
Query Performance Visualization

Tim van Elsloo (teo400)
University of Amsterdam

tim.van@elsl.ooo

Thomas van der Ham (thm280)
University of Amsterdam

thomasvanderham@outlook.com

ABSTRACT
We present novel visualization software that aids in profil-
ing queries, identifying bottlenecks and equalizing workload
distribution. We used our software to visualize and compare
query performance on Apache Spark and Apache Pig for two
widely used benchmarks: TPC-H and JCC-H. Our software
is agnostic to database software and can easily be adapted
to support other software as well.

1. INTRODUCTION
With vast amounts of unstructured data, there is a grow-

ing need for big data query engines. One of the first dis-
tributed query engines was MapReduce[4]. Hadoop[8], a
distributed file system, also supports MapReduce queries
out of the box. However, a downside of using low level
software like MapReduce is having to write specific map
and reduce functions for each query instead of writing in
an intuitive, high-level language like SQL. For that purpose,
big data query engines have started to include options to
use higher level languages. Some engines have implemented
SQL support or come with their own language. This en-
ables developers to quickly develop queries that can run in
parallel on distributed systems. Another advantage of these
high level languages is that they can offer a set of common
optimizations to improve query performance.

In this paper, we perform a comparison on two different
big data engines: Apache Spark[9] and Apache Pig[6]. With
Spark, we specifically inspect its Spark SQL[1] capabilities.
Pig does not support SQL, but its own Pig Latin language.
While Pig Latin is not a high level language, it certainly is
not as low level as MapReduce. We compare performance
with our own visualization software, that was written as
part of this contribution. Both engines are compared on
widely used benchmarks: TPC-H and JCC-H. Our research
goal is to use these visualizations to identify the differences
between TPC-H and JCC-H[2] on each of the queries in the
benchmark.

In sec. 2, we will first cover the query engines that we have
selected for our performance comparison, as well as quickly
introduce the two benchmarks and explain how they relate
to each other. Then, in sec. 3 we show how we load vast
amounts of data into Hadoop in an efficient, parallel way.
Next, in sec. 4 we present our novel visualization software.
In sec. 5, we use our software on 3 case studies: selected
queries from the benchmark. Finally, we conclude this paper
in sec. 6 with a brief discussion on our results.

1.1 Related work
In a small performance comparison between Shark, Im-

pala and Spark SQL, [1] have shown that the fastest engine
depends on the selectiveness of the query. Spark SQL per-
forms better on less selective queries and Impala performs
better on more selective queries. The old version of Spark
SQL named Shark is outperformed by both of them.

[5] also showed that the performance of Impala is on par
with Spark SQL and they added a comparison with Hive
which performed similarly. They showed that the memory
usage of Impala was higher than the memory usage of Hive
and Spark. The formatting of the file has a major impact
and compression could result in a speedup if i/o causes a
bottleneck.

Software similar to ours has also written before, such as
Twitter Ambrose[10]. However, to our knowledge we are the
first to publish software that can both visualize queries in
great detail, as well as show workload distributions (detail
per node, operation).

2. PRELIMINARIES
Before we present our own work, we will first briefly dis-

cuss our setup. Our experiments observe four metrics: time,
records, input / output (i/o) and memory usage. We quickly
noticed that the time metric is heavily influenced by environ-
ment variables beyond our control (mainly the workload that
is submitted to the supercomputer by other groups). Fortu-
nately, most of these jobs are long-running jobs. Therefore,
we find it beneficial to visualize relative times (as percent-
ages of the total time of a query) rather than volatile ab-
solute times. In addition, observing the other metrics adds
accuracy to our query profiles than only looking at time.

This section will continue with a brief explanation on our
query engines selection in sec. 2.1 and will conclude with
the benchmarks that we have compared these engines on in
sec. 2.2.

2.1 Query Engines
As part of our experiments, we validate our software on

two different database engines. We have chosen Apache
Spark and Apache Pig because both were pre-installed on
the supercomputer that we have been given access to. In
this section, we first cover Apache Spark, which comes with
an SQL layer to enable rapid ad-hoc querying. Then, we will
discuss Apache Pig, a different engine that does not support
SQL and instead compiles programs in Pig Latin directly to
MapReduce tasks.

2.1.1 Apache Spark
Apache Spark is a scalable big data processing engine that

simplifies the task of processing big data by supporting sev-
eral high level languages like Python, R and SQL[11]. Spark
uses existing filesystems like Hadoop or Amazon S3. Spark
is fault tolerant, allows for streaming data and provides low
latency computing. Spark uses in-memory processing when
possible rather than writing each intermediate step to the
distributed file system (which is what a sequence of MapRe-
duce jobs does). According to Apache this makes Spark ten
to hundred times faster than MapReduce.

Spark SQL leverages the benefits of relational processing,
while allowing users to use complex analytical libraries in
Spark[1]. It provides support for features that are designed
for big data analysis such as semi-structured data, query
federation and special data types for machine learning. It
also allows users to write complex pipelines in which they
can mix relational and complex analytics which are auto-
matically optimized using its optimizer. The optimizer is
extendable using Scala, which allows users to add new opti-
mization rules, new data types and new data sources.

2.1.2 Apache Pig
In addition to Spark, we have also run our experiments on

Apache Pig: another big data query engine. Pig does not
support SQL, instead we used a set of equivalent queries for
TPC-H (sec. 2.2.1) in Pig Latin, written by the developers
of Pig. We have manually updated these queries with the
parameters generated by JCC-H (sec. 2.2.2).

Unlike Spark, Pig compiles programs to a sequence of
MapReduce jobs. The output of those jobs is stored in the
distributed file system. Pig also offers a variety of query
optimization heuristics.

Unfortunately, the statistics that Pig outputs (even in ver-
bose modes), are less detailed than those that we can gather
from Spark. Therefore, this paper will have a slight focus
on Spark. In our conclusions (sec. 6) we propose directions
for future work to overcome this problem.

2.2 Benchmarks
In order to validate the usefulness of our visualization pro-

gram, we use it to profile queries from 2 widely used database
benchmarks: TCP-H and JCC-H. The latter is an improve-
ment upon the former: it is a better approximation of real
world workloads. In this section, we will first take a look at
the original TPC-H benchmark in sec. 2.2.1 and continue by
comparing the newer and better JCC-H benchmark in sec.
2.2.2. Both benchmarks support a scale factor parameter
that determines the size of the generated synthetic datasets.

2.2.1 TPC-H
The TPC-H benchmark approximates an industry that

manages, sells or distributes products worldwide[7]. This
benchmark models the decision support area of a business,
where trends and refined data are produced in order to make
good business decisions. TPC-H exists of two parts: data
generation and query generation.

The data generation can be executed on different scale fac-
tors which can run compliantly when specific values are used
in the range of one through one hundred thousand. Where
one stands for one gigabyte of data. The data that is gener-
ated can be split in multiple parts, so it can be distributed
over multiple processes. The generated data exists of eight

tables which are all heavily connected through foreign key
relations. According to the guidelines of the benchmark the
tables created based on the data may not rely on any knowl-
edge of the data except for minimum and maximum values
of the fields.

The benchmark defines a set of 22 query templates that
simulate the type of ad-hoc queries a real world business
would use. The queries are designed to include a diverse set
operations and constraints, generate a big CPU and disk
load and should be more complex than most online transac-
tions. The queries address some real world choking points[3]
that are found when handling big datasets. The queries are
generated based on an random number in such a way that
the performance for a query with a different substitution
should be comparable.

2.2.2 JCC-H
The JCC-H benchmark is a drop-in replacement for TPC-

H generator which should produce a dataset which is more
realistic[2]. This is achieved by adding Join-Cross-Correlations
and skew to the dataset and the queries. A Join-Cross-
Correlation is values occurring in tuples from one table which
can influence behavior of operations on data from other ta-
bles when used in a operation that joins these tables. This
is added to the benchmark by generating data that is better
correlated than data generated by TPC-H and also using the
correlated data in the generated queries. Some join optimiz-
ers try to optimize for correlation, but some fail to estimate
the cardinality which makes it interesting to test.

Skew is the asymmetrical distribution of data, which oc-
curs in the real-world but it does not occur in the data gen-
erated by TPC-H. The distribution of the data generated
by TPC-H is uniform. JCC-H adds skew to the generated
data to make the dataset and references the skewed data in
the queries to give a better reflection of real-world perfor-
mance. The skew is introduced by letting each referencing
table have twenty-five percent of all it’s tuples refer to only
a small part of the foreign keys. In the real-world this is a
well known issue which affects the partitioning of the data.

3. DATA INGRESS
We use two synthetic database benchmarks (sec. 2.2) and

both generate 1 terabyte of data. In order to load such vast
amounts of data into Hadoop in the first place, we need to
parallelize the ingress process. In addition, when querying
data, we want to be able to distribute the workload on all
available nodes in our cluster. This requires the use of ta-
ble partitioning. In this section, we first explain how we
achieve parallel loading and continue with our table parti-
tioning strategy.

3.1 Parallel Loading
In order to optimize loading our datasets into the Hadoop

distributed file system, we exploit the fact that our bench-
mark is synthetic. Both programs support options to gener-
ate partial data. With that in mind, we distribute the pro-
grams over all nodes in the Hadoop cluster and run those
programs with slightly different arguments on each node.
These arguments determine the part of the data that each
node generates, and the location that it stores the generated
data onto (sec. 3.2).

Ingress Job

Mapper i = 2 dbgen -C N -S i

consumer

order

Mapper i = 1 dbgen -C N -S i

consumer

order

Coordinator Mappers Local FS

Figure 1: Overview of our parallel loading MapReduce job.
Each mapper is assigned an ID (i), knows the total number
of nodes (N) and only generates [i

N
, i+1

N
] of the data.

In fig. 1, we show all of the steps that are taken to load the
data in parallel onto the file system. Our data loader pro-
gram is wrapped as a MapReduce task, even though there
is no reduce-stage. It starts by generating a sequence of
indices (one for each node) and mapping those indices to
nodes. We override the default Hadoop MR configuration
to ensure that each node is assigned one, and only one, in-
dex. The Hadoop scheduler then takes over and distributes
our task to all available nodes. Each node generates its as-
signed part of the data and temporarily scores the results
on its local file system. Finally, we transmit the generated
files from the local file system to the distributed file system.
In the next subsection, we will explain how the approach we
take to transfer those files affects table partitioning.

3.2 Table Partitioning
On Hadoop, each table is stored as a separate folder in the

file system. Each of the nodes that we use to load data into
Hadoop, writes to its own file. Therefore, the parallelism
of our data ingress process also determine the level of table
partitioning.

The advantages of partitioning each table in several files,
is that upon querying the dataset, each worker node can
autonomously process a distinct subset of the data.

In fig. 2, we show a detailed overview of how table par-
titioning works. The figure shows that during ingress, each
table is stored as a folder of several distinct parts of all data.
When querying the data, each worker only reads from a few
parts of the data (depending on the ratio between ingress
parallelism and query parallelism).

It takes approximately 2 minutes to generate and store
30gb of data (SF = 30) and approximately 14 minutes to
generate and store 1tb of data (SF = 1000), with parallelism
of 100 nodes.

4. PERFORMANCE VISUALIZATION
We present a novel approach to visualizing query perfor-

mance by drawing inspiration from modern user interfaces
for geographical maps. Our query visualizer software turns
queries into abstract syntax trees (AST) and treats edges as
a heat map of various user-selectable metrics: time, records,
input / output (i/o) and memory usage.

In this section, we first present our query visualizer. We
then show a extension that we built on top of the query visu-

Mapper 2 dbgen -C N -S 2

order

customer

Mapper 1 dbgen -C N -S 1

order

customer

order

customer

Mappers Local FS Hadoop DFS

Figure 2: Overview of how we partition the tables that each
individual node generates. Note that each line to the ta-
bles represents a distinct file in the Hadoop distributed file
system.

alizer to show workload distribution, which simplifies iden-
tifying bottleneck subqueries. Finally, we present a timeline
that is added to the visualization to show the start and end
times of stages (groups of operations) that are part of the
query plan.

4.1 Query Visualizer
Our query visualizer shows an abstract syntax tree (AST)

of the physical plan that is generated by each database en-
gine. The physical plan is closely related to the original
query and describes an order of execution of separate sub-
queries. In Spark terminology, these execution units are
called stages and in Pig, the same is called jobs. Pig com-
piles a query into a sequence of MapReduce jobs. An unfor-
tunate consequence is that it does not offer monitoring at a
lower level than jobs1. In contrast, Spark is able to provide
much more detailed monitoring statistics.

In both cases, we spit through the log files that both en-
gines generate to find metrics that we can use for our vi-
sualization. For Pig, we also query the Hadoop REST API
to download and parse additional logs for each node that
our MapReduce jobs run on. We provide software with our
submission that automatically downloads and parses these
logs.

In fig. 3, we show the end result of our query visualizer.
The color of each edge represents its fraction of time (or
one of the other three metrics): thick red edges are time
expensive operations, thin blue edges are very fast.

Our software contains a sidebar with settings that can
be used to select one of the four supported metrics (time,
records, disk i/o, memory usage).

In order to obtain a physical query plan from Pig, we run
EXPLAIN -script Q1.pig. We rebuild this physical plan
tree into the representation that is shown in our visualiza-
tion. For Spark, we use the events json log file and parse the
SparkListenerSQLExecutionStart event to obtain a Spark
plan tree.

1Except for user-defined functions: pig.udf.profile.

11/2/2017 Q2.html

file:///Users/elslooo/Dropbox/University/DataEngineering/p2/analyzer/html/spark/Q2.html 1/3

Q2 (spark)

Dataset

TPC-H

JCC-H

Metric

Elapsed Time

Input / Output

Records

Memory

Figure 3: Visualization of Q2 on Spark. Selected metric is
the number of records. Node names (e.g. filter and load

csv) are omitted in this figure for simplicity but are included
in our software.

4.2 Workload Distribution
In addition to the query visualizer, we also built an exten-

sion that visualizes the workload distribution for each node
in the AST (depending on the metric that you select). Nodes
for which workload distribution information is available, are
indicated with a white circular fill. For example, in fig. 3,
all nodes that have 2 children have workload distribution
information.

Workload distribution visualization simplifies identifying
bottlenecks: data processing steps that cannot easily be par-
allelized. As an example, in fig. 4 we show two workload
distributions for the same node: one is part of the TPC-H
benchmark and the other is part of the JCC-H benchmark.

Note that we again support four different metrics and
these often do not correlate: for example, using more mem-
ory might speed up the program.

(a) TPC-H (b) JCC-H

Figure 4: Visualization of workload distribution of the same
operation, on TPC-H and JCC-H. Each bar represents the
relative work that a node performs. Red indicates most of
the work, blue indicates least of the work. Nodes are sorted
by their share of work in descending order.

4.3 Timeline
We have also added a small timeline of stages at the bot-

tom of our visualization window. The timeline shows start-
ing points end ending points (in relative time) of all of the
stages. Note that in rare cases, a few of the stages that
appear in the timeline may not have counterparts in the
visualized tree (because those stages do not relate to any
nodes in the tree). Also, Spark in particular tends to skip
stages if it determines at run-time that it already has the
results of a those stages as part of some other stage.

5. EXPERIMENTS
One of the most common applications of our software is

to use it for identifying skewed workload distribution. Sys-
tems based on MapReduce usually work on the principle
that each key takes an equal amount of time to map. In
real world data, that is hardly ever the case. Our second
benchmark JCC-H (sec. 2.2.2) specifically aims to replicate
real world data distributions in order to better reflect actual
performance. It has already been shown that both Hive and
VectorH query engines have more difficulty with the JCC-H
than TPC-H[2]. Therefore, as part of our research goal, we
show that our program can identify skewed workload distri-
bution in Spark and Pig as well by comparing the results of
running the TPC-H benchmark and JCC-H benchmark.

Our experiments consist of comparing our visualizations
for 3 of the most complex queries (in terms of number of
distinct stages) between TPC-H and JCC-H and using our
software to identify potential bottlenecks that are caused
by the skewness of the latter benchmark. In addition, we
compare our findings with the design goals of each query
as written by the authors of JCC-H[2]. This selection was
based on fig. 3 and 4 of that paper: it shows that query 7
and query 9 are significantly more difficult with skew. We
have chosen 18 because it shows that Spark is able to reduce
the effect of skew by reorganizing the query plan.

In addition to the experiments below, we have also con-
firmed (as a means of grounding our experiments) that our
visualizations of Q1 are identical (regardless of benchmark)
and no abnormalities can be detected, because both bench-
marks produce the same parameter sets.

Overall, as written in our preliminaries, it is hard to mea-
sure the absolute runtime of each run. In our experiments,
Spark usually was faster than Pig, although this can be at-
tributed to many external factors (most notably: workload
by other project groups). Therefore, we will be looking ex-
clusively at relative time, io and memory utilization and fo-
cus on the workload distribution graphs that are generated
by our software.

5.1 Query 7
With query 7, we observe severe skewness in the workload

distribution with respect to the number of records when
joining customers and nations with the rest of the query
(BroadcastHashJoin and SortMergeJoin). What this means,
is that the workload for each nation and customer is not
uniform (some nations and customers demand much more
work). This ultimately slows down the query because there
are many nodes that are idling and only a few that are very
busy. We only observe this skewness in the JCC-benchmark
(similar to fig. 4) and believe that this is inline with the as-
sertions made by the original authors. In appendix we have

added the entire visualization window, with red circular an-
notations indicating bottlenecks we have detected using our
software.

Note that we can see Spark optimize this query by re-
ordering the timeline: the order of execution of each stage.
In particular, stage 4 is started almost immediately for TPC-
H, whereas its start is delayed until stage 3 is done for JCC-
H. Stage 4 loads customers and stage 3 loads line-items.

5.2 Query 9
The updated query 9 introduces various bottlenecks. In

these cases, many nodes are idle while only a few are doing
the work. We have annotated operations with non-uniform
workload distribution in appendix . It is important to note
that even though the workload distribution is not uniform,
it does not seem to have a significant impact on the over-
all performance because Spark spends most of the time at
the last few nodes (which are visualized on the north side).
These nodes however, are not impacted by the bottlenecks
that are introduced.

We confirm this observation by noting that Spark does not
significantly change the order of execution (which was the
case with Q7), nor changes the stages to optimize a specific
path in the AST (which we will see with Q18).

On Pig, we do not observe a bottleneck: all workload
distributions are nearly identical to their normal (unskewed)
counterparts.

5.3 Query 18
When analyzing query 18, we can see that Spark does

considerable effort to rearrange its query plan to optimize
for the updated parameters. We can also observe that mem-
ory usage is significantly different with JCC-H than TPC-H,
even though the time metric doesn’t show significant differ-
ence. We believe that this is because of optimizations that
specifically accommodate these types of skewed joins. For
example, Pig can allocate memory in the reducer stage to
do the heavy lifting that is required for skewed joins. We
believe Spark does something similar, which explains why
there is a higher memory use but not a significant change in
time.

Ironically, Pig does not handle the skewed query 18 well.
The resulting workload distributions (both with respect to
time and memory) are significantly non-uniform. Fig. 5
shows the workload distribution of the bottleneck we have
identified. We can see that most nodes running TPC-H (left)
are responsible for the same share of work, whereas only a
few nodes running JCC-H (right) are responsible for most of
the work. Note that red bars are not necessarily a bad sign:
they represent relative utilization of each node. Ideally, a
query shows a (near) uniform workload distribution.

6. CONCLUSIONS
We have built an advanced query profile visualizer that

supports both Spark and Pig. It performs better on Spark
because we have access to statistics in more detail. Our ex-
periments, consisting of 3 case studies on complex queries
from the benchmarks, show that our visualizer can be used
to identify bottlenecks and performance regressions in queries
in great detail. Most of the results and conclusions that are
obtained as part of our experiments, align with the goals of
the authors of JCC-H[2]. We can also observe that query
engines optimize the skewed queries and generate a different

(a) TPC-H (b) JCC-H

(c) TPC-H (d) JCC-H

Figure 5: Visualization of workload distribution in Pig of
the bottleneck in query 18 that is introduced in query 18, on
TPC-H and JCC-H. Appendix C, fig. 9 shows the location
of the bottleneck.

execution plan, with a different timeline (sec. 5.1) and stage
reorganization (sec. 5.3). In our experiments, we have ob-
served that Spark and Pig use different optimization strate-
gies, with varying success. Specifically, Spark is unaffected
by the skewness that is added in query 18 and Pig is unaf-
fected by the skewness added in query 9.

We believe that our software contribution improves over
earlier work because it greatly simplifies finding causes of
performance regressions and non-uniformly distributed work-
loads in distributed environments such as Hadoop. We have
been able to confirm that it correctly identifies skewness in-
troduced by the JCC-H benchmark.

6.1 Future Work
While we have run our experiments on both Spark and

Pig, Spark logs are more granular and contain more met-
rics than Pig logs. Our approach should serve as a proof of
concept and an effort can be mode to integrate the database-
specific parts of our work directly into each particular database.
This would allow for more precise profiling, as well as a sta-
ble integration that does not easily break when updating
the database engine to a newer version (e.g. in case logs
change).

In addition, future research could focus on simplifying the
visualizer even more. Our current visualizer is based on the
physical plan, which is often closely related to the actual
user query. However, it would be even better if the visualizer
could relate parts of the physical plan to the original query.
This is a difficult problem because our profiler has to take
into account various optimizations that query engines per-
form: all of these optimizations cause further convergence
of the physical plan with respect to the original query.

Finally, future work could be directed into measuring the
effects of the introduced bottlenecks in absolute time. This
would require a sterile setting, in which all external factors
(such as external workload) can be adjusted.

6.2 Deliverables
Our assignment submission contains a) all code that is

related to data ingress (sec. 3), b) all code that is re-
quired to run our software on SURFsara (sec. 4), c) all
queries for TPC-H and JCC-H in both Spark SQL and
Pig Latin query languages and d) all output of our soft-
ware on all queries on TPC-H and JCC-H (sec. 5). Our
code is hosted on Github: https://github.com/peterboncz/

lsde2017-group17/tree/p2. All of our visualizations are stored
as html files, archived in a zip archive and directly attached
to our project report submission.

7. REFERENCES
[1] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin

Huai, Davies Liu, Joseph K Bradley, Xiangrui Meng,
Tomer Kaftan, Michael J Franklin, Ali Ghodsi, et al.
Spark sql: Relational data processing in spark. In
Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pages 1383–1394.
ACM, 2015.

[2] Peter A Boncz, Angelos-Christos Anatiotis, and Steffn
Klabe. Jcc-h: adding join crossing correlations with
skew to tpc-h. 2017.

[3] Peter A Boncz, Thomas Neumann, and Orri Erling.
Tpc-h analyzed: Hidden messages and lessons learned
from an influential benchmark. In TPCTC, pages
61–76. Springer, 2013.

[4] Jeffrey Dean and Sanjay Ghemawat. Mapreduce:
simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008.

[5] Xiaopeng Li and Wenli Zhou. Performance
comparison of hive, impala and spark sql. In
Intelligent Human-Machine Systems and Cybernetics
(IHMSC), 2015 7th International Conference on,
volume 1, pages 418–423. IEEE, 2015.

[6] Christopher Olston, Benjamin Reed, Utkarsh
Srivastava, Ravi Kumar, and Andrew Tomkins. Pig
latin: a not-so-foreign language for data processing. In
Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 1099–1110.
ACM, 2008.

[7] Meikel Poess and Chris Floyd. New tpc benchmarks
for decision support and web commerce. ACM Sigmod
Record, 29(4):64–71, 2000.

[8] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,
and Robert Chansler. The hadoop distributed file
system. In Mass storage systems and technologies
(MSST), 2010 IEEE 26th symposium on, pages 1–10.
IEEE, 2010.

[9] Apache Spark. Apache spark: Lightning-fast cluster
computing, 2016.

[10] Twitter. twitter/ambrose, Jun 2016.

[11] Matei Zaharia, Reynold S Xin, Patrick Wendell,
Tathagata Das, Michael Armbrust, Ankur Dave,
Xiangrui Meng, Josh Rosen, Shivaram Venkataraman,
Michael J Franklin, et al. Apache spark: A unified
engine for big data processing. Communications of the
ACM, 59(11):56–65, 2016.

https://github.com/peterboncz/lsde2017-group17/tree/p2
https://github.com/peterboncz/lsde2017-group17/tree/p2

APPENDIX
A. CASE-STUDY: QUERY 7

Figure 6: Interface of a performance report generated by our
program for Q7 on Spark (JCC-H, metric is records). This
html file can be found in visualizations/spark/Q7.html.

B. CASE-STUDY: QUERY 9

Figure 7: Interface of a performance report generated by
our program for Q9 on Spark (JCC-H, metric is time). This
html file can be found in visualizations/spark/Q9.html.

C. CASE-STUDY: QUERY 18

Figure 8: Interface of a performance report generated by our
program for Q18 on Spark (TPC-H, metric is memory). This
html file can be found in visualizations/spark/Q18.html.

Figure 9: Interface of a performance report generated by
our program for Q18 on Pig (JCC-H, metric is time). The
rectangular area shows the bottleneck that causes a highly
skewed workload distribution. This html file can be found
in visualizations/pig/Q18.html.

Figure 10: Interface of a performance report gener-
ated by our program for Q18 on Spark (JCC-H, met-
ric is memory). This html file can be found in
visualizations/spark/Q18.html.

	Introduction
	Related work

	Preliminaries
	Query Engines
	Apache Spark
	Apache Pig

	Benchmarks
	TPC-H
	JCC-H

	Data Ingress
	Parallel Loading
	Table Partitioning

	Performance Visualization
	Query Visualizer
	Workload Distribution
	Timeline

	Experiments
	Query 7
	Query 9
	Query 18

	Conclusions
	Future Work
	Deliverables

	References
	Case-Study: Query 7
	Case-Study: Query 9
	Case-Study: Query 18

