Election Prediction Based on Wikipedia Pageviews

Georgiana Diana Ciocirdel
Vrije Universiteit Amsterdam

g.d.ciocirdel@student.vu.nl

1. INTRODUCTION

On November 8th 2016 the United States of America will
elect a new president and the incumbent president, Barack
Obama, will step down and be replaced by one of the follow-
ing candidates (listed here in no specific order): Hillary Clin-
ton (the Democratic nominee), Donald Trump (the Republi-
can nominee), Gary Johnson (the Libertarian nominee), Jill
Stein (the Green party nominee) or one of the other 24 third-
party candidates and independents. Since August 2015 the
US have seen a series of public events closely related to this
year’s elections - primary debates broadcast live on national
television, primary elections and caucuses (between Febru-
ary and June 2016), national nominating party conventions
and now, finally, the live presidential debates between two
of the nominees, Hillary Clinton and Donald Trump.

The campaign and election periods create a tremendous
buzz on the internet. It is common that people go to so-
cial networks to express their agreement or disagreement
with candidates or (more specifically for news outlets) post
live updates and news about the election events and polls.
Besides the social networks hype, people also tend to query
search engines more, about topics closely related to the elec-
tion events (like for example candidate names, topics dis-
cussed during the debates or even about the presenters of the
debates). If we look at data extracted from Google Trends*
from the past 30 days (Figure 1) about the two most pop-
ular candidates (as per US national polls®) we can see that
the number of searches for the two presents a spike (a sud-
den growth) around the dates of September 26th and (more
or less) October 9th - these are the dates of the first two
presidential debates.

Very often the first result returned by search engines is the
Wikipedia® page matching the search query. Wikipedia is
also the go-to place when looking for extensive details about
a person, a place, an object or an event. Wikipedia is an
online encyclopedia first published in the early 2000’s* and
currently maintained by contributors around the world. It
has over 40 million articles® in all supported languages and
over 5 million in English only. Wikipedia is by no means a
social network, but rather a content repository.

In this paper we want to assess the impact the various
election events from the past year and a half have had on
the number of views of Wikipedia pages. We are particularly

Thttps://www.google.com /trends/
2http://www.realclearpolitics.com/epolls/latest_polls/
https://en.wikipedia.org/wiki/Wikipedia:Introduction
“https://en.wikipedia.org/wiki/History_of Wikipedia
®https://meta.wikimedia.org/wiki/List_of Wikipedias

Mihai Varga
Vrije Universiteit Amsterdam
m.varga@student.vu.nl

Google Trends - interest over time
= hillary clinton: (Worldwide) === donald trump: (Worldwide)

100

0
9M5I2016 9/2212016 9/29i2016 10i6/2016

Day

Figure 1: Interest over 30 days in Google Trends in
Hillary Clinton and Donald Trump.

interested in discovering which (or if any) Wikipedia pages
register a spike in the readers’ activity during the election
events. Moreover, based on the number of views the spik-
ing pages have and on the correlation between these pages
and the presidential nominees or their political program, we
would like to assess if elections can be predicted.

2. RELATED WORK

In this section we will talk about two models we have
used to identify trending or spiking pages on Wikipedia, a
parametric model and a data-driven model. We will also
talk about predicting election outcome.

2.1 Trend Detection

The most challenging part of our work is to determine

spikes and trending periods in the number of views of Wikipedia

pages. For any given Wikipedia page each visit represents
an event we observe in a time-varying signal. For this ob-
served signal, we are interested in windowing it and deter-
mining which windows present a deviation of the signal from
its "normal” behavior, in other words, where does the sig-
nal spike, where does the number of views increase so much
that we (as humans) could say that the page has become
trending?

In his Master’s thesis [4] Stanislav Nikolov highlights two
basic approaches in identifying these spiking/trending win-
dows: parametric and data-driven models. We will present
a parametric model we have used in our research which was

Figure 2: Possible ways in which a signal becomes
trending.

inspired by an algorithm published on Stackoverflow® and a
data-driven model documented by S. Nikolov in his thesis.

2.1.1 A Parametric Model

A parametric model which identifies trends and spikes in
a time varying signal relies on a set of parameters estimated
from the input data in order to detect anomalies in the sig-
nal. S. Nikolov highlights ” that this approach in identifying
trends is not reliable due to too many ways in which a signal
could become trending (Figure 2) - there could be a grad-
ual rise in the signal (red), the signal could suddenly jump
7a step” (yellow), it could be alternating between increasing
and decreasing (blue and green) and so on. A fixed value
for a parameter might not properly capture all the possible
changes correctly.

However, we will see that spikes and trends in Wikipedia
data can be modeled with a parametric algorithm presented
on Stackoverflow & in 2014. The algorithm performs as fol-
lows: the algorithm keeps track of a moving mean and a
standard deviation of the observed events in a time varying
signal. Initially, the mean and the standard deviation are
computed over the first window of K observations. Then,
for each observation with an index larger than or equal to
K the algorithm checks whether the given point is a preset
number of standard deviations (called dist) away from the
moving mean and outputs 1 if it is, or 0 otherwise. On each
step the moving mean is updated as the mean of its pre-
vious value and the value of the current point in the time
series; the standard deviation is updated to be half of the
distance between the previous standard deviation and the
distance between the new point and the previous mean. An
important feature of the algorithm is that a spike in the
data will not corrupt the moving mean or standard devia-
tion, as spikes in the signal do not contribute to the update.
Another parameter called influence (with values between 0
and 1) could be included in the algorithm to allow the spikes
to influence the moving mean.

Shttp://stackoverflow.com /tour
Thttps://snikolov.wordpress.com/2012/11/14/early-
detection-of-twitter-trends/ - The Problem with Parametric
Models

8http:/ /stackoverflow.com/questions/22583391 /peak-
signal-detection-in-realtime-timeseries-

data/22640362#22640362

input : input signal, the parameters K, dist, influence
output: a binary output signal

initialize StdDeviation as the standard deviation of the
first K observation in the input signal;

initialize Mean as the mean of the first K observations
in the input signal;

for i+ 0to K -1 do
‘ output 0;
end

for i < K to the end of the input signal do
if current observation > dist x StdDeviation +
Mean then
output 1;

StdDeviation = StdDeviation + influence
abs(current observation — Mean) / (1 +
influence);

Mean = Mean + influence % current observation
/ (1 + influence);
else

StdDeviation = (StdDeviation + abs(current
observation — Mean)) / 2;

Mean = (Mean + current observation) / 2;
end

end
Algorithm 1: A simple parametric algorithm that finds
peaks and trends in an input time-varying signal.

2.1.2 A Data-Driven Model

The disadvantage of a parametric model is that we need
to estimate the values of the parameters and very often (in
our experiments as well), the parameters are set to magic
numbers. A ”cleaner” approach in identifying trends and
spikes is data driven rather than parametric - instead of
trying to hard set parameter values, we could compare the
input signal with real examples of time series that we know
are trending or non-trending and, based on the level of their
similarity, attribute the signal to either one of the two classes
(trend/non-trend). Hendrickson, Kolb, Lehman and Mon-
tague build on this idea in their white paper [3] and propose
an algorithm inspired by and similar to the one described
by Nikolov in his thesis. In our research on Wikipedia page
views, we have used the algorithm presented in the white pa-
per, as it was backed up by samples of code and thus easier
to understand.

This algorithm was first used by Nikolov [4] for finding
trending Twitter topics (keywords in tweets that are sud-
denly used by people more than they are on a regular basis).
The algorithm relies on the existence of two initial sets of
time series that correspond to topics that have either become
trending or not. We call these reference sets R+ and R—,
respectively. We are interested in computing the probability
of an observed signal of belonging to each of the classes. The
two reference sets can be viewed as a very small number of
different signal sources each producing noisy versions of a
prototype signal. So for example even though the signals in
R+ are different between each other, they can be clustered
into patterns of activity ® and they have all been produced
by "trending” signal sources. And the same applies to the

“https://snikolov.wordpress.com/2012/11/14 /early-
detection-of-twitter-trends/ - Figure 4

non-trending signals in R—. The sequence of observations
in the input signal - in Nikolov’s thesis, this would be the se-
quence of tweets related to a topic; in our case this would be
the sequence of accesses of a Wikipedia page - is a sequence
of events that occur randomly over a period of time. The
evolution in time of the signal is described by a stochastic
process and each observation in the signal is independent to
all the other observations. Nikolov [4] proposes a stochastic
model to estimate the closeness of a signal s to a source g:

P(s generated by q) o e 74D (1)

where d(s, ¢) is a distance function computing the distance
between the signal s and the source g.

Hendrickson, Kolb, Lehman and Montague build on this
theory and propose a trend detection algorithm in their
whitepaper [3]. To classify a signal s as trending or non-
trending, we first have to find the distance between s and
each ¢, where ¢ is in R+ or R—. First, both signals, s and ¢,
are unit-normalized and then the Euclidian distance is used
as the distance function:

N

d(s,q) =Y (si —a)” (2)

=1

where N is the length of the two time series and ¢; and s;
are the ith observation along the two signals.

Having defined our distance function, we will also define
a weight function similar to the probability density function
modeling the probability of signal s having been produced
by a source g (equation 1):

W(s,q) = e 0 3)

As we are actually interested in finding the probability of
s having been produced by any source g in R+ or R—, we
will sum up all the weights and introduce a new metric:

quRJr Wi(s,q)
quR— W(s,q)

where 7(s) quantifies how much s looks like a trend R+
rather than a non-trend in R—. We will say that the signal
s exhibits a spike or a trend if the value of the function n(s)
is above a certain threshold 6.

In practice the reference trends/non-trends and the input
signal have different lengths. If the input signal is shorter
than the reference set, then the above algorithm will not
be able to classify it. If the input signal is longer than the
reference signals, then it can be windowed into chunks of
reference length and the algorithm will be run over each
window. The reference signals must be of the same length
in order to produce one unique window over s.

We conclude this subsection with algorithm 2 showing the
pseudo-code for the data-driven approach for trend detec-
tion.

n(s) = (4)

2.2 Predicting Elections

Trying to predict the outcome of elections by using pub-
licly available data from social networks is quite common in
research. In his paper [1], for example, Daniel Gayo-Avello
cites and analyses a number of different other papers that
claim to have found a trustworthy method of predicting who

input :input signal s, R+, R—, parameter 0
output: true if s € R+ or false otherwise for each
window in s of reference length

foreach window w of reference length in s do
do unit-normalization over w;
apply log,, over each element in w;

WR+ = 0;
WR— = 0;

foreach ¢ € R+ do

‘ WR+ += W(w,q);
end
foreach ¢ € R— do

‘ WR— 4+= W(w,q);
end

_ WER+.
n= WR—"

if n >= 60 then

‘ output true;
else

‘ output false;
end

end
Algorithm 2: A data-driven algorithm that finds trends
and non-trends in a windowed signal based on the two ref-
erence sets, R+ and R—.

will win and who will lose elections based on tweets. How-
ever, he is skeptical that the methods presented in these
pieces of research are accurate and argues that in fact it
is not possible to make such predictions from social net-
work interactions, primarily due to a strong imbalance in
the demographic groups represented on Twitter. Actually,
as Bloomberg Politics show in one of their blog posts [2],
polling is anything but trivial and it is essential that polls
capture the correct distribution of the various demographic
groups that participate in the elective process. With this
is mind, we doubt that our results will give an accurate
prediction of the upcoming election for two reasons: firstly,
Wikipedia being an information source and not a social net-
work, it is impossible for us to even analyze the feelings or
the opinions of its users, so there is no way of telling if the
readers that have accessed a certain page are pro, against
or neutral to the given subject; secondly, Wikipedia query
logs are captured in such a way, that it is impossible to infer
anything related to the demographic distribution of its users
(such as gender, race, level of education, etc.).

However, in our experiments we have also tried to deter-
mine whether a higher number of people accessing pages
related to the candidates is an indication of a general pref-
erence towards that candidate or not.

3. RESEARCH QUESTIONS

In our experiments on detecting trends and spikes in the
number of views of Wikipedia pages during presidential elec-
tion events in the United States we will try to answer the
following questions:

e Which pages do spike or become trending on Wikipedia
during the election events?

e Can we predict the outcome of polls (and eventually

elections) based on the number of views the pages re-
lated to various candidates receive?

The end goal of our project is to create a visualization
in the form of a web page to help the reader and ourselves
answer these questions. This web page will hold informa-
tion about each election event (starting from August 2015),
about trending pages associated with each event and also
about polls.

We are also interested in a reliable and flexible way of
parsing the input data. Wikipedia has over 40 million on-
line articles, 5.2 of which are in English and 1.3 in Span-
ish. The team regularly publishes page views statistics at

https://dumps.wikimedia.org/other/pageviews/. These statis-

tics are hourly aggregated and hold information about the
language of the article, the medium it has been accessed
from, the name of the article and the number of views from
that hour. We are interested in looking at pages in English
or Spanish (we think this is the most relevant language seg-
ment for US citizens). After this filtering by language our
solution needs to work with approximately 82GB of gzip-ed
data (the unfiltered data has a size of 500GB). So on the
technical side of the project another question arises:

e Which tools and languages should we use that will al-
low us to easily filter, window and process the available
data?

The next two sections will address these questions and
will present the technical solutions we have chosen, how we
have implemented the two algorithms described in the pre-
vious section and what conclusions have we drawn from our
results.

4. PROJECT SETUP
4.1 Data Collection

The necessary data for our project (the Wikipedia pageviews)

have been downloaded to the SURFSara'® cluster. We have
also gathered data about the election events that have taken
place between August 2015 and September 2016: Demo-
cratic!! and Republican'? presidential debates and forums,
Democratic'® and Republican'® primary elections and fi-
nally data about the undergoing presidential debates'® be-
tween Hillary Clinton and Donald Trump. From these events
we have collected data about the participants, places where
they have taken place and, the names of moderators and
the topics of the discussions (in case of debates). There is a
total of 138 election events we have data about.

We have also extracted poll data from the RealClear Pol-
itics website'®, which aggregates data from multiple polls.
The website allows downloading the poll results in a JSON

https://userinfo.surfsara.nl/systems/lisa

"https://en.wikipedia.org/wiki/Democratic_Party_presidential

_debates_and_forums, 2016

2https://en.wikipedia.org/wiki/Republican_Party_presidential

_debates_and_forums, 2016

Bhttps://en.wikipedia.org/wiki/Democratic_Party_presidential

_primaries, 2016

Y“https://en.wikipedia.org/wiki/Republican_Party_presidential

_primaries, 201
Shttps://en.wikipedia.org/wiki/United_States_presidential
_election_debates, 2016

http:/ /www.realclearpolitics.com /epolls/latest_polls/

format. This amounts to one poll result per day for three
different polls: Clinton vs. Trump, Clinton vs. Sanders and
all the Republican candidates vs. each other.

4.2 Technologies Used

We started our work by analyzing small portions of data
in order to generate a “ground truth” result that we could
use to assess that our future pipelines produced the desire
result. We have used python for parsing a small number of
files (each containing Wikipedia dumps for one hour). The
output of the script was a csv file. To plot our results we
have used Google Sheets!”, which may not sound like the
optimal tool to use for plots, but we found it very easy to
import csv data into a Sheet, to generate and advance edit
plots and ultimately to share plots and linking them in other
documents.

Later on, in order to process all the data from Wikipedia
that we wanted to inspect we have decided to use Spark'®
and to write our batch pipelines in Java. We chose to work
with Spark because it was easy and intuitive to use for
pipeline stages definitions and general flow specification and
jobs deployment and tuning. Also, it did not require any
extra installations on SURFSara. For Java we have used
the JDK 7 as this was the version available on the cluster.
Java and Spark have been an easy to use combination - the
definition of stages is intuitive with names like "filter” or
?reduceByKey” and we found it very natural to encapsulate
the logic for each stage into stand-alone objects passed in to
the stage.

As for the trend detection algorithm, we have started with
the data-driven algorithm and then moved to the paramet-
ric model. The algorithm presented by Hendrickson, Kolb,
Lehman and Montague [3] in their white paper was backed
up by python code on Github'®. Starting from their code
and the explanations they gave in their paper, we have trans-
lated the code to Java. We have also downloaded their code
and ran it on small portions of our data to again find a
”ground truth” that we used in unit tests to assess that our
translation was running as expected.

Also from their Github repository we have used the refer-
ence sets they provided for the two clusters of trending and
non-trending topics. These topics had been extracted from
Twitter. We considered this to be a major drawback for our
experiments and we searched for a viable reference set for
activity on Wikipedia, but unfortunately we couldn’t find
one online. We will later discuss the impact this had on our
findings.

The parametric algorithm presented on Stackoverflow?°
was originally written in Matlab. We have again translated
it in Java (and simplified it). Also, we have used the original
algorithm to generate expectations for our unit tests and also
to fix the parameters needed by the algorithm to match the
magnitude of our data set.

In the end, for producing the desired visualization, we
worked with HTML and JavaScript. We used the High-
charts®! library to produce the charts in our visualization

"https: / /www.google.com/sheets/about/
8http://spark.apache.org/
Yhttps://github.com/jeffakolb/Gnip-Trend-Detection
*Ohttp:/ /stackoverflow.com/questions/22583391/peak-
signal-detection-in-realtime-timeseries-
data/22640362#22640362
2http://www.highcharts.com/

and Materialize CSS?? for the general look and feel of the
page.

4.3 Pipeline Building Blocks

In our experiments we have used two Spark batch pipelines,
which we called Trend Detector Pipeline (Figure 3) and
Trend Extractor Pipeline (Figure 4).

4.3.1 Trend Detector Pipeline

In its first stage, the Trend Detector Pipeline reads a batch
of files from the SURFSara cluster, stored in the Hadoop File
System. The Spark API allows reading full files and returns
a String to String mapping from file name to file content.
Spark also provides a Java method for reading files line by
line, but this method proved ineffective and caused our jobs
to hang on the cluster. Each ingested file has an approxi-
mate size of 47TMB, is compressed in a gzip format and has a
name with the following pattern: pageviews-YYYYMMDD-
HHO0000.gz, where YYYYMMDD and HH represent the date
and the hour for which the file stores page views stats. Luck-
ily, HDF'S allows Spark to seamlessly read and decompress
gzipped files. The content of each file is split into lines. On
each line we can find the following tokens, split by space: a
code of the form "language_code[.medium]”, where the lan-
guage code is the ISO code of the language in which the
article is published and "medium” is an optional token hold-
ing information about the medium from which the article
has been accessed; article name; number of views for that
hour for the specific article.

We use a flatMap operation on the next stage in order
to remap the name of the file to each line in the file (the
flatMap operation allows us to emit zero or more records
for each input record). A subsequent stage splits each line
into tokens and emits a remapping from article name (topic)
to a tuple of timestamp (extracted from the file name) and
number of views the page received for that timestamp.

We also only keep track of those articles that are either
in English or Spanish. Initially, we did not filter out any
information, but when deploying to cluster, the jobs would
get stuck on the shuffle phase, due to a very high number of
keys. We have eventually decided to look only at the rows
that started with ”en” or ”es”, regardless of the medium they
have been read from.

A reduceByKey stage performs a mergesort over the keys
in the mapping of the previous stage. The result is that
now the article name will be associated with an array of
tuples holding the timestamp and number of views for that
timestamp.

We then map the trend detection algorithm on each record.
For each article, we window the array of tuples into buck-
ets of fixed size (the size of the signals in the reference set
for the data driven model and a bucket of 72 hours for the
parametric model) and feed each window to the algorithm.
Regardless of which algorithm we choose to use, it will out-
put a parameter telling us whether that window is trending
or not - the data driven model will output 1 (showing how
close the window is to the trending signals as compared to
the non-trending signals) and the parametric model will out-
put 0 (non-trending) or 1 (trending). We add this output to
the previous tuple, so now the article name will be mapped
to an array of tuples of timestamp, number of views and a
floating point value, 7, 0 or 1.

22http:/ /materializecss.com/

HDFS
Wikipedia
pageviews

Read files

map

Trend Detector
Pipeline

(file name -> file line)

v

Filter for
“es” or “en”

* map
(topic ->

(timestamp, #views))

Detect peaks

Data driven

Parametric

+ reduceByKey

(topic ->
[(timestamp, #views)])

* map

Detect peaks

Performs a mergesort
by timestamp

writeToFile

y
HDFS
ﬂ gzipped

Figure 3: Trend Detector Pipeline building blocks.

The non-parametric model needs to read the reference sets
of trending and non-trending signals. We have serialized
these signals (which are basically one-dimensional arrays),
saved them to binary files and added these as jar resources.
In this way, they are copied over on each worker, which will
then de-serialize the information and use it. The two files
amount to 2MB in size.

In the final stage the RDD is written to HDF'S files on the
SURFSara cluster. After trying different partition values
and watch our jobs fail, we decided to let Spark choose the
optimal number of partitions, so the job finished successfully.

4.3.2 Trend Extractor Pipeline

In order to actually detect if and when the page views
timeseries spike, we have written the Trend Extractor Pipeline.
First, it reads the files produced by the previous pipeline.
In the resources of the deployed jar we have also included
a small text file (500bytes) with the dates of each election
event we are interested in, which is read by each worker.
We apply a flatMap operation on the resulting mapping (file
name to file content): we check whether a spike occurs in
the array of tuples (timestamp, number of views, 7, 0 or 1)
from 48 hours prior to an election events to 48 hours after
an election event. If so, we wrap this information in a JSON
object.

We then repartition the RDD into a single partition so
that it will be written into one single file and dump the
JSONs produced before to a text file.

4.4 Deployment to Cluster

To ease the packaging and deployment process we have

Trend signal| Trend Detector

Pipeline

Read files

map

if spike in timeseries {
extract views for

[timestamp - 72h,)

timestamp + 72h] jar resource

}
build as JSSON

fffffffffff -

repartition to a
single partition

-

writeToFile

Trend Extractor

HDFS Pipeline

Figure 4: Trend Extractor Pipeline building blocks.

used Apache Maven?®. Before deployment we packed the

project and all its dependencies and resources into an uber-
jar?* and spark-submitted®® it to the SURFSara cluster.

4.5 Visualization Walk-through

In our visualization we have included the following com-
ponents:

e A chart like the one in Figure 5. On the x axis we plot
the date of the event and on the y axis the number
of spiking Wikipedia topics for that particular event.
Each event is drawn as a bubble and the size of the
bubble is proportional to the total number of page
views for the spiking pages. As you can see in Fig-
ure 5 this is more or less the same for all the events;

When clicking on an event the page will be populated
with the names of the Wikipedia articles that have
spiked before, during or after that event. For each
of these pages we have included a sparkline (like the
one in Figure 6) that shows how the page views have
changed over 48 and 24 hours prior to the event, during
the event and 24 and 48 hours after the event (the red
dotted lines);

Finally, we have also included three charts showing
how the polls vary withing the 96 hours. The charts
show polls for Trump vs. Clinton, Clinton vs. Sanders
and the Republican candidates vs. each other.

S. EXPERIMENTS

As we have mentioned in a previous section we started our
experiments locally on the data from Wikipedia by looking
at stats spanning over two weeks, from September 14th 2016
to September 28th 2016. We chose these dates because the
first presidential debate took place on September 26th 2016.
To ease the pain on our local machines, we have only looked

Zhttps://maven.apache.org/

http: / /stackoverflow.com/questions/11947037 /what-is-an-
uber-jar

Zhttp:/ /spark.apache.org/docs/latest /submitting-
applications.html

Election events

- 90 @@

Oct '15 Jan '16 Apr'l6 Jul'16 Oct '16

Spiking topics

Figure 5: Visualization chart.

UpZ
uo
bz
ugt

Figure 6: Visualization sparkline.

at views for the pages containing the keywords "clinton”,
“trump”, “republican” or “democrat” in their name and we
have only selected the first 20 pages by number of views. In
these first experiments we wanted to gain insight on how the
data is structured, whether the theory we started from (that
Wikipedia pages related to election events become trend-
ing during these events) is even true and also to generate
a "ground truth” for our future experiments on Spark. In
Figure 7 we see that the pages of Donald Trump and Hillary
Clinton are the first two pages by the number of views from
these top 20 and also that they spike the most right after
the debate. So we were convinced that we might obtain
interesting results from running on larger data sets.

We moved on to building the first pipeline, Trend Detector
Pipeline, described in the previous section. In the beginning
we used the data driven algorithm to search for trends in the
Wikipedia page views timeseries. At this point we were not
yet filtering by the language of the page (we later decided
to only keep those pages in English and Spanish) so when

—— Donald_Trump —— Hillary_Clinton Bill Clinton —— Melania_Trump ~—— Ivanka Trump ~ —— lvana Trump — Tiffany_Trump ap

—al A

9/15/2016 9/17/2016 9/19/2016 9/21/2016 9/23/2016 9/25/2016 9/27/2016
0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00 0:00:00

Figure 7: Experimenting on our local machines. Top
20 Wikipedia pages (by number of views) between
Sept 14th and Sept 28th 2016, containing the key-
words clinton”, ”trump”, ”democrat” or “republi-
can” in their title.

= Views = Signal Eta

Pageview
B‘g_;:(?
Signal, Eté

Figure 8: Experimenting on SURFSara. Number of
views on Hillary Clinton’s Wikipedia page (blue), n
(orange) and the binary signal (red).

we ran our job on the SURFSara cluster on data between
September 20th and 30th 2016 it took the shuffle phase more
than 5 hours to finish successfully. We cherry-picked the
results and looked at how the algorithm performed for the
pages of Hillary Clinton and Donald Trump (we knew they
were spiking right after September 26th from our previous
experiment). In Figure 8 we have plotted with blue the
number of views for Hillary Clinton’s page and with orange
the value we obtained for 7 over the timeseries by using the
data driven algorithm. We will leave out the red signal for
now. Looking at this figure we tried to find a sensible value
for 6. Remember that if n >= 6 (a fixed threshold) the input
signal is found to be trending (and non-trending otherwise).
An example value for § would be 1, for example - this would
mean that if n is greater than or equal to 1 the Wikipedia
page is trending or presents a spike and as soon as it drops
below 1, the page views would revert to their normal values.
The problem is that there is actually no good value to set 6
to, as the interval does not correctly capture the spike in the
image and the small trending portion after the spike. If we
set a value larger than or equal to 1 for § we do not capture
the spike. If we set a value lower than 1 for 6 we capture too
much of the signal after the spike. This is not what we want
- we would like to be able to capture only the spike and the
small trending portion after it. We looked at the results for
some other Wikipedia pages generated by this run and we
could see that n exhibited the same behavior.

We can identify two problems in our approach so far:
firstly, it took too long to run our pipeline, due to the amount
of time the jobs were spending in the shuffle phase; secondly,
the data driven algorithm was not yielding the results we
were hoping to obtain.

To solve our first problem we decided to only take into
consideration the pages in English and Spanish. This means
that from a total of 40 million pages that amounted to
500GB of compressed page views statistics from August 2015
to September 2016, we remained with only 82GB of data af-
ter the filtering stage which amounted to 5.2 million pages in
English and 1.3 million pages in Spanish. This means that
we have reduced the number of keys we were performing the
reduction on to 16.25% of the initial number. However, if
we look at language statistics for the United States®® we see
that 92.4% of the people speak English or Spanish at home
so it does make sense to only look at these truncated statis-
tics. After the filtering the pipeline performed very well - it
managed to process all the data we needed (so from August
2015 to September 2016) in only 2 hours.

— signal = views

— Signal = Views

| S o

Figure 9: Experimenting on SURFSara. Number
of views on Barack Obama’s (up) Donald Trump’s
(down) Wikipedia page (blue) and the binary signal
(red), between May and September 2016.

Our second problem was that the data driven algorithm
did not perform as we were hoping it to on the Wikipedia
data set. We think that the problem is not with the algo-
rithm, but rather with the reference sets that we have used.
As we have previously mentioned we used the reference sets
published in the Github repository of the Gnip Trend De-
tector?”. These had been extracted from Twitter and were
bucketed into 150 chunks of one hour. From what we have
understood from visualizing stats for a number of Wikipedia
pages, a Wikipedia page usually spikes, rather than becom-
ing trending (so there is rarely one long period of a high
number of views, but rather a sudden short period of a very
high number of views) and this happens over the course of
a few (3-5) hours. We searched online for reference sets for
Wikipedia articles, but we could not find anything available.

This is when we decided to switch to the non-parametric
algorithm we found on Stackoverflow. We ran the pipeline
over the same data from between September 20th and 30th
2016. In Figure 8 we plotted with red the binary signal
output by this algorithm. As long as the page is not trending
or spiking, the signal is 0 and, as soon as the page presents
a local spike the signal becomes 1. It is clear from the image
that the signal captures the spike and the short trending
period very well.

If we look at other runs and pages we see that the algo-
rithm really does perform well on the Wikipedia data set.
For example, in Figure 9 we see the views and signal for
Barack Obama’s (up) and Donald Trump’s (down) page be-
tween May and September 2016. The signal becomes and
stays 1 during every spiking period we can see in the time-
series.

We conclude that the non-parametric algorithm described
in Section 2 is the algorithm we should use to identify trends
and spikes in the Wikipedia page views timeseries.

Zhttps://en.wikipedia.org/wiki/Languages_of the_United_States *"https://github.com/jeffakolb/Gnip-Trend-Detection

0

(a) Bernie Sanders

(b) Donald Trump

(c¢) John Kasich

Figure 10: Sparklines for the Wikipedia pages of
Bernie Sanders (Democrat), Donald Trump and
John Kasich (Republicans) before, during and af-
ter two election events that have a common date:
Democrat semi-closed primary in New Hampshire,
Republicans binding primary in New Hampshire
(February 2nd 2016)

We move on to determining whether Wikipedia pages re-
lated to an election event exhibit an anomaly in their num-
ber of views shortly before, during or after that particular
election event. For this, we have put together an HTML
+ JavaScript visualization. There is a total number of 138
election events from between August 2015 and September
2016, but there are really 52 distinct calendar dates for
these events. The Trend Extractor Pipeline builds the JSON
output based on these 52 dates.

In Figures 10 and 11 we see the sparklines of the Wikipedia
pages of five politicians, members of the Republican or Demo-
cratic party. The sparklines are divided into five different
sections by red dotted lines - these sections correspond to
the portion of the sparkline that shows views 48 and 24
hours prior to the primary elections listed in the description
of the figures, on the day of the elections and finally 24 and
48 hours after the elections. In these figures we see that the
pages of the various politicians spike almost at the end of
the election day and not before (well, the exception is Don-
ald Trump’s page, but from what we have seen from other
various primary elections this is just an exception). As the
pages do not present a spike before the elections, we could
not, based on a spiking factor, predict the elections.

Figure 12 shows how the views for the pages of Donald
Trump and Hillary Clinton again spike right at the end of
the day in which the first presidential debate between the
two took place. In the case of the debates we were interested
to determine whether Wikipedia is used as a fact checker or
information source for the audience. The sparklines in the
visualization show that it is mostly the pages of the politi-
cians participating in the debate that exhibit a spike, and
not other pages related to the debated topics. Furthermore,
the pages that spike do so right after and not during the
debates.

Wikipedia remains an information source for the viewers,
but perhaps it is not a fact checker used during debates.

(a) Hillary Clinton

(b) Donald Trump

Figure 11: Sparklines for the Wikipedia pages of
Hillary Clinton (Democrat) and Donald Trump (Re-
publican) before, during and after two election
events that have a common date: Democrats closed
primary in New York, Republicans binding primary
in New York (April 19th 2016)

(a) Hillary Clinton

(b) Donald Trump

Figure 12: Sparklines for the Wikipedia pages of
Hillary Clinton (Democrat) and Donald Trump (Re-
publican) before, during and after the first Presiden-
tial Debate that took place in New York on Septem-
ber 26th 2016

6. CONCLUSIONS

In our experiments we tried to determine which Wikipedia
pages related to the US election events between August 2015
and September 2016 present an increase before, during or af-
ter these events - in this case we would say the page becomes
trending or exhibits a spike. We were interested in answering
this question because we wanted to see whether the activity
on these Wikipedia pages could help us predict the outcome
of elections.

As we had to work with a relatively big data set (500GB of
data), too large for our local machines to handle, we wrote
Spark jobs to help us gain insight into the data. Spark
proved to be a reliable and easy to use tool, unless it had
to perform a reduction on a very large number of keys (40
million in our case). The workaround for this problem was
to significantly reduce the number of keys fed into the shuffle
stage. The language distribution of the Wikipedia pages was
helpful in this case.

To find trends and spikes in the timeseries we first tried to
use a data driven non-parametric algorithm that classified
the timeseries based on previous knowledge. Unfortunately,
this approach did not work well for our data set, primarily
because we could not find reference sets for Wikipedia pages
and had to use Twitter trending and non-trending topic ex-
amples. A parametric algorithm proved to work very well
on the Wikipedia data set and helped us correctly identify
spikes and trends in the timeseries. The disadvantage of the
parametric algorithm was that we had to estimate the in-
put parameters of the algorithm. One advantage was that
this algorithm worked directly on the raw timeseries, so no
smoothing was needed.

We have created a visualization in the form of a static
web page to help the reader browse through the data out-
put by our Spark jobs. In the page we show all the election
events that have occurred between August 2015 and Septem-
ber 2016, as well as the pages that spike or become trending
during each election event. We also plot various polls that
show how the candidates fare compared to one another dur-
ing these events.

The results we have obtained have shown us that Wikipedia
is not, in fact, a reliable polling source. During the primary
elections the pages of various politicians spiked right after
the event and not before, so we could not use this informa-
tion to determine whether a certain person will win or lose.
Furthermore, during debates, Wikipedia was not used as a
fact checker. As in the case of the elections, the platform
was used mostly after the debates and most of the pages
that spike are again those of politicians’, so not necessarily
those related to discussed topics.

7. REFERENCES

[1] D. Gayo-Avello. A balanced survey on election
prediction using twitter data. May 2012.
https://arxiv.org/pdf/1204.6441v1.pdf.

[2] K. Goldstein. The bloomberg politics poll decoder.
http://www.bloomberg.com/politics/graphics/
2016-poll-decoder/, 2016.

[3] S. Hendrickson, J. Kolb, B. Lehman, and J. Montague.

Trend detection in social data. Technical report,

Twitter Inc., June 2015.

https://github.com/jeffakolb/Gnip-Trend-Detection/

blob/92d71¢3460db1482dc5bb0e640cea2d4d725e5ec/
paper /trends.pdf.

S. Nikolov. Trend or No Trend: A Novel Nonparametric

Method for Classifying Time Series. Master’s thesis,

Department of Electrical Engineering and Computer

Science, Massachusetts Institute of Technology, USA,

2012. https://dspace.mit.edu/bitstream/handle/1721.

1/85399/870304955-MIT.pdf ?sequence=2.

4

