E Centrum Wiskunde & Informatica

Large-Scale Data Engineering

Hadoop MapReduce in more detall

event.cwi.nl/lsde2015

How will I actually learn Hadoop?

 This class session
« Hadoop: The Definitive Guide
* RTFM
* There is a lot of material out there
— There is also a lot of useless material

— You need to filter it

— Just because some random guy wrote a blog post about something
does not make it right

— Ask questions!

« Skype & screen sharing

event.cwi.nl/lsde2015

Basic Hadoop API

Mapper

e void setup (Mapper.Context context)
Called once at the beginning of the task

e void map (K key, V value, Mapper.Context context)
Called once for each key/value pair in the input split

e void cleanup (Mapper.Context context)
Called once at the end of the task

Reducer/Combiner

e void setup (Reducer.Context context)
Called once at the start of the task

e void reduce (K key, Iterable<V> values, Reducer.Context ctx)
Called once for each key

e void cleanup (Reducer.Context context)
Called once at the end of the task

event.cwi.nl/lsde2015

Basic Hadoop API

Partitioner

e int getPartition(K key, V value, int numPartitions)
Get the partition number given total number of partitions

Job

» Represents a packaged Hadoop job for submission to cluster

* Need to specify input and output paths

* Need to specify input and output formats

* Need to specify mapper, reducer, combiner, partitioner classes
* Need to specify intermediate/final key/value classes

* Need to specify number of reducers (but not mappers, why?)

* Don’t depend of defaults!

event.cwi.nl/lsde2015

E Centrum Wiskunde & Informatic:

Data types in Hadoop: keys and values

Writable Defines a de/serialization protocol.
Every data type in Hadoop is a
Writable.

WritableComparable Defines a sort order. All keys must be
4 of this type (but not values).
IntWritable Concrete classes for different data

LongWritable types.
Text
SequenceFiles Binary encoded of a sequence of

key/value pairs
event.cwi.nl/Isde2015

E Centrum Wiskunde & Informatica

“Hello World”: word count

Map(String docid, String text):
for each word w in text:
Emit(w, 1);

Reduce(String term, Iterator<Int> values):
int sum = 0;
for each v in values:
sum += V;
Emit(term, sum);

event.cwi.nl/lsde2015

E Centrum Wiskunde & Informatica

“Hello World”: word count

private static class MyMapper extends
Mapper<LongWritable, Text, Text, IntWritable> {

private final static IntWritable ONE = new IntWritable(l);
private final static Text WORD = new Text (),

@Override
public void map (LongWritable key, Text wvalue, Context context)
throws IOException, InterruptedException ({

String line = ((Text) value) .toString();
StringTokenizer itr = new StringTokenizer (line);
while (itr.hasMoreTokens ()) {

WORD.set (itr.nextToken ()) ;
context.write (WORD, ONE);

event.cwi.nl/lsde2015

E Centrum Wiskunde & Informatica

“Hello World”: word count

private static class MyReducer extends
Reducer<Text, IntWritable, Text, IntWritable> {

private final static IntWritable SUM = new IntWritable();

@Override
public void reduce (Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException ({
Tterator<IntWritable> iter = values.iterator();

int sum = 0;
while (iter.hasNext()) {
sum += iter.next () .get();

}
SUM.set (sum) ;

context.write (key, SUM);

event.cwi.nl/lsde2015

E Centrum Wiskunde & Informatica

Getting data to mappers and reducers

Configuration parameters
— Directly in the Job object for parameters
Side data
— DistributedCache
— Mappers/reducers read from HDFS in setup method

Avoid object creation at all costs

— Reuse Writable objects, change the payload

Execution framework reuses value object in reducer

Passing parameters via class statics

event.cwi.nl/lsde2015

Complex data types in Hadoop

How do you implement complex data types?

The easiest way:
— Encoded it as Text, e.g., (a, b) = “a:b”
— Use reqgular expressions to parse and extract data
— Works, but pretty hack-ish

The hard way:
— Define a custom implementation of Writable(Comparable)
— Must implement: readFields, write, (compareTo)
— Computationally efficient, but slow for rapid prototyping

— Implement WritableComparator hook for performance

Somewhere in the middle:

— Some frameworks offers JISON support and lots of useful Hadoop
types

event.cwi.nl/lsde2015

E Centrum Wiskunde & Informatica

Basic cluster components

* One of each:

— Namenode (NN): master node for HDFS

— Jobtracker (JT): master node for job submission
« Set of each per slave machine:

— Tasktracker (TT): contains multiple task slots

— Datanode (DN): serves HDFS data blocks

event.cwi.nl/lsde2015

E Centrum Wiskunde & Informatica

namenode job submission node

namenode daemon jobtracker
-

-
- 4, \;

tasktracker tasktracker tasktracker

datanode daemon datanode daemon datanode daemon

Linux file system Linux file system Linux file system

event.cwi.nl/lsde2015

E Centrum Wiskunde & Informatica

Anatomy of a job

» MapReduce program in Hadoop = Hadoop job
— Jobs are divided into map and reduce tasks
— An instance of running a task is called a task attempt (occupies a slot)
— Multiple jobs can be composed into a workflow

 Job submission:

— Client (i.e., driver program) creates a job, configures it, and submits it
to jobtracker

— That’s it! The Hadoop cluster takes over

event.cwi.nl/lsde2015

E Centrum Wiskunde & Informatica

Anatomy of a job

» Behind the scenes:
— Input splits are computed (on client end)
— Job data (jar, configuration XML) are sent to JobTracker
— JobTracker puts job data in shared location, enqueues tasks
— TaskTrackers poll for tasks

— Off to the races

event.cwi.nl/lsde2015

E Centrum Wiskunde & Informatica

InputSplit InputSplit InputSplit InputSplit InputSplit

InputFormat

Record Record Record Record Record
Reader Reader Reader Reader Reader

Intermediates Intermediates Intermediates Intermediates Intermediates

event.cwi.nl/lsde2015

E Centrum Wiskunde & Informatica

Records

InputSplit InputSplit InputSplit

Record
Reader

Record
Reader

Record
Reader

event.cwi.nl/lsde2015

E Centrum Wiskunde & Informatica

Mapper Mapper Mapper Mapper Mapper

Intermediates Intermediates Intermediates Intermediates Intermediates

Partitioner Partitioner Partitioner Partitioner Partitioner

(combiners omitted here)

Intermediates Intermediates Intermediates

Reducer Reducer

event.cwi.nl/lsde2015

E Centrum Wiskunde & Informatica

OutputFormat

Record
Writer

Record Record
Writer Writer

=

event.cwi.nl/lsde2015

E Centrum Wiskunde & Informatica

Input and output

* InputFormat:
— TextInputFormat
— KeyValueTextInputFormat
— SequenceFilelnputFormat
* QutputFormat:
— TextOutputFormat

— SequenceFileOutputFormat

event.cwi.nl/lsde2015

Shuffle and sort in Hadoop

* Probably the most complex aspect of MapReduce
* Map side
— Map outputs are buffered in memory in a circular buffer
— When buffer reaches threshold, contents are spilled to disk

— Spills merged in a single, partitioned file (sorted within each partition):
combiner runs during the merges

* Reduce side
— First, map outputs are copied over to reducer machine

— Sort is a multi-pass merge of map outputs (happens in memory and on
disk): combiner runs during the merges

— Final merge pass goes directly into reducer

event.cwi.nl/lsde2015

Shuffle and sort

I intermediate files

(on disk)

}

merged spills
on disk

Combiner E Reducer

circular
buffer
(memory)

-

Spl||S (on disk)

]
l
]
I other reducers
]
l
]

other mappers

event.cwi.nl/lsde2015

E Centrum Wiskunde & Informatica

Recommended worktlow

* Here's one way to work
— Develop code in your favourite IDE on host machine
— Build distribution on host machine
— Check out copy of code on VM
— Copy (i.e., scp) jars over to VM (in same directory structure)
— Run job on VM
— lterate
 Avoid using the Ul of the VM
— Directly ssh into the VM
* Deploying the job
e $HADOOP_ CLASSPATH

e hadoop jar MYJAR.jar -D kl=vl .. -libjars foo.jar,bar.jar
my.class.to.run argl arg2 arg3 ..

event.cwi.nl/lsde2015

E Centrum Wiskunde & Informatica

Actually running the job

e $HADOOP_CLASSPATH

e hadoop jar MYJAR.jar
-D kl1l=v1 ...
-libjars foo.jar,bar.jar
my.class.to.run argl arg2 arg3 ..

event.cwi.nl/lsde2015

Debugging Hadoop

 First, take a deep breath

Start small, start locally

Build incrementally

Different ways to run code:
— Plain Java
— Local (standalone) mode
— Pseudo-distributed mode

— Fully-distributed mode

Learn what’s good for what

event.cwi.nl/lsde2015

Hadoop debugging strategies

* Good ol System.out.println
— Learn to use the webapp to access logs
— Logging preferred over System.out.println
— Be careful how much you log!
« Fail on success
— Throw RuntimeExceptions and capture state
* Programming is still programming
— Use Hadoop as the glue
— Implement core functionality outside mappers and reducers
— Independently test (e.g., unit testing)
— Compose (tested) components in mappers and reducers

event.cwi.nl/lsde2015

E Centrum Wiskunde & Informatica

Summary

* Presented Hadoop in more detalil

Described the implementation of the various components
Described the workflow of building and deploying applications

Things are a lot more complicated than this

We will next turn to algorithmic design for MapReduce

event.cwi.nl/lsde2015

