
event.cwi.nl/lsde2015

Large-Scale Data Engineering

Designing and implementing algorithms

for

MapReduce

event.cwi.nl/lsde2015

PROGRAMMING FOR A DATA
CENTRE

event.cwi.nl/lsde2015

Programming for a data centre

• Understanding the design of warehouse-sized computes

– Different techniques for a different setting

– Requires quite a bit of rethinking

• MapReduce algorithm design

– How do you express everything in terms of map(), reduce(),

combine(), and partition()?

– Are there any design patterns we can leverage?

event.cwi.nl/lsde2015

Building Blocks

Source: Barroso and Urs Hölzle (2009)

event.cwi.nl/lsde2015

Storage Hierarchy

event.cwi.nl/lsde2015

Scaling up vs. out

• No single machine is large enough

– Smaller cluster of large SMP machines vs. larger cluster of commodity

machines (e.g., 8 128-core machines vs. 128 8-core machines)

• Nodes need to talk to each other!

– Intra-node latencies: ~100 ns

– Inter-node latencies: ~100 s

• Let’s model communication overhead

event.cwi.nl/lsde2015

Modelling communication overhead

• Simple execution cost model:

– Total cost = cost of computation + cost to access global data

– Fraction of local access inversely proportional to size of cluster

– n nodes (ignore cores for now)

• Light communication: f =1

• Medium communication: f =10

• Heavy communication: f =100

• What is the cost of communication?

1 ms + f  [100 ns  (1/n) + 100 s  (1 - 1/n)]

event.cwi.nl/lsde2015

Overhead of communication

event.cwi.nl/lsde2015

Seeks vs. scans

• Consider a 1TB database with 100 byte records

– We want to update 1 percent of the records

• Scenario 1: random access

– Each update takes ~30 ms (seek, read, write)

– 108 updates = ~35 days

• Scenario 2: rewrite all records

– Assume 100MB/s throughput

– Time = 5.6 hours(!)

• Lesson: avoid random seeks!

Source: Ted Dunning, on Hadoop mailing list

event.cwi.nl/lsde2015

Numbers everyone should know

L1 cache reference 0.5 ns

Branch mispredict 5 ns

L2 cache reference 7 ns

Mutex lock/unlock 25 ns

Main memory reference 100 ns

Send 2K bytes over 1 Gbps network 20,000 ns

Read 1 MB sequentially from memory 250,000 ns

Round trip within same datacenter 500,000 ns

Disk seek 10,000,000 ns

Read 1 MB sequentially from disk 20,000,000 ns

Send packet CA → Netherlands → CA 150,000,000 ns

* According to Jeff Dean (LADIS 2009 keynote)

event.cwi.nl/lsde2015

DEVELOPING ALGORITHMS

event.cwi.nl/lsde2015

Optimising computation

• The cluster management software orchestrates the computation

• But we can still optimise the computation

– Just as we can write better code and use better algorithms and data

structures

– At all times confined within the capabilities of the framework

• Cleverly-constructed data structures

– Bring partial results together

• Sort order of intermediate keys

– Control order in which reducers process keys

• Partitioner

– Control which reducer processes which keys

• Preserving state in mappers and reducers

– Capture dependencies across multiple keys and values

event.cwi.nl/lsde2015

Preserving State

Mapper object

setup

map

cleanup

state
one object per task

Reducer object

setup

reduce

close

state

one call per input

key-value pair

one call per

intermediate key

API initialization hook

API cleanup hook

event.cwi.nl/lsde2015

Importance of local aggregation

• Ideal scaling characteristics:

– Twice the data, twice the running time

– Twice the resources, half the running time

• Why can’t we achieve this?

– Synchronization requires communication

– Communication kills performance

• Thus… avoid communication!

– Reduce intermediate data via local aggregation

– Combiners can help

event.cwi.nl/lsde2015

Word count: baseline

class Mapper

 method map(docid a, doc d)

 for all term t in d do

 emit(t, 1);

class Reducer

 method reduce(term t, counts [c1, c2, …])

 sum = 0;

 for all counts c in [c1, c2, …] do

 sum = sum + c;

 emit(t, sum);

event.cwi.nl/lsde2015

Word count: introducing combiners

class Mapper

 method map(docid a, doc d)

 H = associative_array(term  count;)

 for all term t in d do

 H[t]++;

 for all term t in H[t] do

 emit(t, H[t]);

Local aggregation reduces further computation

event.cwi.nl/lsde2015

Word count: introducing combiners

class Mapper

 method initialise()

 H = associative_array(term  count);

 method map(docid a, doc d)

 for all term t in d do

 H[t]++;

 method close()

 for all term t in H[t] do

 emit(t, H[t]);

Compute sums across documents!

event.cwi.nl/lsde2015

Design pattern for local aggregation

• In-mapper combining

– Fold the functionality of the combiner into the mapper by preserving

state across multiple map calls

• Advantages

– Speed

– Why is this faster than actual combiners?

• Disadvantages

– Explicit memory management required

– Potential for order-dependent bugs

event.cwi.nl/lsde2015

Combiner design

• Combiners and reducers share same method signature

– Effectively they are map-side reducers

– Sometimes, reducers can serve as combiners

– Often, not…

• Remember: combiners are optional optimisations

– Should not affect algorithm correctness

– May be run 0, 1, or multiple times

• Example: find average of integers associated with the same key

event.cwi.nl/lsde2015

Computing the mean: version 1
class Mapper

 method map(string t, integer r)

 emit(t, r);

class Reducer

 method reduce(string, integers [r1, r2, …])

 sum = 0; count = 0;

 for all integers r in [r1, r2, …] do

 sum = sum + r; count++

 ravg = sum / count;

 emit(t, ravg);

Can we use a reducer as the combiner?

event.cwi.nl/lsde2015

Computing the mean: version 2
class Mapper

 method map(string t, integer r)

 emit(t, r);

class Combiner

 method combine(string, integers [r1, r2, …])

 sum = 0; count = 0;

 for all integers r in [r1, r2, …] do

 sum = sum + r; count++;

 emit(t, pair(sum, count);

class Reducer

 method reduce(string, pairs [(s1, c1), (s2, c2), …])

 sum = 0; count = 0;

 for all pair(s, c) r in [(s1, c1), (s2, c2), …] do

 sum = sum + s; count = count + c;

 ravg = sum / count;

 emit(t, ravg);

Wrong!

event.cwi.nl/lsde2015

Computing the mean: version 3
class Mapper

 method map(string t, integer r)

 emit(t, pair(t, 1));

class Combiner

 method combine(string, pairs [(s1, c1), (s2, c2), …])

 sum = 0; count = 0;

 for all pair(s, c) in [(s1, c1), (s2, c2), …] do

 sum = sum + s; count = count + c;

 emit(t, pair(sum, count);

class Reducer

 method reduce(string, pairs [(s1, c1), (s2, c2), …])

 sum = 0; count = 0;

 for all pair(s, c) in [(s1, c1), (s2, c2), …] do

 sum = sum + s; count = count + c;

 ravg = sum / count;

 emit(t, ravg);

Fixed!

event.cwi.nl/lsde2015

Computing the mean: version 4
class Mapper

 method initialise()

 S = associative_array(string  integer);

 C = associative_array(string  integer);

 method map(string t, integer r)

 S[t] = S[t] + r; C[t]++;

 method close()

 for all t in keys(S) do

 emit(t, pair(S[t], C[t]);

Simpler, cleaner, with no need for combiner

event.cwi.nl/lsde2015

Algorithm design: term co-occurrence

• Term co-occurrence matrix for a text collection

– M = N x N matrix (N = vocabulary size)

– Mij: number of times i and j co-occur in some context

(for concreteness, let’s say context = sentence)

• Why?

– Distributional profiles as a way of measuring semantic distance

– Semantic distance useful for many language processing tasks

event.cwi.nl/lsde2015

Using MapReduce for large counting problems

• Term co-occurrence matrix for a text collection is a specific instance of a

large counting problem

– A large event space (number of terms)

– A large number of observations (the collection itself)

– Goal: keep track of interesting statistics about the events

• Basic approach

– Mappers generate partial counts

– Reducers aggregate partial counts

How do we aggregate partial counts efficiently?

event.cwi.nl/lsde2015

First try: pairs

• Each mapper takes a sentence:

– Generate all co-occurring term pairs

– For all pairs, emit (a, b) → count

• Reducers sum up counts associated with these pairs

• Use combiners!

event.cwi.nl/lsde2015

Pairs: pseudo-code

class Mapper

 method map(docid a, doc d)

 for all w in d do

 for all u in neighbours(w) do

 emit(pair(w, u), 1);

class Reducer

 method reduce(pair p, counts [c1, c2, …])

 sum = 0;

 for all c in [c1, c2, …] do

 sum = sum + c;

 emit(p, sum);

event.cwi.nl/lsde2015

Analysing pairs

• Advantages

– Easy to implement, easy to understand

• Disadvantages

– Lots of pairs to sort and shuffle around (upper bound?)

– Not many opportunities for combiners to work

event.cwi.nl/lsde2015

Another try: stripes

• Idea: group together pairs into an associative array

• Each mapper takes a sentence:

– Generate all co-occurring term pairs

– For each term, emit a → { b: countb, c: countc, d: countd … }

• Reducers perform element-wise sum of associative arrays

(a, b) → 1
(a, c) → 2
(a, d) → 5
(a, e) → 3
(a, f) → 2

a → { b: 1, c: 2, d: 5, e: 3, f: 2 }

a → { b: 1, d: 5, e: 3 }
a → { b: 1, c: 2, d: 2, f: 2 }
a → { b: 2, c: 2, d: 7, e: 3, f: 2 } +

Cleverly-constructed data structure brings together partial results

event.cwi.nl/lsde2015

Stripes: pseudo-code
class Mapper

 method map(docid a, doc d)

 for all w in d do

 H = associative_array(string  integer);

 for all u in neighbours(w) do

 H[u]++;

 emit(w, H);

class Reducer

 method reduce(term w, stripes [H1, H2, …])

 Hf = associative_array(string  integer);

 for all H in [H1, H2, …] do

 sum(Hf, H); // sum same-keyed entries

 emit(w, Hf);

event.cwi.nl/lsde2015

Stripes analysis

• Advantages

– Far less sorting and shuffling of key-value pairs

– Can make better use of combiners

• Disadvantages

– More difficult to implement

– Underlying object more heavyweight

– Fundamental limitation in terms of size of event space

event.cwi.nl/lsde2015
Cluster size: 38 cores

Data Source: Associated Press Worldstream (APW) of the English Gigaword Corpus (v3),

which contains 2.27 million documents (1.8 GB compressed, 5.7 GB uncompressed)

event.cwi.nl/lsde2015

event.cwi.nl/lsde2015

Debugging at scale

• Works on small datasets, won’t scale… why?

– Memory management issues (buffering and object creation)

– Too much intermediate data

– Mangled input records

• Real-world data is messy!

– There’s no such thing as consistent data

– Watch out for corner cases

– Isolate unexpected behavior, bring local

event.cwi.nl/lsde2015

Caveats

• This is bleeding-edge technology (codeword for immature)

– We have come a long way since 2007, but still far to go

– Bugs, undocumented “features”, inexplicable behavior, data loss(!)

– You will experience all these (those W$*#T@F! moments)

– When this happens (and it will)

• Do not get frustrated (take a deep breath)

• It’s not the end of the world

• Be patient

– On a long enough timeline everything works

• Be flexible

– We will have to be creative in workarounds

• Be constructive

– Tell me how we can make everyone’s

 experience better

event.cwi.nl/lsde2015

Summary

• Further delved into computing using MapReduce

• Introduced map-side optimisations

• Discussed why certain things may not work as expected

• Need to be really careful when designing algorithms to deploy over large

datasets

• What seems to work on paper may not be correct when

distribution/parallelisation kick in

