
LSDE13: Shipping Safety

Radu Jica and Tim Visser

Abstract— Find almost-collisions in the English chan-
nel and visualize on an interactive map. This is done by
reconstructing ship paths and distance computation in
latitude, longitude, and time dimensions.

I. INTRODUCTION

Over 70 percent[1] of global trading is carried
out via international shipping transports, therefore
shipping safety is an important topic to study and
to maintain. In this project, we analyze 2 data-sets
of AIS 1 messages with the purpose of detecting
near-collisions between ships. With the first data-
set comprising of 14 days-worth of AIS messages
and the second with over 2 years of data, one is
able to apply a variety of algorithms and different
filtering methods to detect near-collisions.

In order to display these results, the second part
of this project involves creating a static interactive
visualization of near-collisions. This visualization
will allow for the intuitive interpretation of relevant
results in time ranges of particular interest to the
user.

II. RELATED WORK

In their research, Zhang et al. [3] describe a
multi-factor approach of detecting near miss ship
collisions from AIS data. Their method takes sev-
eral factors into account including the distance
between two ships, their respective headings and
relative speed. Teixeira et al. [4] reviewed sev-
eral different methods of collision detection. They
found that representing involved ships as projected
rectangles based on their width and length (as
specified in AIS messages) yields better results
than when detecting potential near-collisions using
a radius imposed on a ship’s center. Others like
Wang et al. [5] and Silveira et al. [6] have looked
at the same problem in ways that are less relevant
to our scope.

1Automatic Identification System

III. RESEARCH QUESTIONS

Within our project, we set out to investigate and
answer several research questions pertaining to our
topic. These questions are as follows:

• How to process data over a timeline effi-
ciently?

• How to detect collisions effectively (is check-
ing every 1 min enough?)?

• How reliable is AIS data for our purposes?
• How can results from our experiments be

visualized intuitively?
By providing answers to these questions we will
produce the end result of an interactive visualiza-
tion of near-collisions between ships within the
English channel.

IV. PROJECT SETUP

The way we approached the project can be split
into 3 main steps, further explained below.

A. Data Comprehension
First and foremost, we needed to understand

the data. We have 2 data-sets, first in text format
and gzipped, second in just text format. They are
grouped as seen in Figure 1 on SurfSARA’s HDFS.
The data itself comprises of AIVDM sentences2

grouped by unix timestamps in millisecond pre-
cision, as seen in Figure 2. Each file contains
roughly 60.000 lines, meaning there are over 3
million entries to process per hour. Putting aside
the AIVDM protocol itself, of importance to us
are the AIS messages encoded within it. As seen
in Figure 2, the AIS messages are encoded in the
long strings of characters in the 5th position after
’!AIVDM’.

The AIS messages can be of 27 types [2]
but after looking through what they contain, we
discover that the most relevant types are 1, 2, 3
and type 5. Types 1, 2, and 3 are Position Reports

2The messages are emitted by receivers for AIS.



Fig. 1. Dataset File Structure

Fig. 2. Database File Content

of Class A containing information such as location,
speed over ground, and heading. These messages
are broadcasted every 2 to 10 seconds, depending
on the ship speed, or every 3 minutes, when the
ship is anchored or stationary. Type 5 messages
contain ship-specific data, of relevance being ship
dimensions in the 4 directions, measured from the
antenna to the sides of the ship. Two last types are
relevant, namely 18 and 19, containing Position
Reports of Class B transmitters. However, these
were not used due to constraints from our decoder,
detailed in further sections. All of the above ships
are identified through their MMSI opening up the
path to interesting data analysis because of the
MMSI3 containing information about the country
of origin.

Furthermore, it was important to understand the
distribution of the data and perhaps to observe
some patterns. For this purpose, we have plotted
1 hour of data on the map, as seen in Figure 3.
Notice that ships are mostly detected close to the
coast and not far at sea. We have also decoded
the first digits of the MMSI’s for this hour of
data to determine from which countries the ships
originate. As seen in Table I, most of the ships
are from the Netherlands, followed by the United
States of America, Canada and several primarily
European companies. This might indicate that the
data was gathered in a way that presents a bias
towards these listed origins.

3Maritime Mobile Service Identity. However, the MMSI is not
unique for a ship as a ship may have multiple MMSI in its lifetime,
in cases such as changing countries. The only unique number, given
at build-time, is the IMO identification.

Fig. 3. AIS message location distribution

TABLE I

SHOWING THE RELATIVE OCCURRENCE OF SHIP ORIGINS

SAMPLED FROM 1 MINUTE OF DATA

Origin Count
The Netherlands 13865

United States of America 6618
Canada 5116

Germany 2377
Belgium 2313
Sweden 2102

United Kingdom 2072
Japan 2055
China 2029

Denmark 1454

B. Algorithm selection

The second step involved deciding on which
near collision algorithm(s) we want to use and
therefore, which data we need to filter for. This
has been done by looking into related work, as
previously described; however, our decision was
to first implement a simple algorithm for near-
collisions before attempting something more in-
tricate. One of or the simplest algorithm to detect
near-collisions is to have radii around each ship;
first through a magic number, namely 5km4[7], and
second through a parameter based on the ship’s
size. Both these algorithms have been attempted,
in this order. The next step is to implement an
algorithm presented in related work, namely by
Silveira et al. [6], involving vector projections.
However, due to time constraints, this has not been
fulfilled.

4This value was chosen based on the International Regulations
for Preventing Collisions at Sea



C. Analysis

The last step was to choose the tools for out data
analysis. We chose SPARK5, due to the efficient
in-memory computations, and Python6, due to
its ease-of-use and previous experience in. Using
Spark, we could effectively perform map and filter
operations through Spark’s RDD’s. Furthermore,
we had to find an AIS-message decoder, preferably
in Python; two were found, however one could
not be used on SurfSARA due to its non-available
dependencies, therefore we were left with one that
is based on research code. The issues with this
decoder are further explored in the next section.
Lastly, for the interactive visualization, we chose
MapBox7 and leaflet.js8.

With the tools chosen, one had to design the
overall pipeline for the above steps. The way the
data is grouped provided a hint on how to read and
process it, namely using Spark’s wholeTextFiles
which keeps track of the file’s name and data. This
allowed us to do computations on a per-minute
basis which turned out to be a good method, fur-
ther supported by observations in [4]. Then, there
were several filtering steps that could reduce our
data, perhaps significantly. First, only some AIS
message types may be relevant for near-collision
detection; second, we are interested only in ships
within the English Channel; third, only valid data
can be used, i.e. no missing required values such
as location; last, stationary ships in ports are not
particularly interesting, unless other ships collide
into them. Arguably the most important step re-
maining was the actual near-collision detection,
involving distance computations or further more
sophisticated algorithms. With these effectuated,
the results could then be saved in a file for the
visualization. The full pipeline is presented at the
end of the next section.

V. EXPERIMENTS

During our experiments we ran into several
problems which we will briefly describe. As men-
tioned in the previous section, most of these prob-

5Particularly, version 1.6.1 available on SurfSARA
6Version 2.7.5, as available on SurfSARA
7https://www.mapbox.com
8http://leafletjs.com

lems arose over time from our selected decoder9

as provided by the GPSD project. The decoder
as-is, classified as being research code, does not
always do a good job of handling errors properly,
nor parsing multiple messages. On many occa-
sions, an unexpected input would lead to a never-
ending loop being triggered. This happened in
several different cases, some of these occurring
very rarely. We worked around these problems by
avoiding some of the error handling provided by
the decoder and signaling an error to the calling
function directly.

Given that most near-collision algorithms re-
quire ship size information, we thought the best
approach is to use the Type 5 messages from our
data-set. However, we have encountered a major
issue: according to [2], most Type 5 messages
are split into 2 sentences and our chosen decoder
could not process these sentences properly. We
were required to create custom functions to han-
dle the data-set line-by-line, hence rendering us
unable to decode multiple-line messages. This has
presumably removed most of the type 5 messages
in our data-set because we were only able to
detect around 80 distinct ships in an entire day
of data, while there were over 3.000 ships sending
Type1-3 messages. Therefore, we chose to use a
separate ship-size data-set obtained from Marine
Vessel Traffic10.

We attempted to filter our raw data using
the constrains presented in the previous section,
namely location, message type, non-missing valid
data, and duplicates. The naive assumption was
that the data-set contained mostly good infor-
mation which however proved to not be the
case, as seen in Figure 4. Note that ’not-missing
keys/values’ refers to the following keys, apart
from mmsi: longitude, latitude, heading, speed
over ground, and navigation status, for type 1-
3, and the 4 size-measurements, for type 5; and
relevant status as anything but stationary and not-
applicable (511). As one can see in the figure, fil-
tering out all the above missing key-values reduced
our data-set considerably and using the navigation
status was not feasible due to ships not respecting

9https://fossies.org/linux/gpsd/devtools/ais.py
10http://www.marinevesseltraffic.com/2013/12/ships-

database.html



Fig. 4. Number of lines remaining after filtering steps in a single
file.

the protocol by either not adding any status, or
not changing it accordingly. However, the relevant
remaining filters were: type1-3, within English
channel, and duplicate removal.

With the above in mind, we designed the fol-
lowing data engineering pipeline which was used
on increasingly larger subsets of the data-set, fol-
lowed by a few design-choice explanations, and
some results. Particular details of the pipeline and
the inner data formats can be seen in the well-
commented code. Conclusions from this pipeline
are presented in the last section along with insights
from the visualization.

Final pipeline

1) Read data and partition accordingly:
sc.wholeTextfiles, split into lines, discard
unix timestamps; change filename to
yymmddhhmm format11

2) Decode: Type 1-3 message data, None oth-
erwise. Initially, type 5 messages were also
kept but removed as previously discussed.

3) Filter: missing relevant key-values, loca-
tion=English channel, invalid locations (511
error code), remove duplicates, cache. Only
1 message per mmsi was kept per minute
(file). The remaining data-set was cached for
later use.

4) Load ship-size data-set: the data-set con-
tained mmsi/length/beam data which was
converted into mmsi/radius data in Python
dictionary format for quick access. Lastly, it
was broadcast-ed to workers for later use.

5) Ship Pairs and near-collisions: combinations
of every 2 ships (mmsi) were created per
file (minute) of data. For each pair, near-

11year, month, day, hour, minute.

collisions were tested according to the cho-
sen algorithm.

6) Reduce step: all the pairs of ships involved in
near-collisions from the previous step were
reduced into list of near-collision involved
ships and broadcast-ed.

7) Remove stationary ships: get all entries for
the ships above and group by mmsi; remove
ships which are found stationary.

8) Save results: the data-set, updated according
to the previous step, is saved in csv format
for visualization.

We processed the data on a per-minute basis
under the assumption that a near-collision cannot
be detected in a smaller time frame. This means
that a single entry per mmsi per minute was
enough to keep and hence the other entries could
be discarded. This approach was supported through
the use of Spark’s wholeTextFiles keeping both the
file name (containing the time stamp) and the data.

Since the mmsi ship data was necessary to be
used against the entire data-set and our first near-
collision algorithms were based solely on radius, it
made sense to preprocess the radius so that it can
then be broadcasted. The radius was computed by
summing up the length and beam measurements,
dividing by 2, and multiplying by a ’magic’ pa-
rameter. Multiple values have been tested, though
one needs some classified data to test which one
was better. This step can be skipped depending on
the chosen near-collision algorithm.

We have tried 2 different algorithms where pairs
of ships were classified as near-collisions: first,
if the distance between them was lower than the
arbitrary value of 5km, and second, when the sum
of their computed radii was larger than the distance
between them. We believed the radii approach was
better because a smaller ship usually entails more
mobility and hence 5km would be too much. In
Table II, one may observe the average computed
radius size of the ships and how they correlate
to the number of detected near-collision. Notice
there is a ’sweet spot’ between parameter 30 and
40 where the number of near-collisions increases
drastically up to a plateau; this can be better
visualized in Figure 5.

Lastly, stationary ships were removed based on
the assumption that if in a pair of ships, both did



not move more than the arbitrary distance of 50
meters, they are stationary. The reasoning behind
it was to remove ships that are close to each-
other and hence detected as near-collisions, when
in fact are either anchored in ports or fishing close-
by. This was implemented by sorting the grouped-
by-mmsi entries on longitude and computing the
distance between the first and last entry; if the
distance was less than 50 meters, the ship has not
moved in its lifetime in our data-set. This approach
clearly works in a smaller time frame, however
in practice on our data, it seemed that there were
no stationary ships overall, i.e., even if stationary
and transmitting for a couple of hours, the ships
moved in the end. This approach can be perfected
by performing the check repeatedly on a smaller
data-frame, such as every hour.

The largest dataset on which the Python script
was run was 3 months of data from 2014. We have
used 480 executors and a few other tweaks which
can be seen in the code. We argue, based on the
duration of 1 hour and 20 minutes for this dataset,
that the RDD use and overall design is efficient.

There are 3 Python scripts attached to this
submission: crunch, processing data without using
ship size; crunchWith5, using the size information
from type 5 messages, and crunchWithDB, using
the mmsi-size database. The last script is the most
in-depth one and used for the results in this paper.

TABLE II

SHOWING THE INCREASING NUMBER OF NEAR-COLLISIONS

DETECTED USING THE RADII METHOD IN 1 DAY OF DATA.

Radius Param. Average radius(m) Number of near-collisions
10 962 50
20 1924 57
30 2887 64
40 3849 79
50 4812 80

With regard to visualization, we take the follow-
ing approach:

1) Import and parse CSV of all detected near-
collisions

2) Iterate over CSV file, selecting near-
collisions in correct date range (jump table
used in order to reduce number of iterations)

Fig. 5. Plot of Table II to better notice the ’sweet point’ for the
radius parameter.

3) Generate a random colour which is saved to
a lookup table or if already present, look it
up

4) Plot the data point as a circle with the colour
found in step 3

The user can provide several inputs to this inter-
active visualization in order to express a degree
of control upon it. Primarily, an available slider
allows the user to set an interval in which near-
collisions are drawn onto the map. Due to the
amount of processing involved with larger inter-
vals, there is a preset maximum range in order to
avoid stalls. The user is allowed to override this
range by either disabling it completely or setting
a custom value for it. Finally, it is possible to
reset the colour of each ship in case the colours
that have currently been randomly selected do not
appropriately allow the data to be interpreted.

VI. CONCLUSIONS

In this project, we have applied data engineering
techniques to process a large dataset of over 300
million entries with the goal of detecting near ship
collisions. We have started with a basic algorithm
based on ship size and used it along with a custom
mmsi-size database to detect near-collisions in the
English Channel. We have found that the safe area
between 2 ships is between 4-5km and that most
near-collisions happen, as expected, near ports and
in the Strait of Dover, as can be seen in the
visualization.

There are certainly many things one can analyze
on this data: one could apply a more sophisti-
cated algorithm of near-collision detection and/or
identify specific areas or hours where/when near-
collision happen more frequently; using these re-
sults and other datasets, one may correlate near-



collision events with other events, such as more
fishing ships in the crab fishing season.

In hindsight, regarding the technology, one is
advised to use Scala for better (theoretical) per-
formance and library support, as Scala can eas-
ily import Java libraries which are more widely
available. This is furthermore advised given the
issues we have encountered with the AIS message
decoder. Spark was perfectly capable of handling
this large amount of data in an efficient way
through the YARN scheduler on SurfSARA with
the appropriate settings.

REFERENCES

[1] Allianz, Safety & Shipping Review 2016, 2016,
http://www.agcs.allianz.com/insights/white-papers-and-
case-studies/safety-and-shipping-review-2016

[2] Eric S. Raymond, AIVDM/AIVDO protocol decoding, Aug.
2016, http://catb.org/gpsd/AIVDM.html

[3] Zhang, W., Goerlandt, F., Montewka, J. and Kujala, P., 2015.
A method for detecting possible near miss ship collisions from
AIS data. Ocean Engineering, 107, pp.60-69.

[4] Teixeira, P., Silveira, P. and Guedes Soares, C., 2015. Assess-
ment of ship collision estimation methods using AIS data (pp.
195-204). Taylor & Francis Group. London.

[5] Wang, Y., Zhang, J., Chen, X., Chu, X. and Yan, X., 2013.
A spatialtemporal forensic analysis for inlandwater ship col-
lisions using AIS data. Safety science, 57, pp.187-202.

[6] Silveira, P.A.M., Teixeira, A.P. and Soares, C.G., 2013. Use
of AIS data to characterise marine traffic patterns and ship
collision risk off the coast of Portugal. The Journal of
Navigation, 66(6), p.879.

[7] International Maritime Organization (IMO), COLREGS -
International Regulations for Preventing Collisions at Sea,
1972, http://www.mar.ist.utl.pt/mventura/Projecto-Navios-
I/IMO-Conventions%20(copies)/COLREG-1972.pdf


