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Large-Scale Data Engineering 

Hadoop MapReduce in more detail 
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How will I actually learn Hadoop? 

• This class session 

• Hadoop: The Definitive Guide 

• RTFM 

• There is a lot of material out there 

– There is also a lot of useless material 

– You need to filter it 

– Just because some random guy wrote a blog post about something 

does not make it right 

– Ask questions! 

• Skype & screen sharing 
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Basic Hadoop API 

Mapper 

• void setup(Mapper.Context context) 
Called once at the beginning of the task 

• void map(K key, V value, Mapper.Context context) 
Called once for each key/value pair in the input split 

• void cleanup(Mapper.Context context) 
Called once at the end of the task 

Reducer/Combiner 

• void setup(Reducer.Context context) 
Called once at the start of the task 

• void reduce(K key, Iterable<V> values, Reducer.Context ctx) 

Called once for each key 

• void cleanup(Reducer.Context context) 

Called once at the end of the task 
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Basic Hadoop API 

Partitioner 

• int getPartition(K key, V value, int numPartitions) 

Get the partition number given total number of partitions  

 

Job 

• Represents a packaged Hadoop job for submission to cluster 

• Need to specify input and output paths 

• Need to specify input and output formats 

• Need to specify mapper, reducer, combiner, partitioner classes 

• Need to specify intermediate/final key/value classes 

• Need to specify number of reducers (but not mappers, why?) 

• Don’t depend of defaults! 
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Data types in Hadoop: keys and values 

Writable  Defines a de/serialization protocol. 

Every data type in Hadoop is a 

Writable. 

WritableComparable Defines a sort order.  All keys must be 

of this type (but not values). 

IntWritable 

LongWritable 

Text 

… 

Concrete classes for different data 

types. 

SequenceFiles Binary encoded of a sequence of  

key/value pairs 
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“Hello World”: word count 

Map(String docid, String text): 
     for each word w in text: 
          Emit(w, 1); 
 
Reduce(String term, Iterator<Int> values): 
     int sum = 0; 
     for each v in values: 
          sum += v; 
     Emit(term, sum); 
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“Hello World”: word count 

  private static class MyMapper extends  

      Mapper<LongWritable, Text, Text, IntWritable> { 

 

    private final static IntWritable ONE = new IntWritable(1); 

    private final static Text WORD = new Text(); 

 

    @Override 

    public void map(LongWritable key, Text value, Context context) 

        throws IOException, InterruptedException { 

      String line = ((Text) value).toString(); 

      StringTokenizer itr = new StringTokenizer(line); 

      while (itr.hasMoreTokens()) { 

        WORD.set(itr.nextToken()); 

        context.write(WORD, ONE); 

      } 

    } 

  } 
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“Hello World”: word count 

  private static class MyReducer extends 
      Reducer<Text, IntWritable, Text, IntWritable> { 

 

    private final static IntWritable SUM = new IntWritable(); 

 

    @Override 

    public void reduce(Text key, Iterable<IntWritable> values,  

        Context context) throws IOException, InterruptedException { 

      Iterator<IntWritable> iter = values.iterator(); 

      int sum = 0; 

      while (iter.hasNext()) { 

        sum += iter.next().get(); 

      } 

      SUM.set(sum); 

      context.write(key, SUM); 

    } 

  } 



event.cwi.nl/lsde2015 

Getting data to mappers and reducers 

• Configuration parameters 

– Directly in the Job object for parameters 

• Side data 

– DistributedCache 

– Mappers/reducers read from HDFS in setup method 

• Avoid object creation at all costs 

– Reuse Writable objects, change the payload 

• Execution framework reuses value object in reducer 

• Passing parameters via class statics 
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Complex data types in Hadoop 

• How do you implement complex data types? 

• The easiest way: 

– Encoded it as Text, e.g., (a, b) = “a:b” 

– Use regular expressions to parse and extract data 

– Works, but pretty hack-ish 

• The hard way: 

– Define a custom implementation of Writable(Comparable) 

– Must implement: readFields, write, (compareTo) 

– Computationally efficient, but slow for rapid prototyping 

– Implement WritableComparator hook for performance 

• Somewhere in the middle: 

– Some frameworks offers JSON support and lots of useful Hadoop 

types 
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Basic cluster components 

• One of each: 

– Namenode (NN): master node for HDFS 

– Jobtracker (JT): master node for job submission 

• Set of each per slave machine: 

– Tasktracker (TT): contains multiple task slots 

– Datanode (DN): serves HDFS data blocks 
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Recap 

datanode daemon 

Linux file system 

… 

tasktracker 

slave node 

datanode daemon 

Linux file system 

… 

tasktracker 

slave node 

datanode daemon 

Linux file system 

… 

tasktracker 

slave node 

namenode 

namenode daemon 

job submission node 

jobtracker 
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Anatomy of a job 

• MapReduce program in Hadoop = Hadoop job 

– Jobs are divided into map and reduce tasks 

– An instance of running a task is called a task attempt (occupies a slot) 

– Multiple jobs can be composed into a workflow 

• Job submission:  

– Client (i.e., driver program) creates a job, configures it, and submits it 

to jobtracker 

– That’s it! The Hadoop cluster takes over 
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Anatomy of a job 

• Behind the scenes: 

– Input splits are computed (on client end) 

– Job data (jar, configuration XML) are sent to JobTracker 

– JobTracker puts job data in shared location, enqueues tasks 

– TaskTrackers poll for tasks 

– Off to the races 
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… … 
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Mapper Mapper Mapper Mapper Mapper 

Partitioner Partitioner Partitioner Partitioner Partitioner 

Intermediates Intermediates Intermediates Intermediates Intermediates 

Reducer Reducer Reduce 

Intermediates Intermediates Intermediates 

(combiners omitted here) 
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Input and output 

• InputFormat: 

– TextInputFormat 

– KeyValueTextInputFormat 

– SequenceFileInputFormat 

– … 

• OutputFormat: 

– TextOutputFormat 

– SequenceFileOutputFormat 

– … 
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Shuffle and sort in Hadoop 

• Probably the most complex aspect of MapReduce 

• Map side 

– Map outputs are buffered in memory in a circular buffer 

– When buffer reaches threshold, contents are spilled to disk 

– Spills merged in a single, partitioned file (sorted within each partition): 

combiner runs during the merges 

• Reduce side 

– First, map outputs are copied over to reducer machine 

– Sort is a multi-pass merge of map outputs (happens in memory and on 

disk): combiner runs during the merges 

– Final merge pass goes directly into reducer 
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Recommended workflow 

• Here’s one way to work 

– Develop code in your favourite IDE on host machine 

– Build distribution on host machine 

– Check out copy of code on VM 

– Copy (i.e., scp) jars over to VM (in same directory structure) 

– Run job on VM 

– Iterate 

• Avoid using the UI of the VM 

– Directly ssh into the VM 

• Deploying the job 

• $HADOOP_CLASSPATH 

• hadoop jar MYJAR.jar -D k1=v1 … -libjars foo.jar,bar.jar  
  my.class.to.run arg1 arg2 arg3 … 
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Actually running the job 

• $HADOOP_CLASSPATH 

• hadoop jar MYJAR.jar 
  -D k1=v1 ... 
  -libjars foo.jar,bar.jar  
  my.class.to.run arg1 arg2 arg3 … 
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Debugging Hadoop 

• First, take a deep breath 

• Start small, start locally 

• Build incrementally 

• Different ways to run code: 

– Plain Java 

– Local (standalone) mode 

– Pseudo-distributed mode 

– Fully-distributed mode 

• Learn what’s good for what 
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Hadoop debugging strategies 

• Good ol’ System.out.println 

– Learn to use the webapp to access logs 

– Logging preferred over System.out.println 

– Be careful how much you log! 

• Fail on success 

– Throw RuntimeExceptions and capture state 

• Programming is still programming 

– Use Hadoop as the glue 

– Implement core functionality outside mappers and reducers 

– Independently test (e.g., unit testing) 

– Compose (tested) components in mappers and reducers 
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Summary 

• Presented Hadoop in more detail 

• Described the implementation of the various components 

• Described the workflow of building and deploying applications 

• Things are a lot more complicated than this 

• We will next turn to algorithmic design for MapReduce 


