Apache

Large-scale Processing on Hadoop

Claudio Martella

Apache Giraph . Claudio Martella

project of PMC & committer

identity Graph Fetishist

O . member . .

I5d
Apache Software Foundation .

works at

WOrks on

Large-scale Distributed Systems
Dynamic Complex Networks

roup of

models

O Social Behavior VU University Amsterdam

raphs are simple

Vertex

m——\lertex ID

‘ // Undirected edge

Vertex 1 Vertex 2

Nource
o estination

oop
—Directed edge

Vertex 1 Vertex 2

ranked

ranked Minority Report

Braveheart

A computer network

[1l 192.168.2.2

— @
O

192.168.2.1

HHHHHH

192.168.1.1, 192.168.3.1 i R_ﬁeskfup
(D <————Switch

outfer
_— e Wifi Access point

- ;
192.168.2.5 T /’-
— O 192.168.1.2
A 9Z.168
Tablet
D D — —Phone
\ 192.168.3.3
1682 Server
- - 192.168.3.2
192.168.2.4 192.168.2.3
192 168.2.2
192.168.1.3
NOfE 192.168.2.5 182.168.21 192 168.1.1

1. There are three networks: servers,
desktops and mobile.

2. They are connected through two
routers/firewalls.

3. We ignored the switches and the
access point in the graph.

4, Router 192.168.1.1 has two

interfaces but we used one as
vertex ID. 192.168.2.4 192.168.2.3 192 168.3.2 192.168.3.3

192.168.1.2

A soclal network

John

Susan

John

father
Mark

wife | husband

employee

Susan

Mark

co-worker /\

N

friend

friend

Sarah

friend O

Sarah

Note

1.

2.

A symmetric
relationship is
substituted by two
directed edges.

A relationship does not
have to be substituted
by two edges, but e.g.
by a more specific one.

A semantic network

Sub ject

United States

United States

United States
United States
United States
United States
Barack Obama

Barack Obama

Barack OJbama

Hawaii

Hawaii

Fredicate

areaTotal

anthem

leaderName
leaderName
leaderName
leaderName
birthPlace

birthPlace

arderindfFice

areaTotal

country

Ob ject
9826675.0

The Star Spangled
Banner

Barack Obama
Joe Biden
John Boehner
John Reberts
United States
Hawaii

Fresident of the
United States

28311.0

United States

The Star Spangled
Banner

9826675.0

areaTotal
anthem

John Roberts

John Boehner United States

leaderName leadarName

leadariame
leaderiName

Barack Obama

Joe Biden birthPlace

country

orderinOffice

28311.0
areaTotal
. f.

President of the

Hawaii United States

A map

Edge weights are used

for distances (in km.)
Torino Milano Verona

G 142 160

A4

115 Venezia

Vertices are used for:
1. cities
2. crossings

Firenze

. S A14-A25
Va ";{ P - - pHbari 283

Al4

- Roma A14-A16

Bari

\\\ : Napoli
J'c;p'.;‘».) i
Sicilia_4 Edge labels are used for the highway names

Predicting break ups

° °
4 a * o 0.10
G
® e p =
‘o 0 g g " >0.08
° =
L .. e ® o * §
< oo o ° g o
a
e e ° 4 ® o gaOOG
o ° =
< .0. o » 2
w
® i ; ‘
.. ‘ ‘5) .\'|"
004 4 ¢
o *® ° 5 h\
o z e :.é
e e ’00"'0. o &
® 0.02
o * o ”
® o ®
o *® ® 9
° ® o
.'. "
* BN 0.00 -
... ® 0 g o °
z
® A T © o~ @ - o © o~ ®
e © o o - - o~ ™ ™ < <

Duration (Months)

Graph approach Aggregation approach

Graphs are

Each vertex
on Its neighbours,

problems
are nicely solved

Analytics

Database

You are here!

MapReduce Gil‘ﬂph
" Spark GraphX GraphlLab
Pig -1 Sig-nnl{cull-ﬂcf _
Cassandra | Neod
MySQL Tinkerpop
HBase OrientDB

12

PageRank In
MapReduce

® Record:<v i,pr,[Vvj, .., v k]>
® Mapper: emits < v_j, pr / #neighbours >

® Reducer: sums the partial values

13

MapReduce dataflow

Input

format
Input O —>
Input 1 —_—>

Map Intermediate
files

tasks

B

)
= > 4 v 4
]@ >

0

14

Reduce
tasks

Output
format

L H—

Output 0

>~ @@ ——>‘ Output 1

Drawbacks

Each job Is executed || times
Job
Mappers send PR values and

Extensive (O at input, shuffle & sort,
output

15

Ya

8
e

A

.
oA . i E
|

i

@&
o

RA P H

16

Timeline

Inspired by Google Pregel ()
Donated to ASF by Yahoo! In
Top-level project In

1.0 release Iin January

1.1 release In November

17

Plays well with
Hadoop

Giraph
RS

YARN Znnkeeper MapReduce

Al
_T.

Gora kaerpop

Hive
Tables HBase Cassandra Y;{DBMS Neo4J DE)(

HDFS 7

18

Vertex-centric API

Shortest Paths

Shortest Paths
() @\
3 @ 0

®<..—L"
NOS

1

[
o~
2

Shortest Paths

()5
NS
3 < 2 @
RO <
(o, 4 o
2

Shortest Paths

Shortest Paths
O
3 o 0

4
1
24

1

Code

def compute(vertex, messages):
minValue = Inf
for m in messages:
minValue = min(minValue, m)
If minValue < vertex.getValue():
vertex.setValue(minValue)
for edge in vertex.getEdges():
message = minValue + edge.getValue()
sendMessage(edge.getTargetld(), message)

vertex.voteToHalt()

25

Dimension 2 Examples of latent vectors
The white album

Mark
m o John Kid A
Revolver
[‘i] Sophia
Anna o Phil H

©)

The social network

nmnesmc

(&)

The dark side
of the moon

Phil
Dimension 1

Users and items that

m frank
m Game of Thrones are close in
o e _SPACEhGVE alsO
o similar latent
e/vecfors and are
m similar in terms of

Alex The lord of the rings

2O O

The hobbit

©

Black hawk down

"genre”
Klaus Rose

Full metal jacket

26

Item1 Item2

S

2.

3.

ltem4 Item3

uperstep O:

All vertices initialise their value at

random.
User vertices send their value to
their endpoints.

All vertices vote to halt.

The item vector updates its latent
vector based on the latent vectors

coming from the users, and spreads

Item1 Item2 S
1.
2.
3.
ltem4 Item3
4.
Item1 Item2
1.
2.
ltem4 Item3
3.
4.

3 Rating saved in the edge value

Latent vector as a message

/1‘ around.

uperstep 1:

Item vertices are woken up.

ltem vertices update their values
according to SGD based on the
messages, edge values and the
current latent vector

Iltem vertices send their new value
to their endpoints.

Item vertices vote to halt.

It's now the turn of the user
vectors to update their latent
vectors based on the items' latent
vectors computed in the previous
super step

uperstep 2:

User vertices are woken up.

User vertices update their values
according to SGD based on the
messages, edge values and the
current latent vector

User vertices send their new value
to their endpoints.

User vertices vote to halt.

Inactive item vertex with latent vector

Active user vertex with latent vector

Superstep O:
1. All vertices initialise their value to
their ID.

2. All vertices send their value to the
other endpoint.

Every vertex propagates the ID
through the messages.

Superstep 1:

1. Vertices receive the labels of their neighbours
and compute frequency.

2. Edge values are initialised to these labels.

3. At this first superstep, all frequencies are 1 so
vertices break ties randomly.

4. Vertices update their value and send it to the
endpoints of their edges..

The central vertex acquires at random one of
the lanes from the neighbours

Superstep 2:

1. Vertices receive the labels of their neighbours

and compute the frequency.

Vertices update edge values

3. Vertices update their label based on the
frequencies breaking ties randomly.

4. Vertices send their values to the endpoints of
their edges.

N

The ID of the central vertex starts being
propagated within the community

Superstep 4:

1. Remaining vertices receive the labels from the
neighbours.

2. They update their edge values.

3. They compute their new labels.

4. They send their new value to the endpoints of
their edges.

The whole community has now acquired the id
==0of the central node.

Label as a message . Active vertex with label

29

PU |

PU 2

PU 3

~ -

BSP & Giraph

OO0 -
00000:55‘_; —

cle/e/e/0/6] o V= E—

clelelo/0/0/e3 - = - I

Advantages

. message-based
communication

. global synchronization

. massively
parallelizable

31

Designed for

(In-memory)

iIntermediate values (messages)
sent

® Hits the at input, output, checkpoint

go out-of-core

32

Giraph job lifetime

Loading phase Compute phase Offloading phase
Workers call

compute() on the
active vertices and
collect messages

Vertices are loaded Vertices are offloaded

into Giraph through an mmﬁi i’f to HDFS through an
InputFormat All data loaded ges OutputFormat
processed

All vertices halled

and no messages
produced
All vertices computed

Workers compute
All messages sent gaqregators, collect
statistics, and wait at
the synchronisation
barrier

Workers finish
exchange messages

33

Architecture

Hadoop File System (HDFS)
M

vvvvvv

Composable AP]

PageRank Statistics

L1

Multi-phase algorithm

.

Checkpointing

Superstep i+1
(checkpoint)

Worker failure!

L Superstep i+1 S
(checkpoint)

Worker failure
after checkpoint

Application
Complete

36

No SPoFs

Before failure of active master O After failure of active master O

<

ZooKeeper ZooKeeper

37

Giraph scales

Scalability of workers (200B edges) Scalability of edges (50 workers)
500 500
375 375
E E
o 250 o 250
& &
|25 125
0 0
50 100 150 200 250 300 I 67 |34 200
of Workers Billions of Edges
< Giraph — |deal < Giraph — |deal

ref: https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-
edges/10151617006153920

38

https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920

Giraph is

over MR (Pr)
® jobs run within

® given you have

1_)

39

Serialised objects

Primitive types

Autoboxing Is expensive
Objects overhead (JVM)
Use primitive types on your own

Use primitive types-based libs (e.g.
fastutils)

41

Sharded aggregators

Wo ker

Workers own aggregators Aggregator owners communicate Aggregator owners distribute values
with Master

Worker Worker Worker

42

Okapl

® Apache Mahout for graphs

® Graph-based

recommenders: ALS, SGD,
SVD++, etc.

® Graph analytics: Graph
partitioning, Community
Detection, K-Core, etc.

43

http://giraph.apache.org
<claudio@apache.org> @claudiomartella

