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Graphs are simple 
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A computer network 
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A social network 

5 



A semantic network 
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A map 
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Predicting break ups 
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Aggregation approach Graph approach 



Graphs are nasty. 
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Each vertex depends 

on its neighbours, 

recursively. 
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Recursive problems 

are nicely solved 

iteratively. 
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PageRank in 

MapReduce 

• Record: < v_i, pr, [ v_j, ..., v_k ] > 

• Mapper: emits < v_j, pr / #neighbours > 

• Reducer: sums the partial values 
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MapReduce dataflow 
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Drawbacks 

• Each job is executed N times 

• Job bootstrap 

• Mappers send PR values and structure 

• Extensive IO at input, shuffle & sort, 

output 
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Timeline 

• Inspired by Google Pregel (2010) 

• Donated to ASF by Yahoo! in 2011 

• Top-level project in 2012 

• 1.0 release in January 2013 

• 1.1 release in November 2014 
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Plays well with 

Hadoop 
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Vertex-centric API 
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Shortest Paths 
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Shortest Paths 
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Shortest Paths 
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Shortest Paths 
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Shortest Paths 
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Code 
def compute(vertex, messages): 

    minValue = Inf     # float(‘Inf’) 

    for m in messages: 

        minValue = min(minValue, m) 

    if minValue < vertex.getValue(): 

        vertex.setValue(minValue) 

        for edge in vertex.getEdges(): 

            message = minValue + edge.getValue() 

            sendMessage(edge.getTargetId(), message) 

    vertex.voteToHalt() 
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BSP & Giraph 
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Advantages 

 

• No locks: message-based 

communication 

• No semaphores: global synchronization 

• Iteration isolation: massively 

parallelizable 
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Designed for 

iterations 

• Stateful (in-memory) 

• Only intermediate values (messages) 

sent 

• Hits the disk at input, output, checkpoint 

• Can go out-of-core 
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Giraph job lifetime 
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Architecture 
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Composable API 
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Checkpointing 
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No SPoFs 
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Giraph scales 
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ref: https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-

edges/10151617006153920 

https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920


Giraph is 

fast 

• 100x over MR (Pr) 

• jobs run within minutes 

• given you have resources 

;-) 
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Serialised objects 
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Primitive types 

• Autoboxing is expensive 

• Objects overhead (JVM) 

• Use primitive types on your own 

• Use primitive types-based libs (e.g. 

fastutils) 
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Sharded aggregators 
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Okapi 

• Apache Mahout for graphs 

• Graph-based 

recommenders: ALS, SGD, 

SVD++, etc. 

• Graph analytics: Graph 

partitioning, Community 

Detection, K-Core, etc. 
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Thank you 

<claudio@apache.org> @claudiomartella 

http://giraph.apache.org 


