
Apache Giraph
Large-scale Graph Processing on Hadoop

Claudio Martella

 <claudio@apache.org> @claudiomartella

2

Graphs are simple

3

A computer network

4

A social network

5

A semantic network

6

A map

7

Predicting break ups

8

Aggregation approach Graph approach

Graphs are nasty.

9

Each vertex depends

on its neighbours,

recursively.

10

Recursive problems

are nicely solved

iteratively.

11

12

PageRank in

MapReduce

• Record: < v_i, pr, [v_j, ..., v_k] >

• Mapper: emits < v_j, pr / #neighbours >

• Reducer: sums the partial values

13

MapReduce dataflow

14

Drawbacks

• Each job is executed N times

• Job bootstrap

• Mappers send PR values and structure

• Extensive IO at input, shuffle & sort,

output

15

16

Timeline

• Inspired by Google Pregel (2010)

• Donated to ASF by Yahoo! in 2011

• Top-level project in 2012

• 1.0 release in January 2013

• 1.1 release in November 2014

17

Plays well with

Hadoop

18

Vertex-centric API

19

Shortest Paths

20

Shortest Paths

21

Shortest Paths

22

Shortest Paths

23

Shortest Paths

24

Code
def compute(vertex, messages):

 minValue = Inf # float(‘Inf’)

 for m in messages:

 minValue = min(minValue, m)

 if minValue < vertex.getValue():

 vertex.setValue(minValue)

 for edge in vertex.getEdges():

 message = minValue + edge.getValue()

 sendMessage(edge.getTargetId(), message)

 vertex.voteToHalt()

25

26

27

28

29

BSP & Giraph

30

Advantages

• No locks: message-based

communication

• No semaphores: global synchronization

• Iteration isolation: massively

parallelizable

31

Designed for

iterations

• Stateful (in-memory)

• Only intermediate values (messages)

sent

• Hits the disk at input, output, checkpoint

• Can go out-of-core

32

Giraph job lifetime

33

Architecture

34

Composable API

35

Checkpointing

36

No SPoFs

37

Giraph scales

38

ref: https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-

edges/10151617006153920

https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920

Giraph is

fast

• 100x over MR (Pr)

• jobs run within minutes

• given you have resources

;-)

39

Serialised objects

40

Primitive types

• Autoboxing is expensive

• Objects overhead (JVM)

• Use primitive types on your own

• Use primitive types-based libs (e.g.

fastutils)

41

Sharded aggregators

42

Okapi

• Apache Mahout for graphs

• Graph-based

recommenders: ALS, SGD,

SVD++, etc.

• Graph analytics: Graph

partitioning, Community

Detection, K-Core, etc.

43

Thank you

<claudio@apache.org> @claudiomartella

http://giraph.apache.org

