
event.cwi.nl/lsde

Large-Scale Data Engineering

noSQL: BASE vs ACID

event.cwi.nl/lsde

THE NEED FOR SOMETHING
DIFFERENT

event.cwi.nl/lsde

One problem, three ideas
• We want to keep track of mutable state in a scalable manner

• Assumptions:

– State organized in terms of many “records”

– State unlikely to fit on single machine, must be distributed

• MapReduce won’t do!

• Three core ideas

– Partitioning (sharding)

• For scalability

• For latency

– Replication

• For robustness (availability)

• For throughput

– Caching

• For latency

• Three more problems

– How do we synchronise

partitions?

– How do we synchronise replicas?

– What happens to the cache when

the underlying data changes?

event.cwi.nl/lsde

Relational databases to the rescue

• RDBMSs provide

– Relational model with schemas

– Powerful, flexible query language

– Transactional semantics: ACID

– Rich ecosystem, lots of tool support

• Great, I’m sold! How do they do this?

– Transactions on a single machine: (relatively) easy!

– Partition tables to keep transactions on a single machine

• Example: partition by user

– What about transactions that require multiple machine?

• Example: transactions involving multiple users

• Need a new distributed protocol

– Two-phase commit (2PC)

event.cwi.nl/lsde

2PC commit

coordinator subordinate 1 subordinate 2 subordinate 3

prepare
prepare

prepare

okay
okay

okay

commit
commit

commit

ack
ack

ack

done

event.cwi.nl/lsde

2PC abort

coordinator subordinate 1 subordinate 2 subordinate 3

prepare
prepare

prepare

okay
okay

no

abort
abort

abort

event.cwi.nl/lsde

2PC rollback

coordinator subordinate 1 subordinate 2 subordinate 3

prepare
prepare

prepare

okay
okay

okay

commit
commit

commit

rollback
rollback

rollback

ack
ack

timeout

event.cwi.nl/lsde

2PC: assumptions and limitations

• Assumptions

– Persistent storage and write-ahead log (WAL) at every node

– WAL is never permanently lost

• Limitations

– It is blocking and slow

– What if the coordinator dies?

Solution: Paxos!
(details beyond scope of this course)

event.cwi.nl/lsde

Problems with RDBMSs

• Must design from the beginning

– Difficult and expensive to evolve

• True ACID implies two-phase commit

– Slow!

• Databases are expensive

– Distributed databases are even more expensive

event.cwi.nl/lsde

What do RDBMSs provide?

• Relational model with schemas

• Powerful, flexible query language

• Transactional semantics: ACID

• Rich ecosystem, lots of tool support

• Do we need all these?

– What if we selectively drop some of these assumptions?

– What if I’m willing to give up consistency for scalability?

– What if I’m willing to give up the relational model for something more

flexible?

– What if I just want a cheaper solution?

Solution: NoSQL

event.cwi.nl/lsde

NoSQL
1. Horizontally scale “simple operations”

2. Replicate/distribute data over many servers

3. Simple call interface

4. Weaker concurrency model than ACID

5. Efficient use of distributed indexes and RAM

6. Flexible schemas

• The “No” in NoSQL used to mean No

• Supposedly now it means “Not only”

• Four major types of NoSQL databases

– Key-value stores

– Column-oriented databases

– Document stores

– Graph databases

event.cwi.nl/lsde

KEY-VALUE STORES

event.cwi.nl/lsde

Key-value stores: data model

• Stores associations between keys and values

• Keys are usually primitives

– For example, ints, strings, raw bytes, etc.

• Values can be primitive or complex: usually opaque to store

– Primitives: ints, strings, etc.

– Complex: JSON, HTML fragments, etc.

event.cwi.nl/lsde

Key-value stores: operations

• Very simple API:

– Get – fetch value associated with key

– Put – set value associated with key

• Optional operations:

– Multi-get

– Multi-put

– Range queries

• Consistency model:

– Atomic puts (usually)

– Cross-key operations: who knows?

event.cwi.nl/lsde

Key-value stores: implementation

• Non-persistent:

– Just a big in-memory hash table

• Persistent

– Wrapper around a traditional RDBMS

• But what if data does not fit on a single machine?

event.cwi.nl/lsde

Dealing with scale

• Partition the key space across multiple machines

– Let’s say, hash partitioning

– For n machines, store key k at machine h(k) mod n

• Okay… but:

1. How do we know which physical machine to contact?

2. How do we add a new machine to the cluster?

3. What happens if a machine fails?

• We need something better

– Hash the keys

– Hash the machines

– Distributed hash tables

event.cwi.nl/lsde

DISTRIBUTED HASH TABLES:
CHORD

event.cwi.nl/lsde

h = 0 h = 2n – 1

event.cwi.nl/lsde

h = 0 h = 2n – 1

Routing: which machine holds the key?

Each machine holds pointers to

predecessor and successor

Send request to any node, gets routed to

correct one in O(n) hops

Can we do better?

event.cwi.nl/lsde

h = 0 h = 2n – 1

Routing: which machine holds the key?

Each machine holds pointers to

predecessor and successor

Send request to any node, gets routed to

correct one in O(log n) hops

+ “finger table”

(+2, +4, +8, …)

event.cwi.nl/lsde

h = 0 h = 2n – 1

New machine joins: what happens?

How do we rebuild the predecessor,

successor, finger tables?

event.cwi.nl/lsde

h = 0 h = 2n – 1

Machine fails: what happens?

Solution: Replication

N = 3, replicate +1, –1

Covered!

Covered!

event.cwi.nl/lsde

CONSISTENCY IN KEY-VALUE
STORES

event.cwi.nl/lsde

Focus on consistency

• People you do not want seeing your pictures

– Alice removes mom from list of people who can view photos

– Alice posts embarrassing pictures from Spring Break

– Can mom see Alice’s photo?

• Why am I still getting messages?

– Bob unsubscribes from mailing list

– Message sent to mailing list right after

– Does Bob receive the message?

event.cwi.nl/lsde

Three core ideas

• Partitioning (sharding)

– For scalability

– For latency

• Replication

– For robustness (availability)

– For throughput

• Caching

– For latency

We’ll shift our focus here

event.cwi.nl/lsde

(Re)CAP

• CAP stands for Consistency, Availability, Partition tolerance

– Consistency: all nodes see the same data at the same time

– Availability: node failures do not prevent system operation

– Partition tolerance: link failures do not prevent system operation

• Largely a conjecture attributed

to Eric Brewer

• A distributed system can satisfy

any two of these guarantees at

the same time, but not all three

• You can't have a triangle; pick

any one side

consistency

availability
partition

tolerance

event.cwi.nl/lsde

CAP Tradeoffs

• CA = consistency + availability

– E.g., parallel databases that use 2PC

• AP = availability + tolerance to partitions

– E.g., DNS, web caching

event.cwi.nl/lsde

Replication possibilities

• Update sent to all replicas at the same time

– To guarantee consistency you need something like Paxos

• Update sent to a master

– Replication is synchronous

– Replication is asynchronous

– Combination of both

• Update sent to an arbitrary replica

All these possibilities involve tradeoffs!

“eventual consistency”

event.cwi.nl/lsde

Three core ideas

• Partitioning (sharding)

– For scalability

– For latency

• Replication

– For robustness (availability)

– For throughput

• Caching

– For latency

Quick look at this

event.cwi.nl/lsde

Unit of consistency

• Single record:

– Relatively straightforward

– Complex application logic to handle multi-record transactions

• Arbitrary transactions:

– Requires 2PC/Paxos

• Middle ground: entity groups

– Groups of entities that share affinity

– Co-locate entity groups

– Provide transaction support within entity groups

– Example: user + user’s photos + user’s posts etc.

event.cwi.nl/lsde

Three core ideas

• Partitioning (sharding)

– For scalability

– For latency

• Replication

– For robustness (availability)

– For throughput

• Caching

– For latency
Quick look at this

event.cwi.nl/lsde

Facebook architecture

Source: www.facebook.com/note.php?note_id=23844338919

MySQL

memcached

Read path:

Look in memcached

Look in MySQL

Populate in memcached

Write path:

Write in MySQL

Remove in memcached

Subsequent read:

Look in MySQL

Populate in memcached
✔

event.cwi.nl/lsde

Facebook architecture: multi-DC

1. User updates first name from “Jason” to “Monkey”

2. Write “Monkey” in master DB in CA, delete memcached entry in CA and VA

3. Someone goes to profile in Virginia, read VA slave DB, get “Jason”

4. Update VA memcache with first name as “Jason”

5. Replication catches up. “Jason” stuck in memcached until another write!

Source: www.facebook.com/note.php?note_id=23844338919

MySQL

memcached

California

MySQL

memcached

Virginia

Replication lag

event.cwi.nl/lsde

THE BASE METHODOLOGY

event.cwi.nl/lsde

Methodology versus model?

• An apples and oranges debate that has gripped the cloud community

– A methodology is a way of doing something

• For example, there is a methodology for starting fires without

matches using flint and other materials

– A model is really a mathematical construction

• We give a set of definitions (i.e., fault-tolerance)

• Provide protocols that provably satisfy the definitions

• Properties of model, hopefully, translate to application-level

guarantees

event.cwi.nl/lsde

The ACID model
• A model for correct behavior of databases

• Name was coined (no surprise) in California in 60’s

– Atomicity

• Either it all succeeds, or it all fails

• Even if transactions have multiple operations, the rest of the world will
either see all effects simultaneously (success), or no effects (failure)

– Consistency

• A transaction that runs on a correct database leaves it in a correct state

– Isolation

• It looks as if each transaction rusn all by itself.

• Transactions are shielded from other transactions running concurrently

– Durability

• Once a transaction commits, updates cannot be lost or rolled back

• Everything is permanent

event.cwi.nl/lsde

ACID as a methodology
• We teach it all the time in our database courses

• We use it when developing systems

– We write transactional code

– System executes this code in an all-or-nothing way

Begin

 let employee t = Emp.Record(“Tony”);
 t.status = “retired”;
  customer c: c.AccountRep==“Tony” 
 c.AccountRep = “Sally”;

Commit;

Begin signals the

start of the

transaction

Commit asks the database to make the

effects permanent. If a crash happens before

this, or if the code executes Abort, the

transaction rolls back and leaves no trace

Body of the

transaction performs

reads and writes

atomically

event.cwi.nl/lsde

Why is ACID helpful?

• Developer does not need to worry about a transaction leaving some sort of

partial state

– For example, showing Tony as retired and yet leaving some customer

accounts with him as the account rep

• Similarly, a transaction cannot glimpse a partially completed state of some

concurrent transaction

– Eliminates worry about transient database inconsistency that might

cause a transaction to crash

– Analogous situation

• Thread A is updating a linked list and thread B tries to scan the list

while A is running

• What if A breaks a link?

• B is left dangling, or following pointers to nowhere-land

event.cwi.nl/lsde

Serial and serialisable execution

• A serial execution is one in which there is at most one transaction running

at a time, and it always completes via commit or abort before another starts

• Serialisability is the illusion of serial execution

– Transactions execute concurrently and their operations interleave at

the level of database accesses to primary data

– Yet a database is designed to guarantee an outcome identical to some

serial execution: it masks concurrency

• This is achieved though some combination of locking and snapshot

isolation

event.cwi.nl/lsde

All ACID implementations have costs

• Locking mechanisms involve competing for locks

– Overheads associated with maintaining locks

– Overheads associated with duration of locks

– Overheads associated with releasing locks on Commit

• Snapshot isolation mechanisms uses fine-grained locking for updates

– But also have an additional version based way of handing reads

– Forces database to keep a history of each data item

– As a transaction executes, picks the versions of each item on which it

will run

These costs are not so small

event.cwi.nl/lsde

This motivates BASE

• Proposed by eBay researchers

– Found that many eBay employees came from transactional database

backgrounds and were used to the transactional style of thinking

– But the resulting applications did not scale well and performed poorly

on their cloud infrastructure

• Goal was to guide that kind of programmer to a cloud solution that

performs much better

– BASE reflects experience with real cloud applications

– Opposite of ACID

 D. Pritchett. BASE: An Acid Alternative. ACM Queue, July 28, 2008.

event.cwi.nl/lsde

Not a model, but a methodology

• BASE involves step-by-step transformation of a transactional application

into one that will be far more concurrent and less rigid

– But it does not guarantee ACID properties

– Argument parallels (and actually cites) CAP: they believe that ACID is

too costly and often, not needed

BASE stands for Basically Available Soft-State Services with Eventual

Consistency

event.cwi.nl/lsde

Terminology
• Basically Available: Like CAP, goal is to promote rapid responses.

– BASE papers point out that in data centers partitioning faults are very rare and

are mapped to crash failures by forcing the isolated machines to reboot

– But we may need rapid responses even when some replicas can’t be contacted

on the critical path

• Soft state service: Runs in first tier

– Cannot store any permanent data

– Restarts in a clean state after a crash

– To remember data either replicate it in memory in enough copies to never lose

all in any crash or pass it to some other service that keeps hard state

• Eventual consistency: OK to send optimistic answers to the external client

– Could use cached data (without checking for staleness)

– Could guess at what the outcome of an update will be

– Might skip locks, hoping that no conflicts will happen

– Later, if needed, correct any inconsistencies in an offline cleanup activity

event.cwi.nl/lsde

How BASE is used

• Start with a transaction, but remove Begin/Commit

– Now fragment it into steps that can be done in parallel, as much as

possible

– Ideally each step can be associated with a single event that triggers

that step: usually, delivery of a multicast

• Leader that runs the transaction stores these events in a message queuing

middleware system

– Like an email service for programs

– Events are delivered by the message queuing system

– This gives a kind of all-or-nothing behavior

event.cwi.nl/lsde

BASE in action

Begin

 let employee t = Emp.Record(“Tony”);
 t.status = “retired”;
  customer c: c.AccountRep==“Tony” 
 c.AccountRep = “Sally”;

Commit;

t.status = “retired”;

 customer c:
c.AccountRep==“Tony” 

 c.AccountRep = “Sally”;

event.cwi.nl/lsde

BASE in action

t.status = “retired”;

 customer c:
c.AccountRep==“Tony” 

 c.AccountRep = “Sally”;

t.status = “retired”;  customer c:
c.AccountRep==“Tony” 

 c.AccountRep = “Sally”;

Start

• BASE suggestions

– Consider sending the reply to the user before finishing the operation

– Modify the end-user application to mask any asynchronous side-effects that
might be noticeable

• In effect, weaken the semantics of the operation and code the
application to work properly anyhow

– Developer ends up thinking hard and working hard!

event.cwi.nl/lsde

Before BASE… and after

• Code was often much too slow

– Poor scalability

– End-users waited a long time for responses

• With BASE

– Code itself is way more concurrent, hence faster

– Elimination of locking, early responses, all make end-user experience

snappy and positive

– But we do sometimes notice oddities when we look hard

event.cwi.nl/lsde

BASE side-effects
• Suppose an eBay auction is running fast and furious

– Does every single bidder necessarily see every bid?

– And do they see them in the identical order?

• Clearly, everyone needs to see the winning bid

• But slightly different bidding histories should not hurt much, and if this makes eBay

10x faster, the speed may be worth the slight change in behaviour!

• Upload a YouTube video, then search for it

– You may not see it immediately

• Change the initial frame (they let you pick)

– Update might not be visible for an hour

• Access a FaceBook page when your friend says she has posted a photo from the

party

– You may see an
X

event.cwi.nl/lsde

AMAZON DYNAMO

event.cwi.nl/lsde

BASE in action: Dynamo

• Amazon was interested in improving the scalability of their shopping cart

service

• A core component widely used within their system

– Functions as a kind of key-value storage solution

– Previous version was a transactional database and, just as the BASE

folks predicted, was not scalable enough

– Dynamo project created a new version from scratch

event.cwi.nl/lsde

Dynamo approach

• Amazon made an initial decision to base Dynamo on a Chord-like

Distributed Hash Table (DHT) structure

– Recall Chord and its O(log n) routing ability

• The plan was to run this DHT in tier 2 of the Amazon cloud system

– One instance of Dynamo in each Amazon data centre and no linkage

between them

• This works because each data centre has ownership for some set of

customers and handles all of that person’s purchases locally

– Coarse-grained sharding/partitioning

event.cwi.nl/lsde

The challenge

• Amazon quickly had their version of Chord up and running, but then

encountered a problem

• Chord was not very tolerant to delays

– If a component gets slow or overloaded, the hash table was heavily

impacted

• Yet delays are common in the cloud (not just due to failures, although

failure is one reason for problems)

• So how could Dynamo tolerate delays?

event.cwi.nl/lsde

The Dynamo idea

• The key issue is to find the node on which to store a key-value tuple, or

one that has the value

• Routing can tolerate delay fairly easily

– Suppose node K wants to use the finger table to route to node K+2i and

gets no acknowledgement

– Then Dynamo just tries again with node K+2i-1

– This works at the cost of a slight stretch in the routing path, in the rare

cases when it occurs

event.cwi.nl/lsde

What if the actual owner node fails?

• Suppose that we reach the point at which the next hop should take us to

the owner for the hashed key

• But the target does not respond

– It may have crashed, or have a scheduling problem (overloaded), or be

suffering some kind of burst of network loss

– All common issues in Amazon’s data centres

• Then they do the Get/Put on the next node that actually responds even if

this is the wrong one

– Chord will repair

event.cwi.nl/lsde

Dynamo example

N32

N10

N5

N20

N110

N99

N80

N60

lookup(K19) @ N99

K19

• Ideally, this strategy works

perfectly

– Chord normally replicates a

key-value pair on a few nodes,

so we would expect to see

several nodes that know the

current mapping: a shard

– After the intended target

recovers, the repair code will

bring it back up to date by

copying key-value tuples

• But sometimes Dynamo jumps

beyond the target range and ends

up in the wrong shard

event.cwi.nl/lsde

Consequences of misrouting (and mis-storing)

• If this happens, Dynamo will eventually repair itself

– But meanwhile, some slightly confusing things happen

• Put might succeed, yet a Get might fail on the key

• Could cause user to buy the same item twice

– This is a risk they are willing to take because the event is rare and the

problem can usually be corrected before products are shipped in

duplicate

event.cwi.nl/lsde

Werner Vogels on BASE

• He argues that delays as small as 100ms have a measurable impact on

Amazon’s income!

– People wander off before making purchases

– So snappy response is king

• True, Dynamo has weak consistency and may incur some delay to achieve

consistency

– There isn’t any real delay bound

– But they can hide most of the resulting errors by making sure that

applications which use Dynamo don’t make unreasonable assumptions

about how Dynamo will behave

event.cwi.nl/lsde

Google’s Spanner

• Features:

– Full ACID translations across multiple datacenters, across continents!

– External consistency: wrt globally-consistent timestamps!

• How?

– TrueTime: globally synchronized API using GPSes and atomic clocks

– Use 2PC but use Paxos to replicate state

• Tradeoffs?

event.cwi.nl/lsde

Summary

• Described the basics of NoSQL stores

– Cost of ACID in RDBMSs

– Key,Value APIs

– Caching, Replication,Partitioning

• BASE is a widely popular alternative to transactions (ACID)

– Basically Available Soft-State Services with Eventual Consistency

– Used (mostly) for first tier cloud applications

– Weakens consistency for faster response, later cleans up

– Consistency is eventual, not immediate

– Complicates the work of the application developer

– eBay, Amazon Dynamo shopping cart both use BASE

