

1

Animated visualization of flights using ADS-B messages

Thanh Long Tran
Vrije Universiteit Amsterdam

t.l.tran@student.vu.nl

ABSTRACT
More and more aircraft are adapting the ADS-B

technology making it possible to track flights more

accurately. Enthusiasts all around the world collect these

messages transmitted by aircraft making it available to the

public. The sheer size of the information that is produced by

planes this way is enormous. The arrival of Big Data era has

made it possible to process such a large dataset in a relatively

short amount of time. The purpose of this paper is to create

an interactive animated visualization using the ADS-B

message dataset provided by OpenSky Network. It walks

through the steps of analyzing and processing the dataset to

prepare it for the animation. To address this challenge

methods using Big Data tools on a large Hadoop cluster is

presented. The pipeline that the data is going though contains

several algorithms that processes it. The paper details how

the Ramer-Douglas-Peucker and other simple algorithms

can be used to greatly reduce the size of the data without

losing important information. The final product is a web

based application that uses the processed data to create an

interactive animated flight visualization.

Keywords
Flight visualization, Big Data, Ramer-Douglas-Peucker,

ADS-B

1. INTRODUCTION
Due to the number of airborne aircraft at a given time

reaching tens of thousands nowadays the processing power

required to track these flights is getting higher as well. The

automatic dependent surveillance – broadcast (ADS-B) is a

surveillance technology that is used for tracking flights by

periodically broadcasting information about the aircraft such

as its position. This technology is more accurate than the

traditional radar technology and allows the broadcast

additional information.

ADS-B is a relatively new technology and the aircraft are

in the process of adopting it. From 2017 onwards, the use of

a ADS-B transmitter is mandatory for most of the aircraft in

Europe and the United State requires some aircraft to equip

the technology by 2020. There are clear benefits to switching

to ADS-B from Radar technologies. The pilot will be more

1 https://nats.aero/blog/2014/03/europe-24-air-traffic-data-

visualisation/

2 https://vimeo.com/11739091

aware if the aircraft’s surrounding as it is able to receive

traffic, weather and flight information. In addition, the

messages broadcasted by the transmitters are unencrypted,

which means that anyone with the appropriate sensor can

record the messages and decode them.

With the high amount of airborne aircraft in the sky and

the high frequency of broadcasts by a single transmitter the

number of messages that are broadcasted by planes is

enormous. Processing these messages requires an equally

huge amount of compute power.

The OpenSky Network is a community-based receiver

network that collects ADS-B messages from more than 750

sensors around the world. I have acquired a small subset of

their full message dataset. This includes all the messages

from the 18th of September 2016 to the 24th of September

2016. This is roughly 590 Gigabytes of compressed

messages.

This paper aims to private an insight into how one could

use Big Data technologies to process this large dataset on a

powerful cluster. In this project I have created an interactive

animated visualization of the flights and explore the steps

taken to process the data and achieve the end goal.

2. RELATED WORK

2.1 Flight visualization
Multiple animated flight visualizations have been created

before. These visualizations were either videos or real-time

flight trackers. Both NATS1 and ItoWorld2 have created a

rather spectacular video of the European flights, but since

these are static videos they lack interactivity. The

FlightRadar243 website offers a very powerful live flight

tracking service. It provides real-time information about

thousands of aircraft using ADS-B messages. The aim of this

project is to create a spectacular visualization of the flights

while providing interactivity with the time and the flights as

well.

Christopher Hurter et al. present novel methods for big

data exploration and analyzation of the Air Traffic Control

(ATC) domain. [1]. They have developed a visualization tool

called FromDaDy4 that creates interactive visualizations of

numerous aircraft trajectories. This powerful tool uses image

3 https://www.flightradar24.com/

4 FROM DAta to DisplaY

2

based visual analytics technologies to explore ATC datasets.

They are giving example queries such as finding overseas

flights or finding standard procedures and showing how it

can be done in a matter of minutes.

They also present density-map techniques to reduce clutter

in the dataset and therefore increase visual scalability. The

graph-based technique call graph bundling is a powerful data

aggregation technique that they are using to cluster the

flights instead of showing the original flight path.

Three different possible use cases of animation to support

the visual analysis of air-traffic datasets is also presented.

The key idea of the focus-and-context technique is to deform

and distort the visualization locally to reveal hidden

information. The KDEEB algorithm is a time dependent

dynamic bundling algorithm which allows is to recognize the

connectivity pattern between US cities. Finally, flow

visualization is the one that is the most closely related to this

paper. This provides a local insight into the flight patterns by

visualizing the fine-grained information. Further tuning the

parameters of this visualization can help put an emphasis on

different aspects of the dataset. The goal of this paper is to

create a similar visualization.

2.2 Douglas-Peucker algorithm
The project that this paper covers mostly relies on the

Ramer-Douglas-Peucker algorithm (or Douglas-Peucker)

which can be used to find a similar curve of a given set of

points. While the original algorithm works very well there

have been multiple attempts to optimize the algorithm.

Jon Vaughan et al. propose three parallel implementations

of the Douglas-Peucker algorithm using multitasking

techniques on a Sequent Symmetry computer [2]. They are

comparing all the parallel implementations to the original

sequential algorithm and to each other.

The first algorithm relies on parallelizing the calculation

of the maximum offset for the current line segment. The

second implementation parallelizes the processing of

separate line segments. Both algorithms introduced some

kind of load imbalance on the processors. The former

algorithm was efficient at the beginning of the process while

the latter was more efficient at the end. The third

implementation is the combination of the two.

The results of the tests performed show that all of the

optimized algorithms yielded improvements. Particularly,

the third implementation can achieve a speed up of 7. The

improvement the algorithm achieved is remarkable, but

unfortunately cannot be applied to the cluster that is

available.

5 https://userinfo.surfsara.nl/

6 https://spark.apache.org/

3. RESEARCH QUESTIONS
The main goal of this project is to create an animated

visualization of flights while also providing interactivity. To

achieve this goal, I am going to use the raw ADS-B messages

provided by OpenSky encoded in AVRO format. In order to

process all this data, I need to utilize large scale

infrastructures and technologies. This raises some questions

and problems regarding the project.

• How to use the raw ADS-B data to extract

information about the flights?

• How to identify the flights from the raw ADS-B

data?

• This is an interactive animation that should be able

to run on weaker computers as well. How to reduce

the size of the dataset without losing too much

information about the flights?

• How to animate the visualization of the flights

without the need to use a lot of resources?

The end result will be a web based application that renders

the animated visualization of the flights and allows

interaction to a certain degree.

4. PROJECT SETUP

4.1 Technology
Analyzing and processing such a large dataset requires a

lot of compute power. With this in mind, I have to choose

the appropriate tools to tackle this project. Fortunately, I was

given the opportunity to do my research work on the large

Hadoop cluster of SurfSARA5. However, it is essential to

make things work in a local environment first before going

big in the cluster.

For large-scale data processing on the cluster I chose to

use Apache Spark6 engine for Java because if its sheer

performance and easy-to-use application programming

interface. In addition, Spark has support for the AVRO file

format in which the flight messages are stored on the cluster.

The messages are stored as raw data which need to be

decoded before I could start processing them. The java-adsb7

java library is developed by OpenSky and provides a

convenient way to decode these raw messages to a usable

format. With the combination of Spark and java-adsb, the

dataset can be quickly decoded.

In order to gain a deeper insight into the dataset itself one

would create plots and graphs to visualize the data and

analyze it. The matplotlib8 Python plotting library can

quickly produce rich quality figures. I used this library to

7 https://github.com/openskynetwork/java-adsb

8 https://matplotlib.org/

3

plot flights to analyze its properties, find irregular data and

do experimentations with the algorithms.

For the visualization itself the D3.js9 JavaScript library

most suitable. D3.js is an incredibly fast data-driven library

for creating rich web based data visualizations. More

importantly the d3-geo-projections module provides a

simple and powerful interface to project spherical

coordinates into a flat map.

4.2 Understanding the data
Before I can effectively start working on the algorithms it

is essential to understand what it is exactly that I am working

with. The dataset consists of almost 8.4 billion messages and

to start analyzing it I first downloaded a small fraction of the

dataset onto my local computer and inspected it.

Table 1. The number of messages of each type

Message Type Count

ADSB_AIRBORN_POSITION 574810807

ADSB_AIRSPEED 1823438

ADSB_EMERGENCY 5169223

ADSB_IDENTIFICATION 63201928

ADSB_STATUS 20442848

ADSB_SURFACE_POSITION 4414411

ADSB_TCAS 5106

ADSB_VELOCITY 554039575

ALL_CALL_REPLY 2799627967

ALTITUDE_REPLY 941869748

COMM_B_ALTITUDE_REPLY 932401372

COMM_B_IDENTIFY_REPLY 379043405

COMM_D_ELM 21759

EXTENDED_SQUITTER 45933229

IDENTIFY_REPLY 366631994

LONG_ACAS 115357637

MILITARY_EXTENDED_SQUITTER 24882577

MODES_REPLY (UNKNOWN) 22564

SHORT_ACAS 1565463515

I first sampled the first 10 Gigabytes of messages. At first

glance it was immediately clear, that not all the messages

contain useful information for this project. After that I

created a short statistic on the number of messages, which

shown in Table 1. Out of these messages the airborne and

surface positions messages contain the position information

which are need for the animated visualization. Furthermore,

the ADSB_IDENTIFICATION messages can be used to identify

the airlines of the flights, which enables flight filtering and

9 https://d3js.org/

interactivity. These messages only make up about 7% of the whole

dataset and the rest can be practically considered useless data and

can be thrown out.

It also became apparent when analyzing the data that the

messages are not necessarily ordered by time, because all the

flights in the 10 Gigabyte sample data were lacking in

information. Therefore, I instead extracted all the position

messages of the transmitter 3c674f and worked in this set of

messages in the local environment. All the positions

broadcasted by this transmitter is plotted in Figure 1.

Figure 1. All the position messages of the aircraft with

ICAO24 3c674f

4.3 Overview
There are two bigger parts of the project. The data

processing phase, whose aim is to reduce and restructure the

dataset into a smaller format which can be used for the

animation. This phase consists of a pipeline of data

processing elements. Each element is a Spark application

usually run on the cluster unless the dataset is small enough

to run on the local environment. The pipeline consists of the

following elements:

1. Position extractor: as discussed in section 4.2 I

only need a small fraction of the whole dataset. This

application extracts all the position messages from

the dataset.

2. Unrealistic filter: as we will see later, there is a

considerable amount of noise in the dataset. This

application tries to filter this noise out.

3. RDP reducer: this application applies the Ramer-

Douglas-Peucker algorithm to the flights.

4. Flight splitter: The path of the flight is interpolated

over the positions points. The final visualization

application needs to know when the flight ends and

this application attempts splits the positions into

distinct flights.

4

5. Csv to json; The final visualization will work with

json data. This application will covert and

restructure the data.

Additionally, the last element will also take in the output

of another Spark application that extracts the call signs from

the dataset. The call sign messages are used to identify the

flights and the airlines they belong to. The outline of the

pipeline is shown on Figure 2.

Figure 2. The Spark application pipeline

4.4 Extracting the data
We saw in section 4.2 that only a small fraction of the

whole dataset is useful for this project. The java-adsb library

makes it easy to decode and tell the types of the messages.

This information is used to filter out the unnecessary data

and only keep the positions messages.

One would expect that a single position information is

stored within a single ADS-B message but that is not the

case. There are two types of positions messages: odd and

even. These messages need to be read and decoded in the

correct order to successfully extract the position information.

This is called the compact position reporting10 (CPR) format.

The general goal of CPR is to encode coordinate decimals

using less bits.

The java-adsb library provides a decoder to extract

position information from the messages. However, the

messages need to be fed to the decoder in a sequential

manner, which makes parallelization with Spark less

straight-forward. The messages first need to be sorted by

their time of arrival to the central server. Once the messages

are ordered, they are grouped by the ICAO24 identifier.

These groups are then distributed to the worker nodes by

Spark and the java-adsb library then decodes the raw

messages and returns the positions.

As mentioned before, from the resulting dataset I have

extracted the positions of the aircraft with ICAO24 3c674f

and used this sample for working in the local environment.

The positions of this aircraft can be seen on Figure 1.

4.5 Reducing data noise
At a quick glance at Figure 1 there is a big number of

noticeably out-of-place dots on the plot. After a closer

inspection these turn out to be noise in the dataset and

naturally this noise needs to be filtered out.

10 http://adsb-decode-

guide.readthedocs.io/en/latest/content/cpr.html

Figure 3. Data noise of the flight 3c674f

The main idea of the data noise reduction algorithm is to

check whether the speed needed to move from one position

to the next is too high for a plane to realistically achieve.

Calculating the speed is rather straight-forward since the

distance and the time is known. However, calculating the

distance between two spherical coordinates is not as simple.

It is better to first convert these coordinates to cartesian

coordinates. Although the planet earth is not a perfect

sphere, due to its scale and the small area of positions the

differences and inaccuracies are negligible.

In addition to checking the speed, it is also a good idea to

simply remove positions that are just too far away from

sensors or that are outside of the examined area which is

roughly Europe.

Figure 4. Positions points of the flight 3c674f after

applying the Ramer-Douglas-Peucker algorithm

An example result of running this algorithm on the sample

flight (3c674f) is shown on Figure 3. It is a plot of the path

by connecting the positions together. The red path includes

5

the data noise, while the blue path excludes it. The simple

algorithm clearly removes these red spikes, as a result

removing the data noise and creating a realistic path for the

flight.

4.6 Removing redundant information
Since there are practically no obstacles in the sky, once a

plane reaches its flight altitude, it will fly in a straight line

for the most part. While the plane is in the air it will keep

transmitting its location frequently. This creates a sequence

of points that can be approximated with a single line without

barely losing any information.

The Ramer-Douglas-Peucker algorithm is the most

suitable algorithm for this case. The purpose of this

algorithm is to simplify a curve defined by a set of points by

finding a similar curve using the subset of the points. The

exact algorithm will not be discussed in this paper. In short,

the algorithm finds and removes points from the set which

have a small effect on the curvature of the path.

Figure 5. Path of the flight 3c674f after applying the

Ramer-Douglas-Peucker algorithm

The algorithm has a single epsilon parameter which

controls the granularity of it. The bigger the epsilon the more

points will be removed and the less accurate the new curve

will be.

A plot of one of the results is shown on both Figure 4 and

Figure 5. It is clear from the former figure that the position

points became a lot more spaced out, especially where the

points formed a straight line. Comparing the path in Figure

5 and the blue path in Figure 3 one would not be able to

easily tell the differences. Due to the difference between the

scale of Earth and the scale of the plot, the small inaccuracies

are invisible to the eye.

4.7 Clustering positions
Since the final aim of this project is to create an animated

visualization if flights it is obvious that the animation will

involve some kind of interpolation of the position points.

Therefore, the positions of a single aircraft have to clustered

into groups where each group represents a single flight. The

positions in a single group will be interpolated but two

positions from different groups will not be interpolated.

Often there are large gaps in time between two sequential

positions. This gap is either due to the plane flying over an

uncovered area or because it is a completely different flight.

An algorithm is needed that is able to tell the difference

between the two and cluster positions into distinct flight.

Figure 6. Clustered positions of the aircraft 3c674f

There are multiple conditions that can be checked to

determine where the flight ends or cut in half.

• One obvious indicator are the surface position

messages. Aircraft only broadcast this message

when they are not airborne. Although this message

is a clear boundary between two flights, aircraft do

not always broadcast it when they land or before

they take off.

• The time difference between two positions is a

good indicator whether the flight should be cut or

whether is a need to further investigate. If the time

difference is small enough it is safe to assume that

the two positions belong to the same flight. If the

gap is too big it needs to be further investigated.

• If the time gap between to positions the application

tries to tell how the path would “look like” if the

positions points were to be connected with lines. In

particular it looks at the angles formed by the lines.

This algorithm is especially good at differentiating

two flights that fly in different directions. It clusters

the two positions to same flight if the plane stays

roughly stays on the same path.

Initial experiments yielded results shown in Figure 6and

Figure 7. Both plots contain red dots where the algorithm

detected the end of a fight.

6

4.8 Identifying flights
In order to enable flight filtering based on airlines, the

flights need to be identified and assigned to an airline. The

original dataset contains the so-called call sign messages

which are basically identification messages. These messages

contain the flight identifiers which are the flight codes one

would see on a flight schedule.

Figure 7. The positions where the splitter algorithm

detected the end of a flight

To reduce the size of the resulting data the extractor does

not simply decode all the messages. The same transmitter

can be used for multiple flights, as a result it will transmit

different flight codes at different times. Instead the extractor

marks timestamps when a transmission of a flight code starts

and when the flight code changes. This way the flight

identification data for the whole dataset was only 29

Megabytes big. After extracting the flight codes from the

dataset, matching them to the flights themselves is only a

matter of overlapping the time intervals of the flight codes

with the interval of the flights.

Generally, the first three characters of the flight codes are

the ICAO codes that identify the airlines. There are

exceptions in the cases of military aircraft and similar

outliers, but their number is not big enough make a big

difference. There are numerous sources on the world wide

web which all if not most of the airlines and their respective

ICAO. I have decided to use the tool developed by ICAO11

themselves as it is a very convenient REST interface12 to

query the airline name associated with the ICAO code.

4.9 Restructuring the data
When all the necessary data has been acquired it is

important to present it to the visualization client in a format

that can be quickly process while keeping the footprint to a

minimum. The animation visualization will be a web based

11 International Civil Aviation Organization

12 https://www.icao.int/safety/iStars/Pages/API-Data-

Service.aspx

application, so it makes sense to use the JSON format as it

basically represents a JavaScript object.

The main idea of restructuring the dataset is to use a

Structure-of-Arrays13 form instead of an Array-of-Structures

form. This restructuring can be thought of a transposition of

the data. Instead of having an array of objects where each

object contains the longitude, latitude and altitude

coordinates, the data is structured into an object that contains

three arrays. The arrays contain all the longitudes, latitudes

and altitudes and a coordinate is identified by the index of

the elements. This removes the redundant property names

from the JSON text effectively greatly reducing the size of

the files.

Another important aspect to consider is the format the text

representation of the numbers. All the numbers (timestamps,

longitudes, latitudes, altitudes) are double numbers.

Timestamps are rather large numbers, which Java represents

using scientific notation. In case of timestamps the scientific

notation actually uses more characters than normally writing

down the number. Furthermore, the positions broadcasted by

the aircraft are very precise and contain information up to

sixteen decimal places. Since the animation is rather large

scale, that kind of accuracy is unnecessary. As a result,

rounding all the numbers to the fifth decimal place and

removing potential trailing zeroes result in sufficient

accuracy and a much smaller footprint.

4.10 Animation techniques
The data is now ready to be used for an animation

visualization. There are two visualization techniques that I

have considered for this project the advantages and

disadvantages will be discussed in the section.

4.10.1 Generating an animation
As we saw in section 2 there are multiple videos about

flight animation have already been created. The animations

created by NATS are created using 3D software and

ItoWorld created their animation using their own software.

However, since there is a cluster available, it can also be

utilized to generate a video in a distributed manner.

In theory the worker nodes can generate frames for the

video by distributing the data by time. And when the workers

are done, the master node can collect the data and stitch

together the frames to create a full video out of it.

Unfortunately, this would need a lot more time as it requires

a lot of graphical programming skill. In the end I have

decided to create a web based application instead.

4.10.2 Interactive application
When creating such an application the main problem is

how will the data be fed into the visualization. The data set

13 https://www.youtube.com/watch?v=qBxeHkvJoOQ

7

is still not small enough to just download the full dataset to

the client computer and have it work on that. The application

needs to fetch parts of the dataset that it is currently

animation or that it will animate as time progresses.

The aim of this application is to be as interactive as

possible. It allows the adjustments to the speed of time. It

cannot allow to set the speed to high because the application

will not be able to keep up by constantly downloading the

data. It also allows filtering the flights by the airlines. These

aspects were all taken into consideration when the data

structure and the communication pattern were designed.

Figure 8. A frame of the animation

The flights are partitioned into 4-hour interval chunks.

This grouping is not as simple as one would think because

there are flights can overlap with multiple 4-hour intervals.

Another important thing to consider is that the application

allows quick jumping in time, so it has to know about the

flights that started in the past but has not finished before the

time the user jumped to. The simple solution is to cut the

long flights up into smaller flights and put these into

different partitions. In the dataset these will appear as

different flights, but in the animation it will look like one

single flight. This also solves the problem of jumping in time

because whenever the user quick jumps to another time, the

application will quickly load the corresponding partition that

contains all the flights that are currently airborne at that time.

To make the animation even smoother, the application

buffers the next partition in the background anytime one

chunk of flights start animation.

The animation needs a map as a background for us to be

able to tell where the planes actually are. Natural Earth14 is a

14 http://www.naturalearthdata.com/

public domain map dataset containing tightly integrated

vector and raster data. Using this dataset and a combination

of tools15 for conversion the D3.js library can draw the

detailed outlines of the European countries in SVG format

using the Mercator projection. The D3.js library is also used

to project the GPS coordinates on to the map inside the web

application.

There can be a lot of planes on the map at the same time.

In order to make the animation as smooth as possible the

planes are represented with a simple dot. The larger the

radius of the dot is, the higher the plane is in altitude. Figure

8 shows an example frame of what the animation looks like.

5. EXPERIMENTS
Some of the Spark jobs in the pipe have one or more

parameters and depending on this result they can yield

different results. Therefore, there is a need to conduct small

experiments with different input parameters to get the best

possible outcome of the pipe elements.

5.1 Position extraction
The message decoding and position extraction has no

input parameters, so this part of the pipeline does not need

much experimentation. However, it is worth considering the

scale of the size of the dataset in question.

OpenSky’s network of ADS-B receivers do not cover all

of Europe, only part of it. Yet in just a span of a week they

have recorded over 8 billion messages which has a size of

590 Gigabytes in a compressed format. After extracting all

the positions messages, that were about seven percent of the

whole dataset, and decoding the position coordinates the

resulting dataset consisted of more than 1.08 billion GPS

coordinates and occupied roughly 75.3 Gigabytes of disc

space.

If every single aircraft were to be equipped with an ADS-

B transmitter and the receivers were to have a coverage of

100% percent around the globe the amount of data produced

by these aircraft would be unimaginably high.

5.2 Noise reduction
The noise in the dataset manifests in the final animated

visualization quite spectacularly. In the initial versions of the

animation there were flights that seemingly fly across the

map with super speed. Naturally this meant that the noise

reduction algorithm was too permissive.

The first version of the filter had a relatively high-speed

threshold and did not remove positions that were out of

frame. This threw out about 33 million records from the

dataset which is only a very small fraction of the whole

dataset. The results of these were not good enough. After

greatly reducing the speed threshold and removing the out-

of-frame positions the filtering yielded way more realistic

results. But there were planes which were still seemingly

15 ogr2ogr, geo2topo

8

jumping back and forth in a single path. This particular

phenomenon happens very frequently over the Sardegna and

Corse islands. The cause of this is unknown but I would be

quite interested in finding out why are the positions so

inaccurate in this area.

5.3 Douglas-Peucker algorithm
This polygonal approximation algorithm has a single input

parameter called epsilon. Basically, the algorithm checks if

the distance of a point and a particular line segment is

smaller than epsilon or not. It will get rid of all the points

which are closer to the line than epsilon since these points

can be approximated with the line segment. The larger the

epsilon, the more points will be removed from the curve.

Few experiments were conducted with different epsilon

values and the outcome can be seen in Table 2. It is clear that

the Ramer-Douglas-Peucker is a very effective algorithm

when applied to plane trajectories. It can possibly remove

more than 99% of the dataset while keeping the plane

trajectories almost unchanged. This is the most important

element in the pipeline because without such a data

reduction and approximation the interactive animated

visualization would not be possible. If one would want to

achieve an even lower data size, the epsilon could be set to a

higher value and the path would still stay relatively

unchanged.

Table 2. Ramer-Douglas-Peucker experiment results

Epsilon Reduced data size

100 ~1.35%

200 ~1.03%

300 ~0.75%

In conclusion, I have decided that an epsilon of 300

produced a dataset that is sufficiently small enough to

continue working on the dataset in the local environment. It

is also small enough to prevent the web application from

being too slow by constantly loading data. As we have

previously seen in Figure 5. Path of the flight 3c674f after

applying the Ramer-Douglas-Peucker algorithm Figure 5 the

differences between the original and the reduced path is

practically invisible to the human eye.

5.4 Flight detection
The algorithm of flight detection is quite straight-forward

and as a result it did not require much fine tuning at all. The

algorithm identified a total of 126251 flights.

The flights also needed to be associated with an airline in

order to provide airline filtering. Using the ICAO application

programming interface, the algorithm was able to identify

76% of the flights leaving 30256 flights unidentified. The

main reason for a flight to be unidentified is that it is a private

aircraft as the algorithm was able to identify even military

aircraft. A small fraction of the results of the flight

identification is shown in Table 3.

Table 3. Airlines and the number of flights the belongs

to them

Airline Number of flights

Ryanair 382

Deutsche Lufthansa, A.G. 314

EasyJet Airlines Co. Ltd 248

Turk Hava Yollari (Turkish

Airlines Co.)

221

British Airways 218

Air France 178

Scandinavian Airlines System 150

KLM Royal Dutch Airlines 130

Alitalia - Compagnia Aerea

Italiana S.P.A.

129

5.5 The animation
Since it is a web based interactive animated visualization

and only parts of the dataset are loaded into memory at a

time, network communication speed is a key aspect to

consider. As discussed in section 4.9 the dataset is

partitioned into 4-hour interval chunks. The distribution of

the flights among these partition is shown in Figure 9 and the

size of the files is shown on Figure 10.

Figure 9. Distribution of flights between partitions. The

bars represent the chunks in a chronical order and the

Y axis is the number of flights

It is clear that this distribution is quite imbalance and some

chunks will load very quickly while other chunks will load

very slowly. If the flights were to be distributed equally the

it would be the time interval of the partitions that is

unbalanced, and the application would not have enough time

to load a chunk. Experimentation were made on the local

computer to see how long it takes to load chunks. An a

relatively fast internet connection the bigger chunks could

take up to 8-10 seconds to be downloaded and buffered.

0

1000

2000

3000

4000

5000

6000

7000

9

Measurements were made both when there were no flight

filters and there were a lot of planes on the screen and when

flight filtering was applied. The results show that the load

time is not affect by how many planes there are on the screen.

During these measurements caching was disabled on the

client and gzip compression was enabled on the host server

that is located in Frankfurt. It is concluded that unless the

internet connection is very slow, there should always be

enough time for the application to buffer the flights.

Figure 10. JSON file sizes of the partitions. The bars

represent the chunks in a chronical order and the Y axis

is the size of the file in bytes

6. CONCLUSIONS
The final product of this project is a fully featured web

based animated visualization of flight position ADS-B

messages. The application provides an interface to control of

the speed of time, to jump between times and to filter the

flights by airlines and flight codes. With the previously

detailed setup and the efforts put in into the project that main

goal was successfully reached.

All the questions presented in section 3 have been

answered during the process of research and development of

this project. I was able to process and extract flight

information from an enormous dataset of ADS-B messages

using existing Java tools and Big Data technologies on a

large cluster computer. The size of the dataset was reduced

to less than 0.01% of the size of the original dataset while

keeping all the necessary information available or

reproduceable. The flights were identified with the help of

an external API using a separation algorithm. And finally, an

interactive animated visualization was created that can run

on most of personal computers because it does not use a lot

of resources.

7. FUTURE WORK
Watching the final product running in action there are still

obvious imperfections in some of the algorithms. The paths

of a few flights are not smooth, and they seem to jitter or

jump from one place to another midair. There are still a few

flights that seem to travel way faster than the fastest

commercial airplane because there is still very little noise in

the dataset. Due to the inaccuracies of the flight detection

algorithm, some aircraft are shown to stand on the surface

for quite a long time because the flights before and after were

not separated.

Therefore, the obvious next step is to improve on these

algorithms and make them cleverer and use the existing

dataset in a better way. For example, the flight detection

algorithm could use an external dataset of airports to

determine whether an aircraft has landed or not. At the time

of writing Natural Earth has a large database of airports that

can be easily filtered to extract the larger ones.

There are also many options to increase the interactivity

of the visualization. For instance, the airport data set can be

used to filter the flights by the departure and arrival airports.

The airports or the cities they belong to could be integrated

into the map of the application. Right now, it is very hard to

find out any kind of information about the flights on the map.

Using external data sources, the application could provide

additional information such as the schedule of the flight, the

code of the flight, the path it is taking in the air or whether it

was delayed or not.

Since more and more aircraft are adapting to using ADS-

B transmitters more and more data will be produced by

planes. Additionally, the coverage of receivers will only

grow with time meaning that faster and better will be needed

to process the large amount of data collected by these

receivers. In the future there will be a need to also adopt

existing technologies to the growing amount of data. This

project will have to be improved for it to be able to handle

such a large dataset.

Finally, this project could be used in future researches to

identify flight patterns, detect aircraft irregularities or

military aircraft. Similarly to the works discussed in section

2.1 image based flight queries and other techniques could be

combined with this project to gain a deeper insight into the

dataset.

8. REFERENCES

[1] C. Hurter, S. Conversy, D. Gianazza and A. C. Talea,

"Interactive image-based information visualization for

aircraft trajectory analysis," Transportation Research

Part C: Emerging Technologies, pp. 207-227, October

2014.

[2] J. Vaughan, D. Whyatt and G. Brookes, "A parallel

implementation of the douglas-peucker line

simplification algorithm," Software: Practice and

Experience, pp. 331-336, March 1991.

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

