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ABSTRACT

Be it for business or for pleasure, road travel constitutes a
significant part of the lives of many in modern society. The
environment in which we drive can have a large impact on
mental health and happiness. Providing a method of finding
scenic routes between two points may help people identify
ways to increase the enjoyment of their commute and to
decrease their levels of stress. While previous research has
attempted to provide such methods, all have relied on meta-
data and volunteered geographic information (VGI).

In this paper, we describe our attempt to automatically
classify scenic and non-scenic routes based on LIDAR point
cloud data using VGI only as a form of ground truth. While
we achieve limited success using LIDAR data we believe we
succeed in automatically identifying scenic routes through
nature using a method with a higher reliance on VGI. We
extract features using enriched core base maps to obtain
categorized scenic segments. We match and filter these using
aggregated density points of 1.6 million planned itineraries
making up billions of coordinate pairs. The result is the
most popular scenic segments in Europe that people have
planned routes to. in Addition, we use these scored routes
to perform several additional experiments including point of
interest (POI) ranking.
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1. INTRODUCTION

It is a common saying that the journey can be as impor-
tant as the destination when it comes to travel. Even in our
day to day lives the journeys that we undertake have an im-
portant impact on our wellbeing. For example, an unpleas-
ant daily commute can lead to a decrease in mental health
while people who enjoy their commute report increases in
overall happiness [8, 7]. Two of the factors which most
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strongly influence the enjoyment of driving are the scenery
of the drive and the freedom experienced by the driver [9].

One explanation for the fact that a third of drivers report
being dissatisfied with their commutes, then, is that the
routes that they choose to drive on are not scenic. Why is
this? It is possible that drivers choose monotonous routes
over more scenic alternatives but it may also be the case
that drivers are simply not aware of scenic routes to their
destinations. Indeed, resources on which routes are scenic
and which are not may not be available for all regions and
such information may be hard to discover through methods
other than word of mouth and time-consuming trial and
error.

In this paper, we attempt to find a method to compute
scenic stretches of road using the Apache Spark big data
framework. To this end we use data from TomTom, a Dutch
digital mapping company and manufacturer of car naviga-
tion systems. We combine this data of routes planned using
the TomTom MyDrive route planning system with a dataset
extracted aesthetic routes from the TomTom basemaps. Ad-
ditionally we perform an experiment of scenic route detec-
tion using point cloud elevation models.

Our goal is to create a visualisation of the popular aes-
thetic tourist routes in Europe split into several categories
including routes of natural, cultural, national and regional
significance. By providing a map of scenic road segments
we aim to make it easier to find and plan trips along the
most scenic stretches of the European road system. We be-
lieve such a visualisation can also be useful to both tourists
and long distance commuters. Ultimately, allowing people
to choose to drive on more scenic routes may prove a boon
to their happiness and mental health regardless of their mo-
tivations.

To gain insight into existing methods we discuss previous
literature on both classification methods and relevant big
data technologies in Section 2. We expand and detail our
research questions in Section 3 and we describe the data sets
used in Section 4. The methods and programs developed to
process and visualize these datasets are described in Section
5. We briefly discuss experiments done in Section 6 and
provide concluding remarks in Section 7.

2. RELATED WORK

While substantial effort has gone into researching the ef-
fects of unpleasant commutes [8, 7, 9] there is relatively little
published research on what constitutes a pleasant driving
environment. In this section we address factors that de-
termine the scenicness of a route and attempt to classify



previous methods of finding scenic routes according to vari-
ous different levels of human effort. Additionally, we briefly
touch upon technical methods that can be used to process
data at large scales, both generally and specifically for geo-
graphical data.

Alivand, Hochmair, and Srinivasan [1] present a model for
the scenicness of routes and find that accurate classification
of scenic routes can be achieved according to a small number
of variables; the presence of nearby bodies of water, moun-
tains, parks and the level of urban development in the area.
These variables are determined to be the most significant
out of a longer list of variables of which some are highly
niche (such as the presence of places of worship). While a
small sample size of 96 routes, all of which in California,
does not confirm that these variables are generally usable,
they provide a starting point for new models in all but the
most extreme regions of the world.

A method of finding scenic routes through cities is given
by Quercia, Schifanella, and Aiello [3]. The method used in
their research involves crowdsourced classification of images
of streets in cities. Such images are presented to volunteers
who then score the scenicness of the images. The scenicness
of road segments is then represented in a graph format such
that a scenic route can be found between any two points in
the city. The authors address an important shortcoming of
their research, the fact that images must me manually clas-
sified, by also considering metadata on the popular photo
sharing site Flickr. The sentiment of comments and the
number of favourites are combined with geotags to auto-
matically compute the scenicness of locations. While the
authors achieve accurate results using this method there is
still a strong reliance on user-entered data in the form of
photographs. We conclude that such a method can work
well for cities but may fall short for less frequently visited
or photographed areas.

A similarly photograph-based approach is presented by
Runge et al. [10]. Here, images are automatically classified
using deep learning techniques to identify six different fea-
tures: mountains, fields, bodies of water, nature, sightseeing
locations and non-scenic features. The proposed Autobahn
system retrieves images from the Google Street View ser-
vice which provides panorama views of roads all around the
world. While human effort is required to create and update
the panorama images, there is no reliance on human clas-
sification of scenicness through comments or favourites as
there is in the research of Quercia, Schifanella, and Aiello
[3].

The previously mentioned research by Alivand, Hochmair,
and Srinivasan [1] does not rely on photography and instead
classifies the scenicness of routes using points of interest and
polygons extracted from various datasets. While some such
datasets may be created partially automatically they require
human moderation to ensure accuracy. We are not aware of
any scenic route classifications methods that are fully au-
tomatic and that do not depend on volunteered geographic
information (VGI) or metadata. In an attempt to develop
such a method, we will now also briefly explore methods for
big data engineering in general and for geographical data
specifically.

Apache Spark is a powerful tool for analysis of very large
data sets [11]. Spark uses distributed data structures of
various levels of rigidity to provide high and scalable perfor-
mance. Specifically, resilient distributed datasets (RDDs),

DataFrames and simple DataSets are read-only data struc-
tures that can be operated on, in memory, by the machine
that also stores the data. This minimizes the need for data
transfer between machines in a cluster and can potentially
lead to much higher performance compared to similar tech-
nologies such as Apache Hadoop.

Geospark [4] is a Spark library for the processing of geospa-
tial information. Geospark features support for different
geospatial datatypes such as points, lines and polygons and
can store RDD’s of such types. However, it must be noted
that the number of supported input file formats is limited
and does not include the LAS format which is commonly
used for point cloud data. Geospark has support for a wide
variety of spatial operations and partitioning methods in-
cluding distance-based join queries for Spark SQL and quad-
trees.

A different Spark library specifically designed to support
point cloud data is IQmulus [12]. While IQmulus relies on
outdated versions of the Spark framework at the time of
writing it does have support for LAS, XYZ and PLY file
formats. An important weakness of IQmulus is the lack
of documentation that is available. Additionally, there is
no explicit support for very large point clouds which are
split into multiple files. Boehm, Liu, and Alis [5] detail a
procedure which can be used to load such data sets into
Spark in their entirety. Similarly, Liu and Boehm [6] show
a method of loading split point clouds into a Spark pipeline
specifically for classification purposes.

3. RESEARCH QUESTIONS

The goal of this research is to identify scenic routes, and
determine the most popular scenic routes by analysing a
large set of saved planned routes from TomTom MyDrive, a
route planning service.

1. Which of the routes stored in our data are the scenic/tourist

routes?

(a) Can we automatically classify scenic routes using
LiDAR point cloud data?

2. What are the most popular routes planned within the
data set.

3. What are the most popular scenic routes within the
data?

In order to answer the first research question, we need to
identify the scenic routes within the 1.6 million saved routes
that make up the data set. First, we need to determine what
constitutes a scenic/tourist route, and then determine which
roads are routes are scenic. As a sub-question, we wish to de-
termine if this can be automatically classified using LIDAR
point cloud data. Once the first question is answered, we
need to determine what the most popular routes are within
the dataset, and finally apply this popularity metric to fil-
ter the scenic routes to find the most popular scenic routes
within the data set.

In order to address the research questions, specific soft-
ware, tools and data sources are required. For this project,
we will be using Spark, TomTom MyDrive routes, AHN Li-
DAR Point Clouds as well as TomTom base map informa-
tion. The results will be presented in this paper, and within
a web based visualization.



4. DATA

This research is conducted on three primary data sets.
The first is TomTom MyDrive data, which consists of 1.6
million saved routes that users have planned using the My-
Drive Route Planning website. The second major dataset
used is locations of scenic/tourist road features extracted
from Tom Tom Base Maps. The third set of data is the
Actueel Hoogtebestand Nederland (AHN2/AHN3) LiDAR
point cloud data of The Netherlands.

4.1 TomTom MyDrive

The main set of data is the TomTom MyDrive data, which
spans 2013-2016 and consists of 1.6 million saved routes,
with roughly 1.5 billion coordinate path points and is about
150GB in size. The data is stored in MongoDB, and com-
pressed using the WiredTiger storage engine. The coverage
of the data is primarily within Europe, making up 1.4 mil-
lion of the total 1.6 million saved routes. Due to this, our
analysis will focus on the European routes.

Itinerary

_id: Object

_id.uuid: string

classMame: string

name: string

mainTravelMode: string

lengthinMeters: number

durationinSeconds: number

synchronizeNavCloud: boolean

segments: Array

visibility: string

costModel: string

taggedMetaData: Object

Figure 1: Schema Analysis of TomTom Route Itinerary Data

Route distance and time features such as LengthinMetres

and DurationinSeconds(integer);

synchronizeNavCloud Identifies if the route was sent to
a TomTom GPS device or just saved as a planned route
in MyDrive

Name features such as Name of Route (String); Route ID
(String):

Cost Model Cost model for route such as Fastest, thrilling
or exact;

Visibility Boolean value of public or private. Currently
public routes are only from the route library of 100
scenic routes.

Segments Array of coordinates. Segments makes up the
collection of longitude and latitude coordinates em-
bedded as path points and waypoints. A single saved
route can have several hundred coordinate pairs.

4.2 TomTom Base Map Extracted Layers

TomTom Base Maps provide a valuable source of detailed
map information which are enriched by map makers who
drive around and note specific names or features associated
with a stretch of road. Within the context of discovering
scenic routes planned within the TomTom MyDrive data,
the base map data provides a good source of information.
The map data was obtained from a compressed vector tile
format, and was in total 28GGB and was exported as layers
from the map. The scheme of the map data is shown below.

+layers. Array of TileLayer

+Tile has TileLayers

TileLayer

+version: integer
+name: string

+extension: integer

+eatures: Array of TileFeature
+keys: Ariay of strings
+values: Array of TileValue

\ +TileLayer has TileFeatures

+TileLayer has TileValues TileFeature

TileValue +id: integer

+tags: Array of integers

+type: Paint or Line or Polygon
+geometry: Array of integers

+ualue: stiing or integer o double of bool

Figure 2: Schema of TomTom Base Maps Data

The features and name attributes are of particular use for
our research as it contains detailed map data of landmarks,
points of interest, area and road information as well as car-
tographic Labels, if it’s of cultural, or regional importance
and details of tourist roads and nature that will be useful
in determining where scenic/aesthetic stretches of road may
exist.

4.3 GPSies

An additional sub data set of the TomTom MyDrive data
was discovered during exploratory analysis. The data origi-
nates from GPSies.com, a website built for route recommen-
dations. 7000 routes were discovered within the TomTom
MyDrive data as users upload routes as GPX files to My-
Drive in order to send the route to their PND (personal Nav-
igation Device). The routes were discovered due to the fact
that when a user exports a route from the GPSies.com web-
site as a GPX file, it automatically adds the word gpsies.com
at the end of the route name. This data was, therefore, eas-
ily extracted by querying routes that contain ’gpsies.com’.

The routes from GPSies.com are routes that are highly
ranked and recommended as being particularly enjoyable or
scenic. They feature a star based ranking system. While
this ranking is lost when the route is saved into MyDrive,



we aim to create a new ranking system through clustering
and aggregation to find the top routes from the GPSies.com
subset.

4.4 LIDAR Data

linear vegetation elements such as tree lines and hedges
in rural areas across Europe could be associated with roads
that are considered to be scenic, or aesthetic. The ratio-
nale for utilizing this data while searching for aesthetic or
scenic routes is that these features are considered being a
part of the cultural landscape and function as corridors into
roads less traveled that that are more enjoyable; the goal
of this project and analysis. An inventory of the spatial
distribution of these features and elements can, therefore,
be considered a valid approach to automatically detecting
scenic routes.

LiDAR point clouds such as AHN2 and AHN3 are increas-
ingly available at city, regional and national scales [13]. The
3D view of the LiDAR data makes them particularly useful
for detecting vegetation, as the geometric properties of the
LiDAR points and their neighbors can be used to first clas-
sify vegetation, and further classify low vegetation and trees
based on the height difference.

There are two important steps in classifying LiDAr data:
(i) feature extraction and (ii) classification using a machine
learning algorithm. Feature extraction is the process of get-
ting additional information of each point. We did that by
looking at how the point is located in relation to its sur-
roundings. This is done by defining a neighborhood of a
point (for example the closest 15 points) and quantifying
the spread of points using a structure tensor. With these
extra features we will train a machine learning algorithm.
[14]

5. PROJECT SETUP

The project set up describes the processing pipeline and
steps taken to meet the research question objectives and
find popular scenic routes within the 1.6 million MyDrive
routes. The overall pipeline consists of analysing the data
through exploratory analysis, using the TomTom Basemap
data to coarsely filter out relevant categorized roads that fit
within a tourist/scenic road category, analysing the route
data for normalised density of planned routes to create a
popularity metric, and finally, matching the filtered scenic
tourist routes with the aggregated/density clustered routes
in order to discover the most popular planned to routes users
have planned along scenic roads.

In addition to the above project set up, an experiment
was conducted on the LiDAR point cloud data to automati-
cally detect vegetation, as a process to automatically locate
scenic routes. A wide variety of tools were utilised for anal-
ysis including Spark with both Java and Scala, GeoSpark,
Babylon, Tippecanoe and Python (using the GeoPandas,
scikit-learn, numpy, Matplotlib and Pandas libraries).

5.1 LiDAR Experiment Set Up

The project is setup by selecting a small study area. 3
shows the study area selected. This is an area of 1.8 square
million meters located near Beesd in The Netherlands. The
area was selected by searching for an area with an agricul-
tural landscape and vegetation by looking on satellite im-
agery. A random forest algorithm was selected. Training

and testing data was created by manually segmenting areas
of vegetation and irrelevant.

Figure 3: Study area using AHN3 data in The netherlands

The parameters of the random forest (max depth, max
number of features, min sample per leaf and min sample
per split) was optimised using a cross validation grid search.
To assess the accuracy of classification a confusion matrix
will be used. This matrix will show the predicted and actual
classes of the tested pixel/points in order to give an overview
of performance and quantify the errors as well as precision
and recall. [16]

5.2 Extracting scenic segments

Due to the fact that we have access to private data from
the core maps of TomTom, we decided to create a dataset
by extracting stretches of road and routes from the maps
based on enriched features that are recorded on the maps.
For example. the maps indicate stretches of road that are
coastal, or contain mountain passes, forests and waterways.

A scenic route is a stretch of road in a beautiful coun-
tryside, often accompanied by panoramic views. Typical
examples are coastal roads or mountain passes. The routes
within the scenic, regional and cultural category . The other
types are genuine routes that were considered relevant as
tourist/scenic or aesthetic routes that are more interesting
than regular roads . Scenic and nature routes are generally
smaller in size and do not have a name.Details on how routes
were selected for each category are detailed below.

Scenic Route A stretch of a road that is generally recog-
nized as picturesque due to panoramic views, these are
extracted stretches of road that are coastal, mountain-
ous and excludes main roads;

Cultural Route A route connecting certain important cul-
tural or historical sites - e.g. Bier und Burgenstrasse.
All marks with historic/cultural /famous features were
selected to create this class.

Nature Route A route connecting or running through cer-
tain nice natural surroundings, mountains, forests, na-
tional parks. These are extracted stretches of road.
The difference between scenic and nature is that na-
ture is a stricter category only containing nature ele-
ments such as mountains, forests, national parks and
water.



Regional Route A real route within a country that is run-

ning through a region or connecting region-specific places

of interest - e.g. Circuit des Vosges du Nord.;

National Route A route connecting two destinations or
connecting national highlights - e.g. Deutsche Ferien-
route Alpen Ostsee.

5.2.1 Extracted Segments

Within our definition, an aesthetic or scenic route is a
road, or is a chain of road parts that is preferable for a
particular reason. This can be:

1. A preferred route from one point to another due to the
environmental features.

2. Leading from one interesting place to another,

3. Running through a specific region, or along nice natu-
ral surroundings.

4. Routes that carry a name referring to a specific theme
or subject, which is the origin of such a route. For
example: ”Deutsche Fachwerkstrasse”.

While this process of extracting aesthetic, scenic and in-
teresting routes based on enriched map features, this pro-
cess does not give us any granularity on which route may
be worth recommending to a user. It only provides a first
filtering step.
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53 1

32 1

51

c

Figure 4: All Scenic Routes in Germany (source
TomTom Base Maps)

5.3 Route Popularity
5.3.1 Data Pre-Processing

Following exploratory analysis, the following pre-processing
and filtering was conducted on the TomTom itinerary rout-
ing data.

1. The data format is not correct GeoJson, which re-
quired additional filtering in order to parse the coordi-
nates correctly from the Json output. The routes were
stored without a correct FeatureCollection for coordi-
nates as per the GeoJson standard.

2. Remove routes that contain "Home’ and "Work’ planned
with the ’fastest’ cost function for route planning. These
routes are unlikely to be scenic or tourist roads.

3. Remove routes planned with the ’truck’ option. Truck-
ing routes are limited to driving on major roads that
are truck friendly. The aesthetic roads we’re looking
for are unlikely truck friendly, so the decision was made
to exclude these routes

4. Filter routes that contain a hard stop with Location-
Info, which contains POI (Point of Interest) informa-
tion which is categorized (major tourist attraction, ho-
tel etc.). Unfortunately, only 1000000 of the 1.6 mil-
lion planned itineraries contain any location info. This
filtering was used later for experiments with point of
interest ranking.

5. Deal with missing data issues: several routes uploaded
from GPX files contain 0, 0 longitude and latitude co-
ordinates. All routes with no, or 0, 0 coordinates were
removed from the data.

6. Extracting and filtering out the GPSies.com itineraries
as previously described within the Gpsies subsection
with section 4

7. Filtering the data by geospatial coordinates within a
particular country in order to process each country
separately. The reason for doing so is to address the
issue that the data is unevenly distributed per country
and we decided to normalise per country.

5.3.2  Clustering and Aggregation: Popularity Rank-
ing

Since the MyDrive route itineraries cover almost the entire
road network, and the extracted scenic/interesting routes
covers a lot of roads as well, it become clear that the pop-
ularity and density of planned routes is a valuable resource
to utilise in order to identify the popular scenic segments of
road. In addition. due to to the fact that the data distri-
bution per country is uneven, we needed to normalise the
density clustering analysis per country or region (eg Ger-
many and Scandinavia).

Within the data set, there’s two features that are partic-
ularly useful to generate a popularity ranking that we could
use to find the most popular scenic routes. Specifically, these
are waypoints and paths. A waypoint is a coordinate pair
which is associated with a stop someone has planned along a
route, or the final destination. Paths on the other hand are
coordinate pairs that make up a GeoJSON linestring that
represents a route. A single route has a least one waypoint,
but may have hundreds of paths. In developing a ranking
score, we gave preference for the stops users made in the
form of a waypoint coordinate pair by multiplying the final
score result for each waypoint coordinate pair by two be-
fore merging the final files. In this way, waypoints, and the
possible points of interest that they represent could also be
identified.

5.3.3  Clustering and aggregation

Following the data pre-processing steps outlined in 5.3.1,
the data is split into JSON files containing the waypoints
and paths for each country /region.



Within the JSON file, any array of two or more numbers
will be treated as a longitude-latitude pair. This includes
GeoJSON Points as well as the points that make up GeoJ-
SON MultiPoints, LineStrings and MultiLineStrings. Care
was taken that no other numbers would be mistaken for a
longitude-latitude pair.

In order to provide a ranking metric for the 1.4 million
routes the process was as follows:

1. Using the GeoSpark library we would like to find all
the waypoints and paths within a particular area

2. Leverage the SpatialRangeQuery() provided by GeoSpark

to return all the waypoints and paths in a particular
region Eg Netherlands

3. Create a spatial KNN (K-nearest neighbour) query,
which contains two phases of selection and merging.
It takes the resulting partitioned SRDD from (1) and
a point P and number K as inputs [18].

4. After the selection phases, we construct k-means clus-
ters in order to reduce the densities and count points.
GeoSpark merges results from each partition to the
nearest K elements that have the shortest distance to
P. the nearest k elements that have the shortest dis-
tances to P and outputs the result [17].

5. We then compute the z-order index of each point, the
same index that is utilised to divide maps into tiles.
The densities can then be manipulated along a lin-
earizion of the point as opposed to computing it within
high dimensional space

6. the purpose of computing a z-order score is for visu-
alisation of the popularity densities. Points that are
about a pixel apart at zoom level n on screen are
around 2(64=2*(+8) apart [20] . The end result is
instead of a continuous density function, you have a
series of discrete points with an accompanying density
score. With this score we perform our match and filter
using our scenic ground truth as will be discussed in
section 5.3.5

5.3.4  Results of clustering: popularity aggregation

A byproduct of performing the analysis per country is that
we end up with popularity of planned routes per country,
allowing us to see where users from each country plan routes
to. The results of this are interesting, and an example of this
is shown below. The routes were separated by specifying
a spatial query with waypoint within a particular country.
The example below in 5 demonstrating this in the case of
The Netherlands.As can be seen in the figure, the data shows
that Spain and even Turkey are popular destinations for
people planning routes from the Netherlands.

5.3.5 Scenic Matching and Filtering

We propose a matching problem as follows: given a file of
GeoJSON objects representing paths and a file of annotated
coordinates, we wish to output a file of all points, with an-
notations, from the second file which appear at least once in
any path in the first file. To this end, we first transform the
GeoJSON file into an RDD of points. Since Spark has native
support for files where each line is a JSON object we can
immediately load the GeoJSON objects into a dataframe.

Figure 5: Popular routes in The Netherlands

This ensures that a column exists which contains an array-
like type containing the points. Using the explode command
we can then expand these arrays to create a new dataframe
where each row contains a single point. By selecting a subset
of columns from this dataframe and applying a set schema
we can achieve a program state where we have access to two
datasets containing one spatial point per line.

To match points between these two datasets, it may be
tempting to perform a simple SQL inner join when both the
latitude and longitude of two points are equal. However, due
to the precision of the spatial coordinates of the dataset, it is
highly unlikely that two measurements of approximately the
same point in space will have exactly the same latitude and
longitude. Thus, we must perform a fuzzy inner join on the
two datasets. We propose three different ways of performing
a fuzzy join on coordinate data; we can either (a) use a
library such as GeoSpark to determine approximate equality,
or (b) join on multiple conditions using calculated minimum
and maximum latitudes and longitudes, or (c) round the
latitudes and longitudes with some level of precision and
perform an exact join on the rounded value. We believe
that the latter option provides a good compromise between
performance and simplicity; we round coordinates such that
they uniquely represent points at distances of approximately
10 meters.

The end result shown above in figure 6 is visualised to
show the density of popular routes in the same manner dis-
cussed previously in 5.3.3. The higher density points have a
brighter colour to represent them and show the most popular
locations of planned routes within the scenic nature areas,
in this case. The same was process was completed for each
category as previously defined in 77

5.4 Visualisation

As a final visualisation result we produced an interac-
tive visualisation of the popularity of routes across the de-
fined aesthetic categories, namely nature, scenic, cultural,
national and regional as detailed in 5.2. The visualisa-
tion contains a base map of 1.4 million European itineraries
with density clusters in order to visualise the density of



Figure 6: Scored Nature Route Matches in Europe

routes. We then allow comparison of the 1.4 million Eu-
ropean itineraries with the matched aesthetic routes which
can be selected by the user. The user selects an aesthetic
category and then is able to drag across an object to per-
form an X-Ray like comparison between the clusters of all
European routes, and the clusters of popular routes within
a scenic category that was the result of our analysis. We
also included a GPS coordinate when hovering over with
the mouse to allow easy lookup of any area on the map.
We utilised a Javascript library called MapBox GL JS to
produce the maps, with data stored in an MBTiles format,
which is a file format, or technically a SQLite database for
storing map tiles. The MBTiles are stored in MapBox Stu-
dio to provide a lightweight responsive static HTML page.

6. EXPERIMENTS RESULTS

In this section we briefly explain the experiments results.
We ran all our experiments on a TomTom OpenCloud Hadoop
Cluster and on the SurfSara Hadoop cluster of 90 machines,
720 cores and 1.2PB of storage as well as our personal lap-
tops.

6.1 LiDAR Classification Experiment Results

After performing classification of vegetation, the results
of the test is shown in figure 7. The accuracy of the classi-
fications are presented in a confusion matrix (table 1). We
also show the measure for unbalanced data sets in table 2.
[15)

The ROC-AUC of 0.95 demonstrates that the two classes
classified separately well. This is further indicated by the
Matthews correlation coefficient of 0.59, indicating a posi-
tive correlation between predicted and observed classes. The
confusion matrix shows a recall of 0.97 for the vegetation
class and 0.72 for the non-vegetation class.

Based on 8 which shows the different features, the most
important feature for the model is the number of returns
feature when filtering out vegetation. This is due to the fact
that vegetation is the most common object scanned which
produces multiple returns from the ariel LidAR scanning

Figure 7: A map of the classification results.

Table 1: A confusion matrix showing the predicted classes
against the actual classes of the 10 fold cross-validation ac-
cumulated.

Predicted Vegetation Irrelevant Recall
Actual

Vegetation 1159762 23438 0.97
Irrelevant 6416 16706 0.71

Table 2: Assessment of the accuracy using the average
ROC-AUC, MCC and geometric mean of the 10 fold cross-
validation.

Metric Score
ROC-AUC 0.95
MCC 0.61

Geometric Mean 0.83

process. It is, however, not the only objects which produce
multiple returns. The power line for the railway produces
a high multiple returns rate. Conversely, on the edges of
vegetation boundaries there’s only a single return. The other
features are used in combination to train the random forest
algorithm.

While this method and the AHN3 data is suitable to clas-
sify vegetation on samples of data, it was not successful
enough to be a viable method to classify scenic routes due
to the limited data coverage of AHN3, and the fact that
there is very limited open, high quality liDAR data across
Europe.

The method could, however, be used as a feature that,
along with several additional features, could train a machine
learning model to classify scenic routes. The AHN3 data
would be better as it includes a number of features that
are not included in AHN2 data, however, the AHN3 data is
incomplete. The most important two being multiple returns
and intensity information. Particularly multiple returns are
very useful when classifying vegetation as shown above as
vegetation often causes multiple returns when scanning with
a laser. [15]
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Figure 8: The importance of each feature in the classifier,
based on the mean decrease in impurity by the feature.
Higher is more important.

6.2 POI Ranking Experiment

As an additional experiment, we tested to see if it would
be possible to rank points of interest or POIs by using our
count metric derived from waypoints. For example, in order
to locate the most popular hotels or restaurants. Using the
category search API a search was made within the Noord-
wijk region and 100 hotels were retrieved from the ’hotel’
category and the same match and filter process was applied
against the aggregated route data. This is shown below in
9.

Figure 9: 100 Hotels ranked in Noordwijk

While this approach provides a ranking for hotels it is
not a thorough approach and is limited by several factors.
Firstly, the data was not separated by seasonal periods which
can be a large factor in a particular hotels popularity. Sec-
ondly, popularity of planning a route to a hotel may be
affected by the presence of other points of interest on the

same property, such as restaurants. Additionally, there’s no
information about the quality of the hotel, or star rating.
We believe this score ranking approach could be used in
combination with other data sources to train a supervised
learning to rank algorithm. [19]

6.3 GPSies.com Aggregation

As previously discussed in section 4.3, a subset of routes
was found within the data during data exploration and we
aimed to aggregate this data separately in order to re-rank
the data, as we lost all granularity of the gpsies routes when
the GPX files were uploaded and saved into our dataset.

Figure 10: Heatmap of GPSies.com routes with score

The heatmap plot shown in figure 10 shows the results of
the aggregation of the gpsies.com data. We were able to cre-
ate density clusters based on the saved routes. These routes
themselves could be a good source of scenic routes due to
the fact that the website is dedicated to finding worthwhile
routes to explore and has a star rating for each route. We
did not investigate our results further as this was a side ex-
periment and out of the scope of our main project set up for
addressing the research questions.

6.4 Evaluating Scenic Route Classification Re-
sults

Our main project set up was completed in order to at-
tempt to classify scenic routes across different categories,
and find the most popular scenic routes in order to ad-
dress our research questions. Our conclusion and assess-
ment of meeting our research questions is discussed below
in 7. Within this section we evaluate the results of our scenic
classification.

The top ten scored results within each of the categories,
namely: scenic, nature, cultural, national and regional is
included within the appendix 7.1. The latitude, longitude
and score is included for each category. These represent
the pair of coordinates with the highest score after perform-
ing the filter and matching algorithm to match the overall
route popularity and the extracted scenic segments. A 2D
histogram heatmap of the results id shown in 13



We used Google Maps and TomTom streetview services in
order to visualise and validate these coordinate pairs with
real life photos of the points. We display the top three points
from the nature category as shown below 11 as well as the
top three results in the culture category 12 in order to show
our positive and negative results. The scenic category is
similar to our results from nature , and national similar to
the results from cultural.

The results demonstrate that the process worked in match-
ing popular and scenic segments, however, the results in
terms of their scenicness are subjective. In our opinion the
results from the nature category are compelling, and it’s
clear why they’re popular areas for routes being planned.
The culture category results are less appealing, primarily
due to the fact that while the roads are culturally signifi-
cant in some way, they are also popular main roads used to
travel on.

(a) Via Strada Statale 38 dello Stelvio, Lombardia, Italy (source:
TomTom Cartopia)

(b) OtztalstraBe B186, Tirol, Austria (source: TomTom Car-
topia)

(¢) Elsewhere on the Otztalstraie B186, Tirol, Austria (source:
Google Streetview)

Figure 11: The three most scenic routes in the nature cate-
gory according to our algorithm.

7. CONCLUSIONS

Using the data and approach we were not able to fully
answer our research questions, although we did partially ad-
dress them. We were not able to find which routes are scenic
within our itinerary routes and automatically classify them,
but we were able to find scenic routes within our data as
well as create density clusters of the most popular routes
and apply these to scenic routes. Our experiments with

(a) BundesstraBe 297 near Kirchheim unter Teck, Baden-
Wiirttemberg, Germany (source: TomTom Cartopia)

(b) Bundesautobahn 61 near Waldorf, Rhineland-Palatinate, Ger-
many (source: TomTom Cartopia)

(c) Bundesautobahn 61 near Mendig, Rhineland-Palatinate, Ger-
many (source: Google Streetview)

Figure 12: The three most scenic routes in the cultural cat-
egory according to our algorithm.

POI ranking and using LiDAR point cloud data show the
data could yield a result given additional data and extensive
model training. In our view, the result we achieved given
the research time constraints provides moderate success at
addressing the research questions. We have successfully cre-
ated popularity clusters for over 1.4 million itineraries within
Europe and applied this to a set of extracted scenic routes.

As the results show in section 6.4, the top rated scenic
and nature locations are within what most would consider
very scenic and aesthetic locations. Although we admit this
is a subject question, our top results feature mountainous
panoramic views with trees and nature primarily located in
the popular greater Alps region. Specific routes are also
found in the data, such as the Keukenhof flower route in
The Netherlands which shows up as one of the most popular
routes within the Regional category.

We also note a few problems with our results. The so-
lution is only scalable given enriched map data to extract
ground truth, as well as planned itineraries within the region
you’re assessing. The same is true, however, for other ap-
proaches. Using LiDAR, satellite or images to classify scenic
routes would require high quality data sources in all regions
and adequate training data which would require manually
labeled images. We also note that training a model for iden-
tifying scenicness will not generalise well. Scenic routes in
Spain do not look the same as in Russia for example.

Additional problems with our results is that the cultural



Figure 13: 2D Histogram Heat Map of Scenic Routes

and national category are arguably not scenic at all. While
they represent some important route such as an old historic
Roman road, or Route 66 in the US, this ends up being
very different to a panoramic ocean road. This is one of the
reasons we separated the analysis and results into different
categories and we believe the cultural category still repre-
sents interesting routes compared to for example, a typical
”fastest” A* algorithm generated route.

Lastly, there’s problems with the density results around
scenic routes that may also be main roads, as main roads
may be more popular due to factors that are not aesthetic.

7.1 Future Work

We have several suggestions of improvements for future
work. Firstly, within the context of the methods we have
utilised, normalisation of main roads intersections where
their is high density would be a first step. Second, separat-
ing the results into seasons could provide a more granular
result showing popular routes in the summer, spring and
winter independently. The same approach could be used for
extending the POI ranking experiment that was conducted.

While there’s limitations with using images, or LIDAR as
was discussed above within section 7, our suggestion for fu-
ture work would be combining these different approaches,
deriving features from each approach and training an en-
semble based model that assesses scenicness based on the
set of derived features. An example could be, map features,
LiDAR and satellite images feature, user photos and pop-
ularity. Based on a combination of these derived features
an ensemble tree-based machine learning approach could be
used to automatically classify and rank scenic routes.

Due to the lack of time, our approach is limited and the
features we use to classify scenic roads lack automated scala-
bility and heavily uses enriched map data. Despite this, we
do provide some interesting results as well as unexpected
discoveries within the data such as the GPSies data and
finding popular routes that different countries plan routes
to, and using the popularity for point of interest ranking.
We also found some genuinely scenic routes from our top
results within the scenic and nature category.
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