

Large-Scale Data Engineering

Designing and implementing algorithms

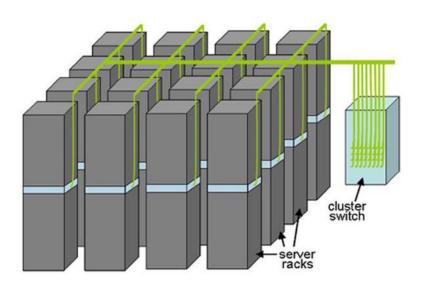
for MapReduce

PROGRAMMING FOR A DATA CENTRE

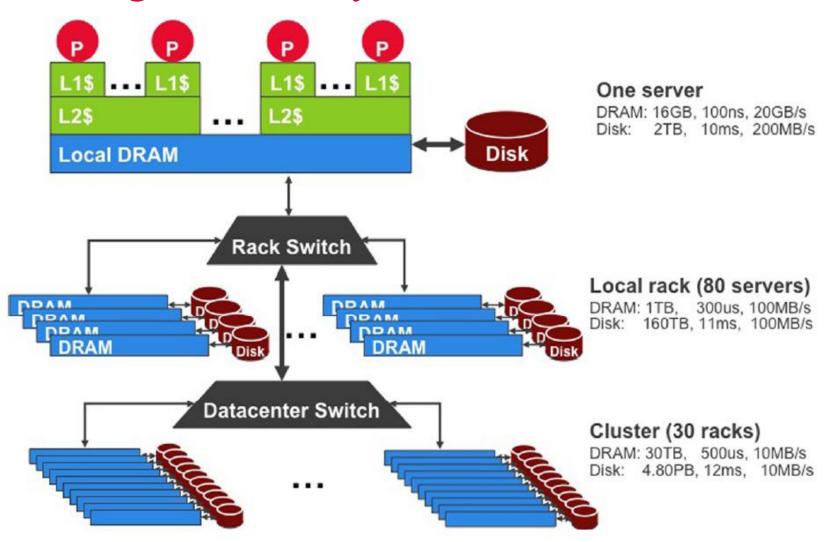
Programming for a data centre

- Understanding the design of warehouse-sized computes
 - Different techniques for a different setting
 - Requires quite a bit of rethinking
- MapReduce algorithm design
 - How do you express everything in terms of map(), reduce(), combine(), and partition()?
 - Are there any design patterns we can leverage?

Building Blocks



Storage Hierarchy



Scaling up vs. out

- No single machine is large enough
 - Smaller cluster of large SMP machines vs. larger cluster of commodity machines (e.g., 8 128-core machines vs. 128 8-core machines)
- Nodes need to talk to each other!
 - Intra-node latencies: ~100 ns
 - Inter-node latencies: ~100 μs
- Let's model communication overhead

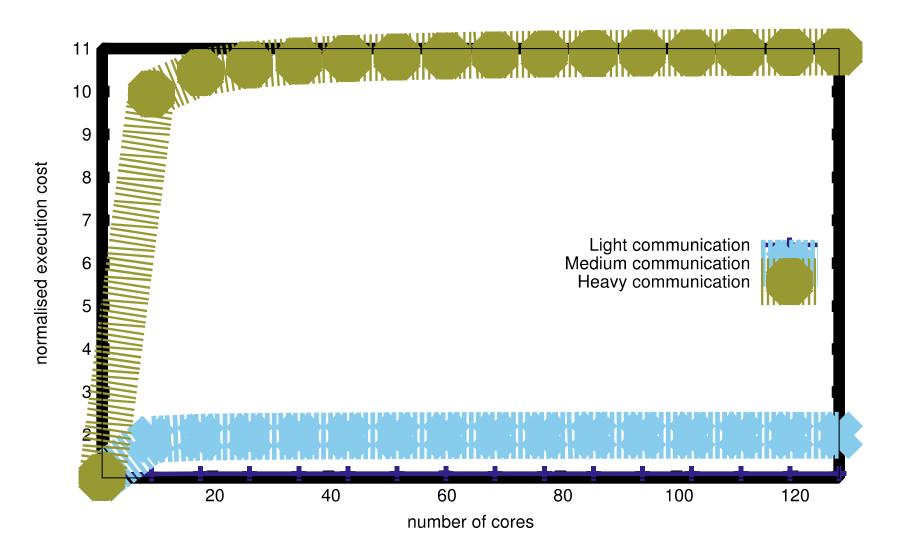
Modelling communication overhead

- Simple execution cost model:
 - Total cost = cost of computation + cost to access global data
 - Fraction of local access inversely proportional to size of cluster
 - n nodes (ignore cores for now)

1 ms +
$$f \times [100 \text{ ns} \times (1/n) + 100 \text{ } \mu\text{s} \times (1 - 1/n)]$$

- Light communication: *f* =1
- Medium communication: f = 10
- Heavy communication: f = 100
- What is the cost of communication?

Overhead of communication



Seeks vs. scans

- Consider a 1TB database with 100 byte records
 - We want to update 1 percent of the records
- Scenario 1: random access
 - Each update takes ~30 ms (seek, read, write)
 - -10^8 updates = \sim 35 days
- Scenario 2: rewrite all records
 - Assume 100MB/s throughput
 - Time = 5.6 hours(!)
- Lesson: avoid random seeks!

Numbers everyone should know

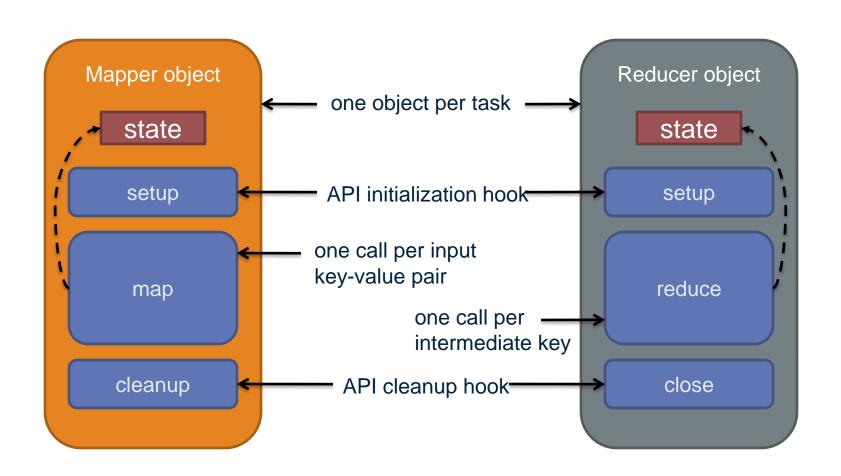
L1 cache reference	0.5 ns
Branch mispredict	5 ns
L2 cache reference	7 ns
Mutex lock/unlock	25 ns
Main memory reference	100 ns
Send 2K bytes over 1 Gbps network	20,000 ns
Read 1 MB sequentially from memory	250,000 ns
Round trip within same datacenter	500,000 ns
Disk seek	10,000,000 ns
Read 1 MB sequentially from disk	20,000,000 ns
Send packet CA → Netherlands → CA	150,000,000 ns

DEVELOPING ALGORITHMS

Optimising computation

- The cluster management software orchestrates the computation
- But we can still optimise the computation
 - Just as we can write better code and use better algorithms and data structures
 - At all times confined within the capabilities of the framework
- Cleverly-constructed data structures
 - Bring partial results together
- Sort order of intermediate keys
 - Control order in which reducers process keys
- Partitioner
 - Control which reducer processes which keys
- Preserving state in mappers and reducers
 - Capture dependencies across multiple keys and values

Preserving State



Importance of local aggregation

- Ideal scaling characteristics:
 - Twice the data, twice the running time
 - Twice the resources, half the running time
- Why can't we achieve this?
 - Synchronization requires communication
 - Communication kills performance
- Thus... avoid communication!
 - Reduce intermediate data via local aggregation
 - Combiners can help

Word count: baseline

```
class Mapper
 method map(docid a, doc d)
    for all term t in d do
      emit(t, 1);
class Reducer
 method reduce(term t, counts [c1, c2, ...])
    sum = 0;
    for all counts c in [c1, c2, ...] do
      sum = sum + c;
    emit(t, sum);
```


Word count: introducing combiners

```
class Mapper
  method map(docid a, doc d)
  H = associative_array(term → count;)
  for all term t in d do
    H[t]++;
  for all term t in H[t] do
    emit(t, H[t]);
```

Local aggregation reduces further computation

Word count: introducing combiners

```
class Mapper
  method initialise()
    H = associative array(term \rightarrow count);
  method map(docid a, doc d)
    for all term t in d do
      H[t]++;
  method close()
    for all term t in H[t] do
      emit(t, H[t]);
```

Compute sums across documents!

Design pattern for local aggregation

- In-mapper combining
 - Fold the functionality of the combiner into the mapper by preserving state across multiple map calls
- Advantages
 - Speed
 - Why is this faster than actual combiners?
- Disadvantages
 - Explicit memory management required
 - Potential for order-dependent bugs

Combiner design

- Combiners and reducers share same method signature
 - Effectively they are map-side reducers
 - Sometimes, reducers can serve as combiners
 - Often, not…
- Remember: combiners are optional optimisations
 - Should not affect algorithm correctness
 - May be run 0, 1, or multiple times
- Example: find average of integers associated with the same key


```
class Mapper
  method map(string t, integer r)
    emit(t, r);
class Reducer
  method reduce(string, integers [r1, r2, ...])
    sum = 0; count = 0;
    for all integers r in [r1, r2, ...] do
      sum = sum + r; count++
    r_{avg} = sum / count;
    emit(t, r<sub>avg</sub>);
```

Can we use a reducer as the combiner?


```
class Mapper
  method map(string t, integer r)
    emit(t, r);
class Combiner
  method combine(string, integers [r1, r2, ...])
    sum = 0; count = 0;
    for all integers r in [r1, r2, ...] do
      sum = sum + r; count++;
     emit(t, pair(sum, count);
class Reducer
  method reduce(string, pairs [(s1, c1), (s2, c2), ...])
    sum = 0; count = 0;
    for all pair(s, c) r in [(s1, c1), (s2, c2), ...] do
      sum = sum + s; count = count + c;
    r_{avg} = sum / count;
    emit(t, r<sub>avg</sub>);
```



```
class Mapper
  method map(string t, integer r)
    emit(t, pair(t, 1));
class Combiner
  method combine(string, pairs [(s1, c1), (s2, c2), ...])
    sum = 0; count = 0;
    for all pair(s, c) in [(s1, c1), (s2, c2), ...] do
      sum = sum + s; count = count + c;
     emit(t, pair(sum, count);
class Reducer
  method reduce(string, pairs [(s1, c1), (s2, c2), ...])
    sum = 0; count = 0;
    for all pair(s, c) in [(s1, c1), (s2, c2), ...] do
      sum = sum + s; count = count + c;
    r_{avg} = sum / count;
    emit(t, r<sub>avg</sub>);
```



```
class Mapper
 method initialise()
   S = associative array(string \rightarrow integer);
   C = associative array(string → integer);
 method map(string t, integer r)
   S[t] = S[t] + r; C[t]++;
 method close()
    for all t in keys(S) do
      emit(t, pair(S[t], C[t]);
```

Simpler, cleaner, with no need for combiner

Algorithm design: term co-occurrence

- Term co-occurrence matrix for a text collection
 - $-M = N \times N \text{ matrix } (N = \text{vocabulary size})$
 - M_{ij} : number of times *i* and *j* co-occur in some context (for concreteness, let's say context = sentence)
- Why?
 - Distributional profiles as a way of measuring semantic distance
 - Semantic distance useful for many language processing tasks

Using MapReduce for large counting problems

- Term co-occurrence matrix for a text collection is a specific instance of a large counting problem
 - A large event space (number of terms)
 - A large number of observations (the collection itself)
 - Goal: keep track of interesting statistics about the events
- Basic approach
 - Mappers generate partial counts
 - Reducers aggregate partial counts

How do we aggregate partial counts efficiently?

First try: pairs

- Each mapper takes a sentence:
 - Generate all co-occurring term pairs
 - For all pairs, emit $(a, b) \rightarrow count$
- Reducers sum up counts associated with these pairs
- Use combiners!

Pairs: pseudo-code

```
class Mapper
  method map(docid a, doc d)
    for all w in d do
      for all u in neighbours(w) do
        emit(pair(w, u), 1);
class Reducer
  method reduce(pair p, counts [c1, c2, ...])
    sum = 0;
    for all c in [c1, c2, ...] do
      sum = sum + c;
    emit(p, sum);
```


Analysing pairs

- Advantages
 - Easy to implement, easy to understand
- Disadvantages
 - Lots of pairs to sort and shuffle around (upper bound?)
 - Not many opportunities for combiners to work

Another try: stripes

Idea: group together pairs into an associative array

```
(a, b) \rightarrow 1

(a, c) \rightarrow 2

(a, d) \rightarrow 5

(a, e) \rightarrow 3

(a, f) \rightarrow 2

a \rightarrow \{ b: 1, c: 2, d: 5, e: 3, f: 2 \}
```

- Each mapper takes a sentence:
 - Generate all co-occurring term pairs
 - For each term, emit a → { b: count_b, c: count_c, d: count_d ... }
- Reducers perform element-wise sum of associative arrays

```
a \rightarrow \{ b: 1, d: 5, e: 3 \}

a \rightarrow \{ b: 1, c: 2, d: 2, f: 2 \}

a \rightarrow \{ b: 2, c: 2, d: 7, e: 3, f: 2 \}
```

Cleverly-constructed data structure brings together partial results

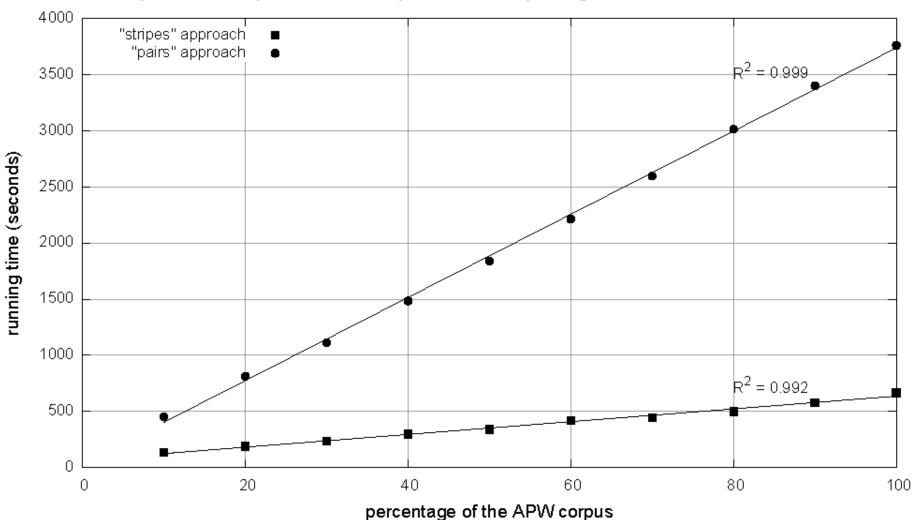
Stripes: pseudo-code

```
class Mapper
  method map(docid a, doc d)
    for all w in d do
      H = associative array(string → integer);
      for all u in neighbours(w) do
        H[u]++;
      emit(w, H);
class Reducer
  method reduce(term w, stripes [H1, H2, ...])
    H_f = associative array(string \rightarrow integer);
    for all H in [H1, H2, ...] do
      sum(H<sub>f</sub>, H); // sum same-keyed entries
    emit(w, H_f);
```

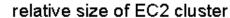

Stripes analysis

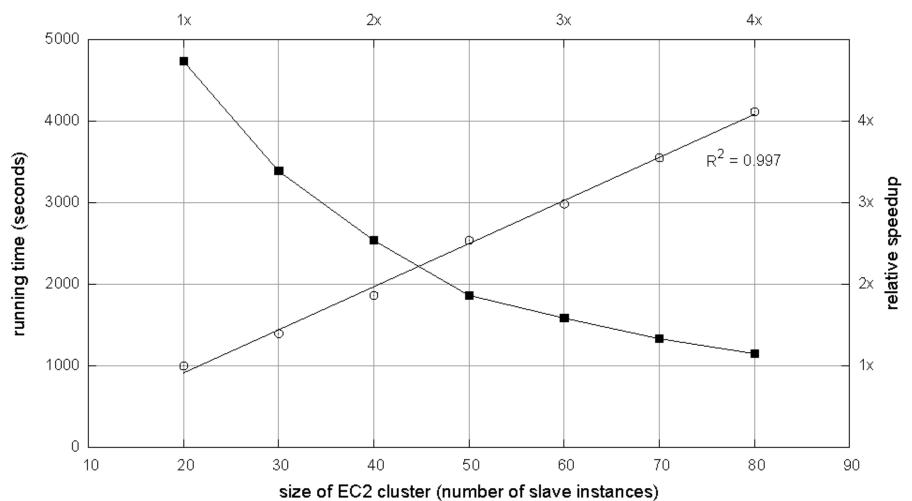
- Advantages
 - Far less sorting and shuffling of key-value pairs
 - Can make better use of combiners
- Disadvantages
 - More difficult to implement
 - Underlying object more heavyweight
 - Fundamental limitation in terms of size of event space

Comparison of "pairs" vs. "stripes" for computing word co-occurrence matrices



Effect of cluster size on "stripes" algorithm



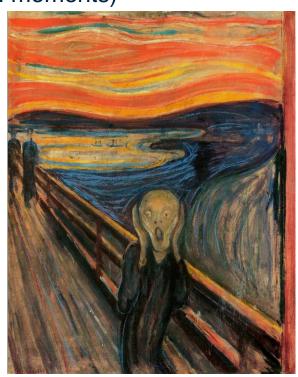


Debugging at scale

- Works on small datasets, won't scale... why?
 - Memory management issues (buffering and object creation)
 - Too much intermediate data
 - Mangled input records
- Real-world data is messy!
 - There's no such thing as consistent data
 - Watch out for corner cases
 - Isolate unexpected behavior, bring local

Caveats

- This is bleeding-edge technology (codeword for immature)
 - We have come a long way since 2007, but still far to go
 - Bugs, undocumented "features", inexplicable behavior, data loss(!)
 - You will experience all these (those W\$*#T@F! moments)
 - When this happens (and it will)
 - Do not get frustrated (take a deep breath)
 - It's not the end of the world
- Be patient
 - On a long enough timeline everything works
- Be flexible
 - We will have to be creative in workarounds
- Be constructive
 - Tell me how we can make everyone's experience better



Summary

- Further delved into computing using MapReduce
- Introduced map-side optimisations
- Discussed why certain things may not work as expected
- Need to be really careful when designing algorithms to deploy over large datasets
- What seems to work on paper may not be correct when distribution/parallelisation kick in