtual currency,
released in 2009, relies on the revolutionary technology of the
BlockChain[1], a distributed, public ledger, which records transac-
tions between different parties in a secure, efficient, verifiable and
permanent manner.

Unlike traceable paper cash or digital currency, cryptocurrency
keeps the identity of its owner hidden by means of periodically gen-
eratic different public keys for the owner’s cryptowallet. However,
if the digital cryptocurrency wallet is lost or stolen, it is hard or
even impossible to recover or replace. Furthermore, cryptocurren-
cies’ security and trust are derived from mathematical properties
based on established and trusted cryptographic primitives, unlike
physical or chemical properties of paper money.

The Bitcoin, as stated earlier, is decentralized, distributed and
voluntary. Unlike traditional money, cryptocurrencies are easier to
secure and transport anywhere in the world, triggering a growing
number of entrepreneurs to accept or base new business concepts
on cryptocurrencies.

Bitcoin has no central authority for issuing and verification.
The Bitcoin Foundation! (founded in 2012) is the recognized non-
profit organization coordinating the Bitcoin community towards
standardizing the use of Bitcoin and promoting its worldwide use.

As opposed to other electronic currencies, cryptocurrencies are
immune to sovereign censorship, shutdown, confiscation, and even
inflation or - in light of more or less recent economic events - bank
defaults.

The Bitcoin itself is a cryptoledger protocol based on the
BlockChain, a growing general public ledger of transactions which
are cryptographically signed.

Given the public nature of the BlockChain, anyone may access
the complete history of transactions since the Bitcoin’s inception
eight years ago. Having access to all the transaction history, which
is otherwise anonymized by making use of a tokenization algorithm
which generates different public keys for every user, we can , at
any moment in time, analyze the data and extract vital information
with regards to transactional patterns or trends.

The BlockChain holds the history of all past transactions orga-
nized into blocks. Each block contains, among other information,
a record of some or all recent transactions, and a reference to the
block that came immediately before it. The process of "mining" is
the process of computing the find an answer to very difficult and
computationally expensive mathematical problem which is unique
to each block. Once this answer is found a new block is created
and added to the BlockChain. The validity of the newly created
block now can be effortlessly verified by other miners and the trans-
actions inside will be approved. Miners’ incentive are the award
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of newly-minted bitcoins or transaction fees for successfully find-
ing blocks.The collective computing power of the miners provides
security and trust to the Bitcoin.

A transaction consists of one or multiple input addresses (a
reference to an output from a previous transaction), and one or two
outputs (one/multiple outputs for the recipients of the transaction,
and one for any eventual change the sender receives if the total
amount of the input transactions exceeds the desired amount to
transfer). This is known as a ’change’ address and is due to the fact
that each output from one transaction can only ever be referenced
once by an input of a subsequent transaction, the entire combined
input value needs to be sent in an output if you don’t want to lose
it.

All transactions in the ledger are public. However, they are not
tied to anyone’s real identity by default, although anonimity and
traceability are user-defined, as counter parties can be as anonymous
as they choose to be.

Transferring bitcoins (units of account), does not entail physi-
cally moving an object from a source to its destination, but rather
consists of adding a new, publicly accepted transaction entry to the
BlockChain ledger. Once added, transactions may never be removed
or modified.

For the scope of this paper, we have analyzed the temporal graph
produced by the BlockChain in order to provide information visu-
alization according to several metrics. Visualizing information may
come in aid of identifying trends and patterns in the course of such
analysis and when exploring the Bitcoin blocks and transactions.
In section 2 we are to explore what others did in the field of work-
ing with the bitcoin blockchain, in section 3 we are to define our
research question, in section 4 will describe what technologies we
used to accomplish our task and what is the project setup, in section
5 we are to give more technical insight followed by our results. We
will end with suggestions for future work and conclusion.

2 RELATED WORK

Since the Bitcoin ledger is public and the protocol has been used
for approximately eight years at the date of the present paper, it is
not unexpected that a plenitude of research has been carried out
on the topic of cryptocurrencies, or the Bitcoin itself specifically.

McGinn et al.[2] were motivated by the numerous bottom-up
approaches of derriving useful information from the BlockChain
(such as analysis of individual addresses), and limited number of
top-down approaches at the time, and have sought to generate a
system-wide visualization in order to aid explaining the Bitcoin
to the general public and aid in explorative analyses patterns and
behaviours in transaction data.

In their approach to visualizing transactions, McGinn et al. have
made the following decisions:



Figure 1: McGinn et al’s visualization of a chain of spends,
indicating a coinbase transaction coloured in red, and blue
outputs from one transaction becoming orange outputs in
the next.

Figure 2: McGinn et al’s visualization of a transaction con-
sisting of five equal input transactions (denoted by the or-
ange colour and equal sizes of the inputs) originating from
one source address (denoted by the gray line connecting the
inputs) and one blue-coloured output.

o Transactions have been marked in a dark gray colour, with
all transactions having a fixed, equal size, representing the
miner’s reward.

o Inputs of transactions are coloured orange, and their size is
relative to the amount of the input transaction.

e Outputs are coloured blue, and their size is also relative to
the amount.

o Addresses are identified by gray lines connecting inputs and
outputs of transactions.

On a larger scale, McGinn et al’s visualization takes a globular
shape. This visualization already provides insight into transaction
patterns in the BlockChain. As can be seen in 3, we can observe a
payout system, and what is believed to be a coin-tumbling service.

Applying techniques of information visualization on the Bit-
coin transaction graph may also come in aid to forensics analysis.
McGinn et al’s approach eases the identification of possible money-
laundering operations, where a very large amount of bitcoins is
transfered to one account which spreads and shuffles the money
around. The need for visualizing the data comprised in the Bit-
coin transaction chain and the benefits which incur are, therefore,
undoubted.

The Yu et al [3] paper provided insight how to proceed with the
project as the authors explore the network structure, devise their
own community detection algorithm from scratch, and employ dif-
ferent techniques for user grouping, whereas the Prat-Pérez at el
[4] paper provides knowledge of what algorithms can be used for
community-like analysis. In the above paper they use algorithms
such as Clustering Coefficient, TPR, Bridge Ratio (d) Diameter and
Conductance. The Ron at el [5] provides for quantitative analysis
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Figure 3: McGinn et al’s high-resolution visualization of a
transaction block (A), small and high value transactions (B),
connected Bitcoin addresses (C), a payout system (D), and
a disconnected component believed to be a service which
moves money rapidly between addresses in order to obfus-
cate sources and destinations of transactions (E).

of the full bitcoin transaction graph. Their analysis is very compre-
hensive as they provide numerous insight about the transactions,
BTC flows, addresses and, bitcoin exchanges etc.

3 RESEARCH QUESTIONS

During the course of our experiments performed on the BlochChain
data acquired, we seek to learn about the evolution on the BlockChain
over time, as the Bitcoin transactions form a temporal graph.



The end-goal of our project is the visualization of all the data
collected in the form of a Web page in order to provide an insightful
manner of viewing the evolution of the transaction graph.

Our primary research question is, therefore:

e Can we provide better insight into the evolution of the Bit-
coin BlockChain by studying the graph structure through
information visualization techniques We will provide possi-
ble insights and measurements, among of which clustering,
community detection and centrality and study the blocks
and the transactions inside.

Furthermore, we are seek to parse the data in a reliable and timely
manner. The collection of blocks we have analyzed adds up to 130GB
of data which needs to be parsed and processed. Therefore, another
objective of our project is finding the appropriate technology and
tools which will allow us to easily parse, filter and process the
BlockChain transaction data.

Therefore, our second research question is:

e Which tools and technologies can we appropriately make
use of in order to process large datasets such as the Bitcoin
BlockChain in an efficient and flexible manner?

4 PROJECT SETUP
4.1 Data collection

In the scope of this paper, we have received access to approximately
130GB-worth of compressed data encompassing part of the Bitcoin
transaction history. The data holds Bitcoin transactions spanning
from 2009 until 2016. The complete set of files has been downloaded
to the SURFsara? cluster, where our experiments were carried.

4.2 Technologies used

One of the objectives of our experiments was to find the appropriate
technology and tools in order to parse, filter and process our large
dataset efficiently and reliably.

For the purpose of our project, we have identified and made use
of several tools for different tasks during the experiments.

We had begun with Java and Apache Spark?, the latter being
chosen over Hadoop MapReduce for the task of analyzing multiple
large datasets, not only due to its novelty, but also the emphasis
placed on speed and flexibility.

Moreover, since the BlockChain transaction data described events
occurring over time, it makes sense to describe it as a temporal
graph. Naturally, we have opted for Spark’s GraphX® API in order
to map our data as a graph. GraphX also provides several graph
algorithms, such as PageRank, identifying connected components,
strongly connected components or triangle count, which we have
used as metrics for getting insight into the data at hand. We shall
describe the metrics later on in the paper.

Since GraphX Java API is still in Alpha Version, we choose to
programme in Scala® and we had to add it as a dependency to
our project. Java is a verbose programming language and one of
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the many benefits of Scala is to aid in boilerplate reduction and it
further simplifies our code.

As of March 2016, Spark team introduces GraphFrames . It
support the full set of algorithms available in GraphX. The key
difference is that GraphFrames are based upon Spark DataFrames,
rather than RDDs, and therefore benefit from it’s scalability and
high performance.Also, GraphFrames allow users to phrase queries
in the familiar, powerful APIs of Spark SQL and DataFrames.We
interleave both graph libraries for best results.

Furthermore, in order to run queries on the data run inside
the Spark program, we have used the Spark SQL® module, which
allows querying using semantics of the well-known Structured
Query Language (SQL).

Moreover, we included the hadoopcryptoledger® library into our
project. This is an open-source library which aids the task of ana-
lyzing/parsing CryptoLedgers such as the Bitcoin BlockChain, and
integrates very well with our selected technologies.

Finally, for reaching our end-goal of providing a visual manner
of obtaining insight into the BlockChain transaction graph, we have
plotted out results in a Web page. For this purpose, we have used
common technologies such as HTML and JavaScript. Specifically for
the task of plotting the charts, we have used a number of amCharts!®
JavaScript libraries. The library is extremely interactive, all charts
can be zoomed-in or panned, annotated, downloaded/saved and
exported in various formats or printed. Individual data categories,
can be turned on/off for easy exploration in some graph types.

5 EXPERIMENTS

5.1 Implementation

In our implementation cycle we set up two development environ-
ments. A single machine local set up which we used for testing and
debugging purposes and a cluster environment where we ran the
jobs on the fully intended data range. This division would save us
the whole hassle to run jobs on the cluster during rapid develop-
ment and testing, that is packaging the jar, logging to the logging
node, interacting with the HDFS and submitting jobs. In addition,
starting a cluster job can take up to 2 minutes, if the job is not put
in a queue, whereas a local job would start almost instantly. Eclipse
IDE integrated well with what we used, the pre-build Apache Spark
release for Hadoop 2.7 1! and we had the convenience to run our
jobs directly from Eclipse. For dependency management and jar
building we used Maven 2 with the *maven-assembly-plugin’ for
dependency compilation and the ’scala-maven-plugin’ for scala
compilation. In addition we had to integrate Eclipse with Scala by
installing the JDT Weaving plug-in 13 and Eclipse with Maven by
installing M2Eclipse Eclipse plug-in 4. It is important to match all
dependencies with completable library/Scala versions or there will
be compilation or run-time errors.
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The Bitcoin blockchain network is downloaded and put into
HDEFS. The file is partitioned into 789 blocks which are stored into
different Data Nodes. The file is replicated several times and again
replicated blocks are store in different Data Nodes. In order to load
the data and read transactions and blocks from files in HDFS we
would need to parse the data and set the hadoop file format, input
split, etc. Luckily, the "hadoopcryptoledger’ library already provides
a Bitcoin block input format, which deserializes blocks containing
transactions. The Bitcoin blocks will be put into RDDs. Resilient
Distributed Dataset (RDD) is the main abstraction Spark provides,
which is a collection of elements partitioned across the nodes of
the cluster that can be operated on in parallel.

Next, we would need to understand more in-dept the structure
of the blockchain. The format for blocks as implemented in the
parsing lib is shown in fig. 4. Among the important properties of a
block is the ’time’- when the block was created, hashPrevBlock’ -
the link to the previous block, ’transaction’ - an array containing
all the transactions.

Proof of work in Bitcoin’s mining takes an input the ’hashMarkle-
Root’, ’timestamp’, ’hashPrevBlock’ nounce’ etc. If the output re-
sults in hash is smaller than the target hash you win the block and
the consensus is reached. The ‘nounce’ is a completely random
number between 0 and 2 to the power of 31 which is brute forced
in order to luckily find a hash smaller than the target hash, which
is calculated based on the difficulty.

The ’transactions array’ contains the transactions per block.
Each transaction has a list of input addresses and a list of output
addresses.

-- a
-- version: inte £

-- time: integer ( se)

-- bits: binary se

-- nonce: integer (nullable = false)

-- transactionCounter: long (nullable = false)
-- hashPrevBlock: binary (nullable = false)

-- hashMerkleRoot: binary (nullable = false)
-- transactions: array (nullable = true)
-- element: struct (containsMull = true)

-- version: integer (nullable = false)
nullable = false)
nullable = false)
(nullable = false)
(nullable = false)
-- listOfInputs: array (nullable = false)

-- inCount binary

-- outCounter: binary

-- element: struct (containsNull = true)
-- prevTransactionHash: binary (nullable = false)
-- previousTxOutIndex: long (nullable = false)
-- txInScriptlength: binary (nullable = false)
-- txInScript: binary (nullable = false)
-- seqMo: long (nullable = false)

-- listOfOutputs: array (nullable = false)

-- element: struct (containshull = true)
-- value: long (nullable = false)
-- txOutScriptlength: binary (nullable = false)
-- txOutScript: binary (nullable = false)

Figure 4: Block Format

5.2 Descriptive Statistics

Few descriptive statistics for some global property of the network
over time can be derived solely from the blockchain. The trans-
actions per day, average block size and average transactions
per day were calculated. The .dat files were parsed and loaded
into a spark.sql.DataSet. We though it would be better to shift the
complexity, cumbersomeness etc. of writing map-reduce tasks or
Spark tasks into writing SQL Queries (on top of Spark) for this kind
of analysis. After building the graph the Top 5 addresses with most
inputs/ outputs were found. A discussion of the results is to be
found in the results section.

5.3 Building the graph

To explore further the chain we would like to model the network
in such a way that we can study the relationships/patterns/trends
between the different entities and for such purpose we would need
to transform our data into a graph. Our main goal is to study the
structure of the resulting graph. We have several possibilities
to model the graph shown in Table 1. We choose to proceed with
Address/Address graph. The graphs are all fundamentally different,
they have different nodes, different edges and they encompass dif-
ferent relationships. They also have very different properties, and
as a result no all of them can be used for the same type of analysis.
We have to be very careful of how we are interpreting graphs, and
that we understand the repercussions of the particular graph we
choose for the particular type of analysis. Lets briefly discuss the
two most obvious for our research question.

Transaction/ Transaction graph - Transactions are the vertices
with a directed weighted edge from each input transaction to an out-
put transaction with the value of the transaction being the weight.

Address/Address graph - Addresses are the vertices; the edges
are the transactions that encompass moving of money between
those nodes, or more specifically a directed edge from one source
Bitcoin address to a destination Bitcoin address. Each user can have
unbounded number of addresses and each address most commonly
belongs to a single user. This is the case because every address is
associated with a unique private key. When a user send money
back to itself there will be a self-edge. There will be more than one
edge between two users when multiple transactions between them
occur. There is no 1:1 or 1:n mapping from input to output, but n:m
(all inputs are assigned to all outputs) as a single transaction can
take money from multiple addresses and move it to multiple out-
put address. Our current graph model is in this state. A major
improvement will be to migrate to User graph where a node will
denote public addresses of anonymous individuals or “entities” and
the directed edge represents a particular transaction from a source
address to a target address. Finding the entities is not a straight-
forward method and can be a project on its own. For the sake of
clarity we are to briefly discuss it in the next paragraph.

For a user graph (which is an improved transaction/transaction
graph) a few assumptions must be introduced. Assume that a trans-
action is constructed by a single user and thus that all the inputs
are controlled by the same entity. Pairs of vertices can be connected
with undirected edges, where each edge joins a pair of public keys



Directed | Acyclic | Bipartite

Address/Address
Address/Transaction
Input/Output
Output/Output
Transaction/Transaction

Table 1: Graph Types

that are both inputs to the same transaction and are thus controlled
by the same user. Another heuristic that can be used to combine
users is looking at so called ’change’ addresses [6]. The change
addresses usually stay in control of the user. It is common practice
to generate a new and previously unused address for this change.
If a transaction, thus, has multiple outputs and only one of them is
unused then can be assumed that this is the change address which is
under the control of the sender [7]. The user or entity will consist of
a collection of public key addresses that were used during separate
transactions. Furthermore, the user’s identity can be deanonymized
given publicly available information such as scraped bitcoin forum
users, posted addresses for donation purposes, or publicly known
addresses.

In order to create a Graph object the vertices and edges for our
model must be found. Going through each block, and through each
transaction we would create a tuple for each transaction input with
the destination address, input transaction hash, current transac-
tion hash, current transaction output index. We would create the
vertices being a tuple (vertex Id, Bitcoin Address). To create the
edges we need to determine which input vertex id, refers to which
output vertex id. This is a self join, where ((current Transaction
Hash,current Output Index), identifier) is joined with ((input Trans-
action Hash,current input Index), identifier). Luckily, the hadoop
crypto ledger library provides for such an example. We can now cre-
ate our GraphX object and start running our graph algorithm which
are described in the section below. GraphFrames has an integration
with GraphX via conversions between the two representations and
therefore we can easily create GraphFrames graph.

5.4 General Discussion

The metrics we use for evaluating our graph structure are mostly
iterative algorithms. With the increasing size of the graph we should
pay more attention to performance optimization. According the
the GraphX documentation uncaching may also be necessary for
best performance as intermediate results from previous iterations
will fill up the cache. Though they will eventually be evicted, the
garbage collection will be slowed down by the unnecessary data
stored in memory. An alternative will be to use the Pregel API
which will correctly unpersist intermediate results.

An improvement will be to account for the data locality in the
cluster. Spark applies a *Vertex Cut’ technique in GraphX to distrib-
ute the data throughout the cluster. One have to be very conscious
where the edges and vertices are as operations can vary dramati-
cally in terms of parallelism and data locality depending where you
put your data.

Transactions per Day

Basic Graph Statistics

Top § In/Out Adresses

Page Rank

Figure 5: Visualizations of our applied metrics on the Bit-
coin BlockChain. From top to bottom: the number of trans-
actions per day, core graph statistics, the top 5 in/out ad-
dresses, and PageRank.

6 RESULTS

Our projected aimed to analyze the evolution of the BlockChain
over time. For this purpose, we split the graph in multiple time
based snapshots. The time range of each consecutive snapshot is
incremented by 1 year. For example, the first snapshot will range
from 2009 to 2010 year and the last snapshot will range from 2009 to
2016, seven snapshots in total. In addition, for the graph algorithms
we made a snapshot on 1st of February 2017 when most transactions
occurred for a single day. Below we are to briefly describe the
metrics we used for evaluation and the results we obtained.
Unfortunately, we could not provide a complete overview for all
of the following algorithms, as most of them are iterative and their
performance degrade with the increase of problem size. Also, parts
of them are non-parallelizable which gives additional overhead. For



Harmonic Centrality

Label Propagation

Connected Components

Strongly Connected Components

|

NambarofFagies Pasing T fach Vrtax

T

Figure 6: Visualizations of our applied metrics on the Bitcoin
BlockChain. From top to bottom: the harmonic centrality, la-
bel propagation, the number of connected components, the
number of strongly connected components, triangle count
and triangle count versus PageRank.

example an algorithm would run for 4 days using 1/4th of cluster
resources and still would not be able to produce results.

The front-end ’amCharts’ is able to process and visualize a lot
of data points. Some graphs will use logarithmic scale value axis
as it reduces the wide range of values to more manageable size.
To improve further the user experience custom java scripts were
created to further group the data as most of the graph algorithms
produced data points with same values. Also it is important how
the data is ordered, and which data is used as the value axis. The
scripts also handled unexpected behavior. For example, ordering
big amounts of data will distribute it among the reducers as part

of the ordering process. If one is to repartition to a single reducer
the collected data will be ordered per reduced and will not be
globally ordered as one might expect. Solution was either to not
repartition and use the hdfs ’getmerge’ command or handle ordering
by additional script.

6.1 Descriptive Statistics

Our descriptive statistics are time based serial data divided into
one calender day interval. The time span range is from the first
transaction on 3 of January 2009 to the last available data point
1st of March 2017. When doing time series analysis we can have
insights in the evolution of the studied component over time. The
transaction per day graph is shown 1st at Fig. 5. We see that until
April 2012 the bitcoin network was not particularly active having
around 8 thousand transactions per day. From there on the transac-
tions count started to steadily and gradually increase having 200
thousands transactions in the end of 2015. We can see that the most
transactions happened on 1st of February 2017 - 351 376. The other
two time series graphs have identical trends of increasing. As more
transactions were generated per day the average block size per
day will expectedly increase as well. The block size is determined
by miners and intuitively one could say that big blocks will allow
more transactions to be carried, and therefore more fees would
be generated. However, a miner would like to limit the supply of
transaction space so the fees for putting the user’s transaction in
the next block will increase. The optimal block size for miners is
"small enough to drive congestion" [8]. We also provide a metric
for average transactions per block per day. We see there were peaks
on 17th of September 2015 (1789), 29 of February 2016 (1995) with
most being at 15h of December 2016 (2212). Generally, we see that
the network handles the increasing demand/traffic well.

The top 5 In/Out address graph (3rd graph in Fig. 5) compares
the accumulative total of transaction used as input and output. In
2009-2010 time range stands out an address which was used mored
times as output than the commutative total of the 5 input address.
Checking this address in a popular bitcoin blockchain explorer 1
we see that this account received enormous amount of BTC 77k
with 113 transactions. In 2012 the first big mining pool address was
created as evident from the chart. For a short period in 2012 this
address generated 10k transactions and received total of 315k BTC
16 The funds were distributed among of its participants. Gradually
mining pool address prevail (as used as input for a transaction),
when comparing to the output addresses. For example the 2014
snapshot is saturated with address starting with ’06F1’ and it is
practice for mining pools to generate similar addresses.

6.2 Core Graph Statistics

To describe the resulting graph we use found the number of nodes,
edges, one in degree nodes - addresses used only once as input,
one out degree nodes - addresses used only one as output, self
edges - an address used both as source and destination in a trans-
action.

We plot the core graph statistics on a multiple value axis for
easy comparison and to hide the different value range. The graph

Shttps://blockchain.info/
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is 2th in Fig. 5. We again observe increasing trend, but from 2014
it becomes more steep. When comparing between axis we see the
edges (that is the transactions) followed by self-edges, have the
steepest slope. The graph as of January 1st has 114 million nodes
as of 4 million were used once as an input and 34 were used once
as an output, 9,5 billion edges as of 123 million are self-edges.

6.3 PageRank

PageRank[9] is a famous algorithm used by Google to rank search
results in its search engine. In our use case Page rank will work
by counting the number and quality of the edges (transactions) to
the vertices (addresses) to give a rough estimate how important the
addresses are. We ran Page Rank for 10 iterations, and output the
top 100 addresses with biggest Page Rank.

It can be noticed that 5 to 10 addresses are very active during
each year and then the distribution becomes more uniform. Intu-
itively, the page rank increases each consecutive year. There is some
correlation with the results of the previous graph, but yet there are
high ranking address which did not pass the cut-off of 5. Similar
pattern is observer for the 2017 snapshot.

6.4 Label Propagation

This algorithm is used for detecting communities in a network. Each
node in the network is initially assigned to its own community. At
every ’super step’, nodes send their community affiliation to all
neighbors and update their state to the mode community affiliation
of incoming messages [10]. The algorithm is displayed in Figure
7. We run it with 5 iterations, and each node is assigned label Id.
Then we would like to aggregate by counting the nodes having
the same label Id. However the output is still too big as there are a
lot of communities with same same count. Next, we group by the
count and aggregate by counting the labels. Finally, the results are
ordered. The result is of the form label count, frequency.

All snapshots follow similar pattern. A big amount of nodes
have small label propagation value, but will gradually, uniformly
increase in value, while the frequency will decrease. 5 to 10 nodes
will have drastically more propagation measurement for 2013 and
2014, while 2010 and 2011 are more well distributed. The 2017
snapshot is similar. This suggests that most communities have
few members, indicating one-off transfers between one user and
another. The data is consistent with the findings of Yu et al.[3]

val communities = graphFrame.labelPropagation.maxIter(5).run().select("id", "label")
_groupBy("label").agg(functions.count("id").alias("count")) . filter("count > 1")
.groupBy("count").age(functions.count("label").alias("frequency”))
_orderBy(desc("frequency”)) .write. format("csv") .csv(filename)

Figure 7: Lebel Propagation Algorithm and Following Result
Groupings

6.5 Harmonic Centrality

Centrality is similar to Page Rank as it tries to account for the
importance of the nodes. A whole plethora of centrality measures
have been proposed and we found a public library 7 for GraphX
which measures the harmonic centrality of a node. This is the sum

https://github.com/webgeist/spark-centrality

of the reciprocal of the shortest path distances from all other nodes
to x. We would again group on the centrality value and aggregate by
counting the vertex IDs and furthermore group on value. However,
we had to round our harmonic centrality values before the final
grouping as the value range is too much for the front-end graph to
handle efficiently each individual data point. The 2011 snapshot is
rounded down to each 5, the 2012 snapshot to each 1,000 and the
2017 snapshot to each 50. This way we loose granularity, but we can
visualize all the data efficiently and without specifying thresholds.

This graph is the only one plotted with switched values. The
Harmonic centrality is plotted on the x-axis and the frequency on
the y-axis as this measurement has big frequency fluctuations. The
y-axis is on logarithmic scale. The data is ordered on harmonic
centrality. There is subtle pattern that with the decrease of cen-
trality the frequency increases, very obvious in the 2012 snapshot,
less obvious in the others. We see that quite few nodes have big
centrality, but prevailing are node with small centrality values. For
example, nodes rounded down to 0 centrality (in reality ranging
form 0 to 1000) in the 2012 graph are 920k, accounting for the
biggest frequency value.

6.6 Triangle Components

A vertex is a part of a triangle when it has two adjacent vertices
with an edge between them [10]. The algorithm count the number
of triangles passing through each vertex, providing a measurement
of clustering. The output is again grouped by the count, the out-
put being the number of triangles passing through each vertex,
frequency of occurrence (addresses). The result is ordered by de-
creasing number of triangles.

Again, the results suggest clustering for few addresses, having
a lot of triangles passing through each of them. The first 4 ad-
dresses for the 2011 graph ,which are quite an outliers, have 3.660,
3.034, 1.509, 1.423 triangles passing through them. The following
node counts decrease more gradual as the frequency decreases. Fi-
nally there are 150k nodes which have no triangles passing though
them. The 2012 graph shows even more prominent results, with
105 addresses having triangle count more than 25k. The rest of the
distribution is decreasing more gradually, with sporadic high value
frequency counts, for example 361 nodes with 4,976 triangle counts.
The 2017 graph is following a similar pattern.

6.7 Connected Components

A connected component in graph theory is a subgraph in which
any two vertices are connected to each other by paths, and which
is connected to no additional vertices in the supergraph [11]. The
connected components algorithm labels each connected component
of the graph with the ID of its lowest-numbered vertex [12]. At the
end of iteration each vertex is assigned a component ID. The result
is grouped by components, counting the individual vertices and
excluding vertex components by their own, ordered by count and
in the form - (component Id, number of components). Finally, the
component Ids with same counts were grouped and outputted as
(value, frequency) pairs.

For the 2012 snapshot we observer there is one big connected
components having 2,726k addresses connected together. This can
be correlated with our previous results of the emergence of mining



pools. With the frequent money transactions it is easy most of the
addresses to be connected. However, this seems somewhat unplausi-
ble to the authors of this paper as there are only few more connected
components. There is a bug both in GraphX and GraphFrames con-
cerning Spark chain-indexes and producing similar incorrect results
18 We used versions in which the bug is claimed to be fixed, and
tried workarounds to this issue, but all we had was the same re-
sults. We believe the result is plausible, but it should no be trusted
exclusively as both libraries are still considered production not
ready.

The 2017 snapshot has more dispersed values. For example, 3793
clusters of 3 components connected was on the top for frequency.
Again one big sub-graph is observed with 500k connected compo-
nents.

Generally we see one common pattern that there are a lot of
clusters with small count of connected components and as the clus-
ter count (frequency) decrease the connected components (count)
increases.

6.8 Strongly Connected Components

A graph is strongly connected if there is a path between all pairs of
vertices. Similarly to above, the algorithm returns a graph with each
vertex assigned to the SCC containing that vertex. This is a stronger
form of ’connected components’ as it required that every vertex is
reachable from every other vertex as well. This algorithm is able
to find entities interacting with each other and therefore being
a community. We run the algorithm for 10 iterations, the result
is grouped by component Id with aggregating function being the
vertex frequency count and ordered in descending order. Similarly,
the component Ids with same counts were grouped and outputted
as (value, frequency) pairs. This algorithm is extremely slow and it
is unfeasible to be run on big graphs.

In the 2010 snapshot there is 3 strongly connected components
having 2 nodes. We don’t have the data for 2011 for an unknown
reason. The 2012 data shows one big cluster of 1,613,000 connected
components and several smaller, but more frequent. As they are few,
we are to mention them all in the format (connected components
count, frequency) - (2,134),(3,26),(4,13),(5,3),(1,613,000,1),(8,1).

6.9 Page Rank vs Triangular Count

We would like to find if the Page Rank is related to the number of
triangles. For such purposes we would join the two results on the
vertex Id and filter appropriately to reduce the result enough for
the front-end JavaScript visualization. The output is in the form
(pagerank, triangle count).

The results show there is no correlation between Page Rank and
Triangular count. As observer, there might be a node with hight
Page Rank, but low triangle count and vise verse. Again most of
the values are clustered in the lower left corner, with few outliers
in both dimensions, which will certainly be of interest.

6.10 Local Clustering Coefficient

Clustering coeflicient is the degree to which the nodes tend to
cluster together. However, both GraphX and GraphFrames does
not provide a clustering coefficient implementation. We found a

8https://github.com/graphframes/graphframes/issues/159

public library ° with an implementation for clustering coefficient
for GraphX. It ran perfectly on our local machines, but it would fail
when running on the cluster with an assertion error from within
the library. We did not proceed further with this error and so we
would not present results for this measurement.

The results of our metrics and their corresponding visualizations
are publicly accessible online?’.

7 FUTURE WORK

The experiments conducted provide the foundation to obtaining
information in a visual manner from the Bitcoin blockchain data
using MapReduce for processing the large dataset in an efficient
and timely manner. Our experiments have lead us to deduce the
following observations which may be advisable for future work
conducted on the topic of analyzing the blockchain:

e Instead of building the graph each time when job is started,
save the snapshots to parquet files in HDFS and load the
pre-build snapshots. The process itself is not that demanding
when compared to the iterative algorithms, but it would save

more time as the time range increases and therefore the 2016

savings will be significant.

Migrate to User graph which will be more representative for

the community analysis.

e More in-dept analysis on the money flow. Explore BTC ac-
counts holding, study what part of the BTC are in circulation
and which accounts are the biggest holders, provide func-
tionality for a money flow of transaction which appears
particularly bad.

e Partitioning the graph from 2009 onwards with 1 year in-

creasing interval makes it hard for analyzes due to the size

of the problem even in such a distributed environment. Mi-

grating to User graph could solve this issue, but alternative

is to partition the available time range by 1 year alone. How-
ever, this would loose the ’evolution’ aspect of the study, but
rather localize it for a single year.

Analyzing the results in the front-end would actually benefit

by including the actual bitcoin address when possible. Also

some graphs can be connected by ’linking and brushing’
techniques.

8 CONCLUSIONS

Our project aimed to provide insight into the evolution of the Bit-
coin transaction graph, spanning from 2009 until 2016, by means of
information visualization techniques. We have chosen several met-
rics which we applied to the BlockChain in order to extract useful
information about it’s network structure as well as we provided an
overview statistics for the blocks and the transactions inside.

The results show that the graph size and complexity increases
with time. From 2012 the network started to be heavily used and
with the emergence of mining pools it become heavily clustered
around 5 to 10 popular addresses. The rest of the network’s cluster-
ing/centrality is well spread across the range of all the metrics, but

Yhttps://github.com/SherlockYang/spark-cc
Dhttps://vbakayov.github.io/



also we observer a lot of nodes which are non active and not well
connected to the rest of the graph.

Working with a very large dataset, comprising 130 GB-worth
of Bitcoin transaction-data, incentivised us into running our ex-
periments in Spark jobs on the SURFsara cluster. This approach
definitely eased and quickened our task. However, we ran into
the bottleneck of running expensive algorithms onto large graph,
which hindered our results analysis.

Spark’s GraphX & GraphFrames APIs naturally helped modeling
the transaction history as a graph, and also provided us the neces-
sary tools to perform our metrics analysis on the BlockChain, with
added help from the Spark SQL module in order to query the data
inside our Spark programs.

Finally, the outputs of the Spark jobs were included in a static
Web page, and plotted, with the hopes of providing a visual and
facile way of obtaining insight and identifying patterns in the evo-
lution of the Bitcoin cryptoledger.
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