
event.cwi.nl/lsde2015

Large-Scale Data Engineering

Hadoop MapReduce in more detail

event.cwi.nl/lsde2015

How will I actually learn Hadoop?

• This class session

• Hadoop: The Definitive Guide

• RTFM

• There is a lot of material out there

– There is also a lot of useless material

– You need to filter it

– Just because some random guy wrote a blog post about something

does not make it right

– Ask questions!

• Skype & screen sharing

event.cwi.nl/lsde2015

Basic Hadoop API

Mapper

• void setup(Mapper.Context context)
Called once at the beginning of the task

• void map(K key, V value, Mapper.Context context)
Called once for each key/value pair in the input split

• void cleanup(Mapper.Context context)
Called once at the end of the task

Reducer/Combiner

• void setup(Reducer.Context context)
Called once at the start of the task

• void reduce(K key, Iterable<V> values, Reducer.Context ctx)

Called once for each key

• void cleanup(Reducer.Context context)

Called once at the end of the task

event.cwi.nl/lsde2015

Basic Hadoop API

Partitioner

• int getPartition(K key, V value, int numPartitions)

Get the partition number given total number of partitions

Job

• Represents a packaged Hadoop job for submission to cluster

• Need to specify input and output paths

• Need to specify input and output formats

• Need to specify mapper, reducer, combiner, partitioner classes

• Need to specify intermediate/final key/value classes

• Need to specify number of reducers (but not mappers, why?)

• Don’t depend of defaults!

event.cwi.nl/lsde2015

Data types in Hadoop: keys and values

Writable Defines a de/serialization protocol.

Every data type in Hadoop is a

Writable.

WritableComparable Defines a sort order. All keys must be

of this type (but not values).

IntWritable

LongWritable

Text

…

Concrete classes for different data

types.

SequenceFiles Binary encoded of a sequence of

key/value pairs

event.cwi.nl/lsde2015

“Hello World”: word count

Map(String docid, String text):
 for each word w in text:
 Emit(w, 1);

Reduce(String term, Iterator<Int> values):
 int sum = 0;
 for each v in values:
 sum += v;
 Emit(term, sum);

event.cwi.nl/lsde2015

“Hello World”: word count

 private static class MyMapper extends

 Mapper<LongWritable, Text, Text, IntWritable> {

 private final static IntWritable ONE = new IntWritable(1);

 private final static Text WORD = new Text();

 @Override

 public void map(LongWritable key, Text value, Context context)

 throws IOException, InterruptedException {

 String line = ((Text) value).toString();

 StringTokenizer itr = new StringTokenizer(line);

 while (itr.hasMoreTokens()) {

 WORD.set(itr.nextToken());

 context.write(WORD, ONE);

 }

 }

 }

event.cwi.nl/lsde2015

“Hello World”: word count

 private static class MyReducer extends
 Reducer<Text, IntWritable, Text, IntWritable> {

 private final static IntWritable SUM = new IntWritable();

 @Override

 public void reduce(Text key, Iterable<IntWritable> values,

 Context context) throws IOException, InterruptedException {

 Iterator<IntWritable> iter = values.iterator();

 int sum = 0;

 while (iter.hasNext()) {

 sum += iter.next().get();

 }

 SUM.set(sum);

 context.write(key, SUM);

 }

 }

event.cwi.nl/lsde2015

Getting data to mappers and reducers

• Configuration parameters

– Directly in the Job object for parameters

• Side data

– DistributedCache

– Mappers/reducers read from HDFS in setup method

• Avoid object creation at all costs

– Reuse Writable objects, change the payload

• Execution framework reuses value object in reducer

• Passing parameters via class statics

event.cwi.nl/lsde2015

Complex data types in Hadoop

• How do you implement complex data types?

• The easiest way:

– Encoded it as Text, e.g., (a, b) = “a:b”

– Use regular expressions to parse and extract data

– Works, but pretty hack-ish

• The hard way:

– Define a custom implementation of Writable(Comparable)

– Must implement: readFields, write, (compareTo)

– Computationally efficient, but slow for rapid prototyping

– Implement WritableComparator hook for performance

• Somewhere in the middle:

– Some frameworks offers JSON support and lots of useful Hadoop

types

event.cwi.nl/lsde2015

Basic cluster components

• One of each:

– Namenode (NN): master node for HDFS

– Jobtracker (JT): master node for job submission

• Set of each per slave machine:

– Tasktracker (TT): contains multiple task slots

– Datanode (DN): serves HDFS data blocks

event.cwi.nl/lsde2015

Recap

datanode daemon

Linux file system

…

tasktracker

slave node

datanode daemon

Linux file system

…

tasktracker

slave node

datanode daemon

Linux file system

…

tasktracker

slave node

namenode

namenode daemon

job submission node

jobtracker

event.cwi.nl/lsde2015

Anatomy of a job

• MapReduce program in Hadoop = Hadoop job

– Jobs are divided into map and reduce tasks

– An instance of running a task is called a task attempt (occupies a slot)

– Multiple jobs can be composed into a workflow

• Job submission:

– Client (i.e., driver program) creates a job, configures it, and submits it

to jobtracker

– That’s it! The Hadoop cluster takes over

event.cwi.nl/lsde2015

Anatomy of a job

• Behind the scenes:

– Input splits are computed (on client end)

– Job data (jar, configuration XML) are sent to JobTracker

– JobTracker puts job data in shared location, enqueues tasks

– TaskTrackers poll for tasks

– Off to the races

event.cwi.nl/lsde2015

InputSplit InputSplit InputSplit

Input File Input File

InputSplit InputSplit

Record

Reader

Record

Reader

Record

Reader

Record

Reader

Record

Reader

Mapper

Intermediates

Mapper

Intermediates

Mapper

Intermediates

Mapper

Intermediates

Mapper

Intermediates

In
p
u
tF

o
rm

a
t

event.cwi.nl/lsde2015

… …

InputSplit InputSplit InputSplit

Client

Records

Mapper

Record

Reader

Mapper

Record

Reader

Mapper

Record

Reader

event.cwi.nl/lsde2015

Mapper Mapper Mapper Mapper Mapper

Partitioner Partitioner Partitioner Partitioner Partitioner

Intermediates Intermediates Intermediates Intermediates Intermediates

Reducer Reducer Reduce

Intermediates Intermediates Intermediates

(combiners omitted here)

event.cwi.nl/lsde2015

Reducer Reducer Reduce

Output File

Record

Writer

O
u
tp

u
tF

o
rm

a
t

Output File

Record

Writer

Output File

Record

Writer

event.cwi.nl/lsde2015

Input and output

• InputFormat:

– TextInputFormat

– KeyValueTextInputFormat

– SequenceFileInputFormat

– …

• OutputFormat:

– TextOutputFormat

– SequenceFileOutputFormat

– …

event.cwi.nl/lsde2015

Shuffle and sort in Hadoop

• Probably the most complex aspect of MapReduce

• Map side

– Map outputs are buffered in memory in a circular buffer

– When buffer reaches threshold, contents are spilled to disk

– Spills merged in a single, partitioned file (sorted within each partition):

combiner runs during the merges

• Reduce side

– First, map outputs are copied over to reducer machine

– Sort is a multi-pass merge of map outputs (happens in memory and on

disk): combiner runs during the merges

– Final merge pass goes directly into reducer

event.cwi.nl/lsde2015

Shuffle and sort

Mapper

Reducer

other mappers

other reducers

circular

buffer

(memory)

spills (on disk)

merged spills

(on disk)

intermediate files

(on disk)

Combiner

Combiner

event.cwi.nl/lsde2015

Recommended workflow

• Here’s one way to work

– Develop code in your favourite IDE on host machine

– Build distribution on host machine

– Check out copy of code on VM

– Copy (i.e., scp) jars over to VM (in same directory structure)

– Run job on VM

– Iterate

• Avoid using the UI of the VM

– Directly ssh into the VM

• Deploying the job

• $HADOOP_CLASSPATH

• hadoop jar MYJAR.jar -D k1=v1 … -libjars foo.jar,bar.jar
 my.class.to.run arg1 arg2 arg3 …

event.cwi.nl/lsde2015

Actually running the job

• $HADOOP_CLASSPATH

• hadoop jar MYJAR.jar
 -D k1=v1 ...
 -libjars foo.jar,bar.jar
 my.class.to.run arg1 arg2 arg3 …

event.cwi.nl/lsde2015

Debugging Hadoop

• First, take a deep breath

• Start small, start locally

• Build incrementally

• Different ways to run code:

– Plain Java

– Local (standalone) mode

– Pseudo-distributed mode

– Fully-distributed mode

• Learn what’s good for what

event.cwi.nl/lsde2015

Hadoop debugging strategies

• Good ol’ System.out.println

– Learn to use the webapp to access logs

– Logging preferred over System.out.println

– Be careful how much you log!

• Fail on success

– Throw RuntimeExceptions and capture state

• Programming is still programming

– Use Hadoop as the glue

– Implement core functionality outside mappers and reducers

– Independently test (e.g., unit testing)

– Compose (tested) components in mappers and reducers

event.cwi.nl/lsde2015

Summary

• Presented Hadoop in more detail

• Described the implementation of the various components

• Described the workflow of building and deploying applications

• Things are a lot more complicated than this

• We will next turn to algorithmic design for MapReduce

