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Large-Scale Data Engineering 

Designing and implementing algorithms 

for  

MapReduce 
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PROGRAMMING FOR A DATA 
CENTRE 
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Programming for a data centre 

• Understanding the design of warehouse-sized computes 

– Different techniques for a different setting 

– Requires quite a bit of rethinking 

• MapReduce algorithm design 

– How do you express everything in terms of map(), reduce(), 

combine(), and partition()? 

– Are there any design patterns we can leverage? 
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Building Blocks 

Source: Barroso and Urs Hölzle (2009) 
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Storage Hierarchy 
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Scaling up vs. out 

• No single machine is large enough 

– Smaller cluster of large SMP machines vs. larger cluster of commodity 

machines (e.g., 8 128-core machines vs. 128 8-core machines) 

• Nodes need to talk to each other! 

– Intra-node latencies: ~100 ns 

– Inter-node latencies: ~100 s 

• Let’s model communication overhead 
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Modelling communication overhead 

• Simple execution cost model: 

– Total cost = cost of computation + cost to access global data 

– Fraction of local access inversely proportional to size of cluster 

– n nodes (ignore cores for now) 

 

 

• Light communication: f =1 

• Medium communication: f =10 

• Heavy communication: f =100 

• What is the cost of communication? 

1 ms + f  [100 ns  (1/n) + 100 s  (1 - 1/n)] 
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Overhead of communication 
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Seeks vs. scans 

• Consider a 1TB database with 100 byte records 

– We want to update 1 percent of the records 

• Scenario 1: random access 

– Each update takes ~30 ms (seek, read, write) 

– 108 updates = ~35 days 

• Scenario 2: rewrite all records 

– Assume 100MB/s throughput 

– Time = 5.6 hours(!) 

• Lesson: avoid random seeks! 

Source: Ted Dunning, on Hadoop mailing list 
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Numbers everyone should know 

L1 cache reference  0.5 ns 

Branch mispredict 5 ns 

L2 cache reference  7 ns 

Mutex lock/unlock  25 ns 

Main memory reference 100 ns 

Send 2K bytes over 1 Gbps network 20,000 ns 

Read 1 MB sequentially from memory 250,000 ns 

Round trip within same datacenter 500,000 ns 

Disk seek 10,000,000 ns 

Read 1 MB sequentially from disk 20,000,000 ns 

Send packet CA → Netherlands → CA 150,000,000 ns 

* According to Jeff Dean (LADIS 2009 keynote) 
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DEVELOPING ALGORITHMS 
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Optimising computation 

• The cluster management software orchestrates the computation 

• But we can still optimise the computation 

– Just as we can write better code and use better algorithms and data 

structures 

– At all times confined within the capabilities of the framework 

• Cleverly-constructed data structures 

– Bring partial results together 

• Sort order of intermediate keys 

– Control order in which reducers process keys 

• Partitioner 

– Control which reducer processes which keys 

• Preserving state in mappers and reducers 

– Capture dependencies across multiple keys and values 
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Preserving State 

Mapper object 

setup 

map 

cleanup 

state 
one object per task 

Reducer object 

setup 

reduce 

close 

state 

one call per input  

key-value pair 

one call per  

intermediate key 

API initialization hook 

API cleanup hook 
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Importance of local aggregation 

• Ideal scaling characteristics: 

– Twice the data, twice the running time 

– Twice the resources, half the running time 

• Why can’t we achieve this? 

– Synchronization requires communication 

– Communication kills performance 

• Thus… avoid communication! 

– Reduce intermediate data via local aggregation 

– Combiners can help 
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Word count: baseline 

class Mapper 

  method map(docid a, doc d) 

    for all term t in d do 

      emit(t, 1); 

 

class Reducer 

  method reduce(term t, counts [c1, c2, …]) 

    sum = 0; 

    for all counts c in [c1, c2, …] do 

      sum = sum + c; 

    emit(t, sum); 
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Word count: introducing combiners 

class Mapper 

  method map(docid a, doc d) 

    H = associative_array(term  count;) 

    for all term t in d do 

      H[t]++; 

    for all term t in H[t] do 

      emit(t, H[t]); 

 

Local aggregation reduces further computation 
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Word count: introducing combiners 

class Mapper 

  method initialise() 

    H = associative_array(term  count); 

 

  method map(docid a, doc d) 

    for all term t in d do 

      H[t]++; 

 

  method close() 

    for all term t in H[t] do 

      emit(t, H[t]); 

 

Compute sums across documents! 
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Design pattern for local aggregation 

• In-mapper combining 

– Fold the functionality of the combiner into the mapper by preserving 

state across multiple map calls 

• Advantages 

– Speed 

– Why is this faster than actual combiners? 

• Disadvantages 

– Explicit memory management required 

– Potential for order-dependent bugs 
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Combiner design 

• Combiners and reducers share same method signature 

– Effectively they are map-side reducers 

– Sometimes, reducers can serve as combiners 

– Often, not… 

• Remember: combiners are optional optimisations 

– Should not affect algorithm correctness 

– May be run 0, 1, or multiple times 

• Example: find average of integers associated with the same key 
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Computing the mean: version 1 
class Mapper 

  method map(string t, integer r) 

    emit(t, r); 

 

class Reducer 

  method reduce(string, integers [r1, r2, …]) 

    sum = 0;    count = 0; 

    for all integers r in [r1, r2, …] do 

      sum = sum + r;    count++ 

    ravg = sum / count; 

    emit(t, ravg); 

 

Can we use a reducer as the combiner? 



event.cwi.nl/lsde2015 

Computing the mean: version 2 
class Mapper 

  method map(string t, integer r) 

    emit(t, r); 

class Combiner 

  method combine(string, integers [r1, r2, …]) 

    sum = 0;    count = 0; 

    for all integers r in [r1, r2, …] do 

      sum = sum + r;    count++; 

     emit(t, pair(sum, count); 

class Reducer 

  method reduce(string, pairs [(s1, c1), (s2, c2), …]) 

    sum = 0;    count = 0; 

    for all pair(s, c) r in [(s1, c1), (s2, c2), …] do 

      sum = sum + s;    count = count + c; 

    ravg = sum / count; 

    emit(t, ravg); 

 

Wrong! 
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Computing the mean: version 3 
class Mapper 

  method map(string t, integer r) 

    emit(t, pair(t, 1)); 

class Combiner 

  method combine(string, pairs [(s1, c1), (s2, c2), …]) 

    sum = 0;    count = 0; 

    for all pair(s, c) in [(s1, c1), (s2, c2), …] do 

      sum = sum + s;    count = count + c; 

     emit(t, pair(sum, count); 

class Reducer 

  method reduce(string, pairs [(s1, c1), (s2, c2), …]) 

    sum = 0;    count = 0; 

    for all pair(s, c) in [(s1, c1), (s2, c2), …] do 

      sum = sum + s;    count = count + c; 

    ravg = sum / count; 

    emit(t, ravg); 

 

Fixed! 
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Computing the mean: version 4 
class Mapper 

  method initialise() 

    S = associative_array(string  integer); 

    C = associative_array(string  integer); 

 

  method map(string t, integer r) 

    S[t] = S[t] + r;    C[t]++; 

 

  method close() 

    for all t in keys(S) do 

      emit(t, pair(S[t], C[t]); 

 

Simpler, cleaner, with no need for combiner 
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Algorithm design: term co-occurrence 

• Term co-occurrence matrix for a text collection 

– M = N x N matrix (N = vocabulary size) 

– Mij: number of times i and j co-occur in some context  

(for concreteness, let’s say context = sentence) 

• Why? 

– Distributional profiles as a way of measuring semantic distance 

– Semantic distance useful for many language processing tasks 
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Using MapReduce for large counting problems 

• Term co-occurrence matrix for a text collection is a specific instance of a 

large counting problem 

– A large event space (number of terms) 

– A large number of observations (the collection itself) 

– Goal: keep track of interesting statistics about the events 

• Basic approach 

– Mappers generate partial counts 

– Reducers aggregate partial counts 

How do we aggregate partial counts efficiently? 
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First try: pairs 

• Each mapper takes a sentence: 

– Generate all co-occurring term pairs 

– For all pairs, emit (a, b) → count 

• Reducers sum up counts associated with these pairs 

• Use combiners! 
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Pairs: pseudo-code 

class Mapper 

  method map(docid a, doc d) 

    for all w in d do 

      for all u in neighbours(w) do 

        emit(pair(w, u), 1); 

 

class Reducer 

  method reduce(pair p, counts [c1, c2, …]) 

    sum = 0; 

    for all c in [c1, c2, …] do 

      sum = sum + c; 

    emit(p, sum); 
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Analysing pairs 

• Advantages 

– Easy to implement, easy to understand 

• Disadvantages 

– Lots of pairs to sort and shuffle around (upper bound?) 

– Not many opportunities for combiners to work 
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Another try: stripes 

• Idea: group together pairs into an associative array 

 

 

 

 

• Each mapper takes a sentence: 

– Generate all co-occurring term pairs 

– For each term, emit a → { b: countb, c: countc, d: countd … } 

• Reducers perform element-wise sum of associative arrays 

 

 

(a, b) → 1  
(a, c) → 2  
(a, d) → 5  
(a, e) → 3  
(a, f) → 2  

a → { b: 1, c: 2, d: 5, e: 3, f: 2 } 

a → { b: 1,         d: 5, e: 3 } 
a → { b: 1, c: 2,   d: 2,         f: 2 } 
a → { b: 2, c: 2,   d: 7, e: 3,   f: 2 } + 

Cleverly-constructed data structure brings together partial results 
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Stripes: pseudo-code 
class Mapper 

  method map(docid a, doc d) 

    for all w in d do 

      H = associative_array(string  integer); 

      for all u in neighbours(w) do 

        H[u]++; 

      emit(w, H); 

 

class Reducer 

  method reduce(term w, stripes [H1, H2, …]) 

    Hf = associative_array(string  integer); 

    for all H in [H1, H2, …] do 

      sum(Hf, H);    // sum same-keyed entries 

    emit(w, Hf); 
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Stripes analysis 

• Advantages 

– Far less sorting and shuffling of key-value pairs 

– Can make better use of combiners 

• Disadvantages 

– More difficult to implement 

– Underlying object more heavyweight 

– Fundamental limitation in terms of size of event space 
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Cluster size: 38 cores 

Data Source: Associated Press Worldstream (APW) of the English Gigaword Corpus (v3), 

which contains 2.27 million documents (1.8 GB compressed, 5.7 GB uncompressed) 
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Debugging at scale 

• Works on small datasets, won’t scale… why? 

– Memory management issues (buffering and object creation) 

– Too much intermediate data 

– Mangled input records 

• Real-world data is messy! 

– There’s no such thing as consistent data 

– Watch out for corner cases 

– Isolate unexpected behavior, bring local 
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Caveats 

• This is bleeding-edge technology (codeword for immature) 

– We have come a long way since 2007, but still far to go 

– Bugs, undocumented “features”, inexplicable behavior, data loss(!) 

– You will experience all these (those W$*#T@F! moments) 

– When this happens (and it will) 

• Do not get frustrated (take a deep breath) 

• It’s not the end of the world 

• Be patient 

– On a long enough timeline everything works 

• Be flexible 

– We will have to be creative in workarounds 

• Be constructive 

– Tell me how we can make everyone’s  

 experience better 
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Summary 

• Further delved into computing using MapReduce 

• Introduced map-side optimisations 

• Discussed why certain things may not work as expected 

• Need to be really careful when designing algorithms to deploy over large 

datasets 

• What seems to work on paper may not be correct when 

distribution/parallelisation kick in 


