
event.cwi.nl/lsde2015

Large-Scale Data Engineering

Introduction to cloud computing

+

 Hadoop,

HDFS &

MapReduce

event.cwi.nl/lsde2015

COMPUTING AS A SERVICE

event.cwi.nl/lsde2015

Utility computing

• What?

– Computing resources as a metered service (“pay as you go”)

– Ability to dynamically provision virtual machines

• Why?

– Cost: capital vs. operating expenses

– Scalability: “infinite” capacity

– Elasticity: scale up or down on demand

• Does it make sense?

– Benefits to cloud users

– Business case for cloud providers

event.cwi.nl/lsde2015

Enabling technology: virtualisation

Hardware

Operating System

App App App

Traditional Stack

Hardware

OS

App App App

Hypervisor

OS OS

Virtualized Stack

event.cwi.nl/lsde2015

Everything as a service

• Utility computing = Infrastructure as a Service (IaaS)

– Why buy machines when you can rent cycles?

– Examples: Amazon’s EC2, Rackspace

• Platform as a Service (PaaS)

– Give me nice API and take care of the maintenance, upgrades

– Example: Google App Engine

• Software as a Service (SaaS)

– Just run it for me!

– Example: Gmail, Salesforce

event.cwi.nl/lsde2015

Several Historical Trends

• Shared Utility Computing

– 1960s – MULTICS – Concept of a Shared Computing Utility

– 1970s – IBM Mainframes – rent by the CPU-hour. (Fast/slow switch.)

• Data Center Co-location

– 1990s-2000s – Rent machines for months/years, keep them close to the
network access point and pay a flat rate. Avoid running your own building
with utilities!

• Pay as You Go

– Early 2000s - Submit jobs to a remote service provider where they run on
the raw hardware. Sun Cloud ($1/CPU-hour, Solaris +SGE) IBM Deep
Capacity Computing on Demand (50 cents/hour)

• Virtualization

– 1960s – OS-VM, VM-360 – Used to split mainframes into logical partitions.

– 1998 – VMWare – First practical implementation on X86, but at significant
performance hit.

– 2003 – Xen paravirtualization provides much perf, but kernel must assist.

– Late 2000s – Intel and AMD add hardware support for virtualization.

event.cwi.nl/lsde2015

So, you want to build a cloud

• Slightly more complicated than hooking up a bunch of machines with an

ethernet cable

– Physical vs. virtual (or logical) resource management

– Interface?

• A host of issues to be addressed

– Connectivity, concurrency, replication, fault tolerance, file access, node

access, capabilities, services, …

• We'll tackle as many problems as we can

– The problems are nothing new

– Solutions have existed for a long time

– However, it's the first time we have the challenge of applying them all in

a single massively accessible infrastructure

event.cwi.nl/lsde2015

How are clouds structured?

• Clients talk to clouds using web browsers or the web services standards

– But this only gets us to the outer “skin” of the cloud data center, not the

interior

– Consider Amazon: it can host entire company web sites (like

Target.com or Netflix.com), data (S3), servers (EC2) and even user-

provided virtual machines!

event.cwi.nl/lsde2015

Big picture overview

• Client requests are

handled in the first

tier by

– PHP or ASP pages

– Associated logic

• These lightweight

services are fast

and very nimble

• Much use of caching:

the second tier

1
1 1

1
1

1

1

1

1 Index
DB

2
2

Shards

2
2

2

2
2

2

user

user

event.cwi.nl/lsde2015

Many styles of system

• Near the edge of the cloud focus is on vast numbers of clients and rapid

response

• Inside we find high volume services that operate in a pipelined manner,

asynchronously

• Deep inside the cloud we see a world of virtual computer clusters that are

– Scheduled to share resources

– Run applications like MapReduce (Hadoop) are very popular

– Perform the heavy lifting

event.cwi.nl/lsde2015

In the outer tiers replication is key

• We need to replicate

– Processing

• Each client has what seems to be a private, dedicated server (for a

little while)

– Data

• As much as possible!

• Server has copies of the data it needs to respond to client requests

without any delay at all

– Control information

• The entire system is managed in an agreed-upon way by a

decentralised cloud management infrastructure

event.cwi.nl/lsde2015

First-tier parallelism

• Parallelism is vital to speeding up first-tier services

• Key question

– Request has reached some service instance X

– Will it be faster

• For X to just compute the response?

• Or for X to subdivide the work by asking subservices to do parts of

the job?

• Glimpse of an answer

– Werner Vogels, CTO at Amazon, commented in one talk that many

Amazon pages have content from 50 or more parallel subservices that

run, in real-time, on the request!

event.cwi.nl/lsde2015

Read vs. write

• Parallelisation works fine, so long as we are reading

• If we break a large read request into multiple read requests for sub-

components to be run in parallel, how long do we need to wait?

– Answer: as long as the slowest read

• How about breaking a large write request?

– Duh… we still wait till the slowest write finishes

• But what if these are not sub-components, but alternative copies of the

same resource?

– Also known as replicas

– We wait the same time, but when do we make the individual writes

visible?

Replication solves one problem but introduces another

event.cwi.nl/lsde2015

More on updating replicas in parallel

• Several issues now arise

– Are all the replicas applying updates in the same order?

• Might not matter unless the same data item is being changed

• But then clearly we do need some agreement on order

– What if the leader replies to the end user but then crashes and it turns

out that the updates were lost in the network?

• Data centre networks are surprisingly lossy at times

• Also, bursts of updates can queue up

• Such issues result in inconsistency

16

event.cwi.nl/lsde2015

Eric Brewer’s CAP theorem

• In a famous 2000 keynote talk at ACM PODC, Eric Brewer proposed that

– “You can have just two from Consistency, Availability and Partition

Tolerance”

• He argues that data centres need very fast response, hence availability is

paramount

• And they should be responsive even if a transient fault makes it hard to

reach some service

• So they should use cached data to respond faster even if the cached entry

cannot be validated and might be stale!

• Conclusion: weaken consistency for faster response

• We will revisit this as we go along

event.cwi.nl/lsde2015

Is inconsistency a bad thing?

• How much consistency is really needed in the first tier of the cloud?

– Think about YouTube videos. Would consistency be an issue here?

– What about the Amazon “number of units available” counters. Will

people notice if those are a bit off?

• Probably not unless you are buying the last unit

• End even then, you might be inclined to say “oh, bad luck”

event.cwi.nl/lsde2015

CASE STUDY:
AMAZON WEB SERVICES

event.cwi.nl/lsde2015

Amazon AWS

• Grew out of Amazon’s need to rapidly provision and configure machines of

standard configurations for its own business.

• Early 2000s – Both private and shared data centers began using

virtualization to perform “server consolidation”

• 2003 – Internal memo by Chris Pinkham describing an “infrastructure

service for the world.”

• 2006 – S3 first deployed in the spring, EC2 in the fall

• 2008 – Elastic Block Store available.

• 2009 – Relational Database Service

• 2012 – DynamoDB

event.cwi.nl/lsde2015

Terminology

• Instance = One running virtual machine.

• Instance Type = hardware configuration: cores, memory, disk.

• Instance Store Volume = Temporary disk associated with instance.

• Image (AMI) = Stored bits which can be turned into instances.

• Key Pair = Credentials used to access VM from command line.

• Region = Geographic location, price, laws, network locality.

• Availability Zone = Subdivision of region the is fault-independent.

event.cwi.nl/lsde2015

Amazon AWS

event.cwi.nl/lsde2015

EC2 Architecture

EBS S3

AMI

Instance Instance Instance

Firewall

Internet

EC2 Private

IP
Private

IP

Public IP

snapshot Manager

SSH

event.cwi.nl/lsde2015

event.cwi.nl/lsde2015

EC2 Pricing Model

• Free Usage Tier

• On-Demand Instances

–Start and stop instances whenever you like, costs are
rounded up to the nearest hour. (Worst price)

• Reserved Instances

–Pay up front for one/three years in advance. (Best price)

–Unused instances can be sold on a secondary market.

• Spot Instances

–Specify the price you are willing to pay, and instances get
started and stopped without any warning as the marked
changes. (Kind of like Condor!)

event.cwi.nl/lsde2015

Free Usage Tier

• 750 hours of EC2 running Linux, RHEL, or SLES t2.micro instance usage

• 750 hours of EC2 running Microsoft Windows Server t2.micro instance

usage

• 750 hours of Elastic Load Balancing plus 15 GB data processing

• 30 GB of Amazon Elastic Block Storage in any combination of General

Purpose (SSD) or Magnetic, plus 2 million I/Os (with Magnetic) and 1 GB

of snapshot storage

• 15 GB of bandwidth out aggregated across all AWS services

• 1 GB of Regional Data Transfer

event.cwi.nl/lsde2015

event.cwi.nl/lsde2015

Simple Storage Service (S3)

• A bucket is a container for objects and describes location, logging,

accounting, and access control. A bucket can hold any number of objects,

which are files of up to 5TB. A bucket has a name that must be globally

unique.

• Fundamental operations corresponding to HTTP actions:

– http://bucket.s3.amazonaws.com/object

– POST a new object or update an existing object.

– GET an existing object from a bucket.

– DELETE an object from the bucket

– LIST keys present in a bucket, with a filter.

• A bucket has a flat directory structure (despite the appearance given by

the interactive web interface.)

event.cwi.nl/lsde2015

S3 Weak Consistency Model

Direct quote from the Amazon developer API:

“Updates to a single key are atomic….”

“Amazon S3 achieves high availability by replicating data across multiple servers

within Amazon's data centers. If a PUT request is successful, your data is safely

stored. However, information about the changes must replicate across Amazon

S3, which can take some time, and so you might observe the following

behaviors:

– A process writes a new object to Amazon S3 and immediately attempts to read it.

Until the change is fully propagated, Amazon S3 might report "key does not exist."

– A process writes a new object to Amazon S3 and immediately lists keys within its

bucket. Until the change is fully propagated, the object might not appear in the list.

– A process replaces an existing object and immediately attempts to read it. Until the

change is fully propagated, Amazon S3 might return the prior data.

– A process deletes an existing object and immediately attempts to read it. Until the

deletion is fully propagated, Amazon S3 might return the deleted data.”

event.cwi.nl/lsde2015

event.cwi.nl/lsde2015

event.cwi.nl/lsde2015

event.cwi.nl/lsde2015

Elastic Block Store

• An EBS volume is a virtual disk of a fixed size with a block read/write

interface. It can be mounted as a filesystem on a running EC2 instance

where it can be updated incrementally. Unlike an instance store, an

EBS volume is persistent.

• (Compare to an S3 object, which is essentially a file that must be

accessed in its entirety.)

• Fundamental operations:

– CREATE a new volume (1GB-1TB)

– COPY a volume from an existing EBS volume or S3 object.

– MOUNT on one instance at a time.

– SNAPSHOT current state to an S3 object.

event.cwi.nl/lsde2015

event.cwi.nl/lsde2015

EBS is approx. 3x more expensive by volume
and 10x more expensive by IOPS than S3.

event.cwi.nl/lsde2015

Use Glacier for Cold Data

• Glacier is structured like S3: a vault is a container for an arbitrary number

of archives. Policies, accounting, and access control are associated with

vaults, while an archive is a single object.

• However:

– All operations are asynchronous and notified via SNS.

– Vault listings are updated once per day.

– Archive downloads may take up to four hours.

– Only 5% of total data can be accessed in a given month.

• Pricing:

– Storage: $0.01 per GB-month

– Operations: $0.05 per 1000 requests

– Data Transfer: Like S3, free within AWS.

• S3 Policies can be set up to automatically move data into Glacier.

event.cwi.nl/lsde2015

SOME MORE TIPS FROM
ASSIGNMENT 1

event.cwi.nl/lsde2015

Assignment 1: Querying a Social Graph

event.cwi.nl/lsde2015

LDBC Data generator

• Synthetic dataset available in different

 scale factors

– SF100 for quick testing

– SF3000 the real deal

• Very complex graph

– Power laws (e.g. degree)

– Huge Connected Component

– Small diameter

– Data correlations

 Chinese have more Chinese names

– Structure correlations

 Chinese have more Chinese friends

event.cwi.nl/lsde2015

CSV file schema

• See: http://wikistats.ins.cwi.nl/lsde-data/practical_1

• Counts for sf3000 (total 37GB)

Person (9M)

PersonId PK

FirstName

LastName

Gender

Birthday

CreationDate

LocationIP

BrowserUsed

LocatedIn

Knows(1.3B)

PersonFrom

PersonTo

interests(.2B)

PersonID

tagID

Tags (16K)

TagID

Name

URL

Place(1.4K

PlaceID PK

URL

type

http://wikistats.ins.cwi.nl/lsde-data/practical_1
http://wikistats.ins.cwi.nl/lsde-data/practical_1
http://wikistats.ins.cwi.nl/lsde-data/practical_1

event.cwi.nl/lsde2015

The Query

• The marketeers of a social network have been data mining the musical

preferences of their users. They have built statistical models which predict

given an interest in say artists A2 and A3, that the person would also like

A1 (i.e. rules of the form: A2 and A3 A1). Now, they are commercially

exploiting this knowledge by selling targeted ads to the management of

artists who, in turn, want to sell concert tickets to the public but in the

process also want to expand their artists' fanbase.

• The ad is a suggestion for people who already are interested in A1 to buy

concert tickets of artist A1 (with a discount!) as a birthday present for a

friend ("who we know will love it" - the social network says) who lives in the

same city, who is not yet interested in A1 yet, but is interested in other

artists A2, A3 and A4 that the data mining model predicts to be correlated

with A1.

event.cwi.nl/lsde2015

The Query

For all persons P :

• who have their birthday on or in between D1..D2

• who do not like A1 yet

 we give a score of

– 1 for liking any of the artists A2, A3 and A4 and

– 0 if not

the final score, the sum, hence is a number between 0 and 3.

Further, we look for friends F:

– Where P and F who know each other mutually

– Where P and F live in the same city and

– Where F already likes A1

 The answer of the query is a table (score, P, F) with only scores > 0

event.cwi.nl/lsde2015

Binary files

• Created by “loader” program in example github repo

• Total size: 6GB

Person.bin

PersonId PK

Birthday

LocatedIn

Knows_first

Knows_n

Interests_first

Interests_n

Knows.bin

PersonPos

interests.bin

tagID

event.cwi.nl/lsde2015

What it looks like

• Created by “loader” program in example github repo

• Total size: 6GB

Person.bin

Knows.bin

i
n
t
e
r
e
s
t
s
.
b
i
n

knows_first

knows_n

2bytes

* 204M

48bytes

* 8.9M

4bytes

* 1.3B

event.cwi.nl/lsde2015

The Naïve Implementation

The “cruncher” program

Go through the persons P sequentially

• counting how many of the artists A2,A3,A4 are liked as the score

 for those with score>0:

– visit all persons F known to P.

 For each F:

• checks on equal location

• check whether F already likes A1

• check whether F also knows P

if all this succeeds (score,P,F) is added to a result table.

event.cwi.nl/lsde2015

Naïve Query Implementation

• “cruncher”

Person.bin

Knows.bin

i
n
t
e
r
e
s
t
s
.
b
i
n

knows_first

knows_n

2bytes

* 204M

48bytes

* 8.9M

4bytes

* 1.3B

results

event.cwi.nl/lsde2015

Sequential Query Implementation

• “cruncher”

Person.bin

Knows.bin

i
n
t
e
r
e
s
t
s
.
b
i
n

knows_first

knows_n

2bytes

* 204M

48bytes

* 8.9M

4bytes

* 1.3B

score

event.cwi.nl/lsde2015

Sequential Query Implementation

• “cruncher”-2

Person.bin

Knows.bin

i
n
t
e
r
e
s
t
s
.
b
i
n

knows_first

knows_n

2bytes

* 204M

48bytes

* 8.9M

4bytes

* 1.3B

score

results

event.cwi.nl/lsde2015

Sequential Query Implementation

• “cruncher”-2

Person.bin

Knows.bin

i
n
t
e
r
e
s
t
s
.
b
i
n

knows_first

knows_n

2bytes

* 204M

48bytes

* 8.9M

4bytes

* 1.3B

score

results

event.cwi.nl/lsde2015

Improving Bad Access Patterns

• Minimize Random Memory Access

– Apply filters first. Less accesses is better.

• Denormalize the Schema

– Remove joins/lookups, add looked up stuff to the table (but.. makes it bigger)

• Trade Random Access For Sequential Access

– perform a 100K random key lookups in a large table

 put 100K keys in a hash table, then

 scan table and lookup keys in hash table

• Try to make the randomly accessed region smaller

– Remove unused data from the structure

– Apply data compression

– Cluster or Partition the data (improve locality) …hard for social graphs

• If the random lookups often fail to find a result

– Use a Bloom Filter

event.cwi.nl/lsde2015

SETTING UP WORKFLOWS

event.cwi.nl/lsde2015

Key premise: divide and conquer

work

w1 w2 w3

r1 r2 r3

result

worker worker worker

partition

combine

event.cwi.nl/lsde2015

Parallelisation challenges

• How do we assign work units to workers?

• What if we have more work units than workers?

• What if workers need to share partial results?

• How do we aggregate partial results?

• How do we know all the workers have finished?

• What if workers die?

What’s the common theme of all of these problems?

event.cwi.nl/lsde2015

Common theme?

• Parallelization problems arise from:

– Communication between workers (e.g., to exchange state)

– Access to shared resources (e.g., data)

• Thus, we need a synchronization mechanism

event.cwi.nl/lsde2015

Managing multiple workers

• Difficult because

– We don’t know the order in which workers run

– We don’t know when workers interrupt each other

– We don’t know when workers need to communicate partial results

– We don’t know the order in which workers access shared data

• Thus, we need:

– Semaphores (lock, unlock)

– Conditional variables (wait, notify, broadcast)

– Barriers

• Still, lots of problems:

– Deadlock, livelock, race conditions...

– Dining philosophers, sleeping barbers, cigarette smokers...

• Moral of the story: be careful!

event.cwi.nl/lsde2015

Current tools

• Programming models

– Shared memory (pthreads)

– Message passing (MPI)

• Design patterns

– Master-slaves

– Producer-consumer flows

– Shared work queues

message passing

P1 P2 P3 P4 P5

shared memory

P1 P2 P3 P4 P5
m

e
m

o
ry

master

slaves

producer consumer

producer consumer

work
queue

event.cwi.nl/lsde2015

Where the rubber meets the road

• Concurrency is difficult to reason about

• Concurrency is even more difficult to reason about

– At the scale of datacenters and across datacenters

– In the presence of failures

– In terms of multiple interacting services

• Not to mention debugging…

• The reality:

– Lots of one-off solutions, custom code

– Write you own dedicated library, then program with it

– Burden on the programmer to explicitly manage everything

– The MapReduce runtime alleviates this

event.cwi.nl/lsde2015

What’s the point?

• It’s all about the right level of abstraction

– Moving beyond the von Neumann architecture

– We need better programming models

• Hide system-level details from the developers

– No more race conditions, lock contention, etc.

• Separating the what from how

– Developer specifies the computation that needs to be performed

– Execution framework (aka runtime) handles actual execution

The data centre is the computer!

event.cwi.nl/lsde2015
Source: Google

Here’s your new toy

event.cwi.nl/lsde2015

MAPREDUCE AND HDFS

event.cwi.nl/lsde2015

Big data needs big ideas

• Scale “out”, not “up”

– Limits of SMP and large shared-memory machines

• Move processing to the data

– Cluster has limited bandwidth, cannot waste it shipping data around

• Process data sequentially, avoid random access

– Seeks are expensive, disk throughput is reasonable, memory

throughput is even better

• Seamless scalability

– From the mythical man-month to the tradable machine-hour

• Computation is still big

– But if efficiently scheduled and executed to solve bigger problems we

can throw more hardware at the problem and use the same code

– Remember, the datacentre is the computer

event.cwi.nl/lsde2015

Typical Big Data Problem

• Iterate over a large number of records

• Extract something of interest from each

• Shuffle and sort intermediate results

• Aggregate intermediate results

• Generate final output

Key idea: provide a functional abstraction for these two operations

event.cwi.nl/lsde2015

MapReduce
• Programmers specify two functions:

map (k1, v1) → [<k2, v2>]

reduce (k2, [v2]) → [<k3, v3>]

– All values with the same key are sent to the same reducer

shuffle and sort: aggregate values by keys

reduce reduce reduce

map map map map

a 1 b 2 c 6 c 3 a 5 c 2

a 1 b 2 6 3 5 c 2

k1 v1 k2 v2 k3 v3 k4 v4 k5 v5 k6 v6 k7 v7 k8 v8

b 7 c 8

8 7

r1 s1 r2 s2 r3 s3

event.cwi.nl/lsde2015

MapReduce runtime
• Orchestration of the distributed computation

• Handles scheduling

– Assigns workers to map and reduce tasks

• Handles data distribution

– Moves processes to data

• Handles synchronization

– Gathers, sorts, and shuffles intermediate data

• Handles errors and faults

– Detects worker failures and restarts

• Everything happens on top of a distributed file system (more information
later)

event.cwi.nl/lsde2015

MapReduce
• Programmers specify two functions:

map (k, v) → <k’, v’>*

reduce (k’, v’) → <k’, v’>*

– All values with the same key are reduced together

• The execution framework handles everything else

• This is the minimal set of information to provide

• Usually, programmers also specify:

partition (k’, number of partitions) → partition for k’

– Often a simple hash of the key, e.g., hash(k’) mod n

– Divides up key space for parallel reduce operations

combine (k’, v’) → <k’, v’>*

– Mini-reducers that run in memory after the map phase

– Used as an optimization to reduce network traffic

event.cwi.nl/lsde2015

Putting it all together

shuffle and sort: aggregate values by keys

reduce reduce reduce

map map map map

a 1 b 2 c 6 c 3 a 5 c 2

a 1 b 2 9 8 5 c 2

k1 v1 k2 v2 k3 v3 k4 v4 k5 v5 k6 v6 k7 v7 k8 v8

b 7 c 8

7

r1 s1 r2 s2 r3 s3

combine combine combine combine

a 1 b 2 c 9 a 5 c 2 b 7 c 8

partition partition partition partition

event.cwi.nl/lsde2015

Two more details

• Barrier between map and reduce phases

– But we can begin copying intermediate data earlier

• Keys arrive at each reducer in sorted order

– No enforced ordering across reducers

event.cwi.nl/lsde2015

“Hello World”: Word Count

Map(String docid, String text):
 for each word w in text:
 Emit(w, 1);

Reduce(String term, Iterator<Int> values):
 int sum = 0;
 for each v in values:
 sum += v;
 Emit(term, sum);

event.cwi.nl/lsde2015

MapReduce Implementations

• Google has a proprietary implementation in C++

– Bindings in Java, Python

• Hadoop is an open-source implementation in Java

– Development led by Yahoo, now an Apache project

– Used in production at Yahoo, Facebook, Twitter, LinkedIn, Netflix, …

– The de facto big data processing platform

– Rapidly expanding software ecosystem

• Lots of custom research implementations

– For GPUs, cell processors, etc.

event.cwi.nl/lsde2015

split 0

split 1

split 2

split 3

split 4

worker

worker

worker

worker

worker

master

user

program

output

file 0

output

file 1

(1) submit

(2) schedule map (2) schedule reduce

(3) read (4) local write

(5) remote read (6) write

Input

files

Map

phase

Intermediate files

(on local disk)

Reduce

phase

Output

files

Adapted from (Dean and Ghemawat, OSDI 2004)

event.cwi.nl/lsde2015

How do we get data to the workers?

Compute Nodes

NAS

SAN

What’s the problem here?

event.cwi.nl/lsde2015

Distributed file system

• Do not move data to workers, but move workers to the data!

– Store data on the local disks of nodes in the cluster

– Start up the workers on the node that has the data local

• Why?

– Not enough RAM to hold all the data in memory

– Disk access is slow, but disk throughput is reasonable

• A distributed file system is the answer

– GFS (Google File System) for Google’s MapReduce

– HDFS (Hadoop Distributed File System) for Hadoop

event.cwi.nl/lsde2015

GFS: Assumptions

• Commodity hardware over exotic hardware

– Scale out, not up

• High component failure rates

– Inexpensive commodity components fail all the time

• “Modest” number of huge files

– Multi-gigabyte files are common, if not encouraged

• Files are write-once, mostly appended to

– Perhaps concurrently

• Large streaming reads over random access

– High sustained throughput over low latency

GFS slides adapted from material by (Ghemawat et al., SOSP 2003)

event.cwi.nl/lsde2015

GFS: Design Decisions

• Files stored as chunks

– Fixed size (64MB)

• Reliability through replication

– Each chunk replicated across 3+ chunkservers

• Single master to coordinate access, keep metadata

– Simple centralized management

• No data caching

– Little benefit due to large datasets, streaming reads

• Simplify the API

– Push some of the issues onto the client (e.g., data layout)

HDFS = GFS clone (same basic ideas)

event.cwi.nl/lsde2015

From GFS to HDFS

• Terminology differences:

– GFS master = Hadoop namenode

– GFS chunkservers = Hadoop datanodes

• Differences:

– Different consistency model for file appends

– Implementation

– Performance

For the most part, we’ll use Hadoop terminology

event.cwi.nl/lsde2015

Adapted from (Ghemawat et al., SOSP 2003)

(file name, block id)

(block id, block location)

instructions to datanode

datanode state (block id, byte range)

block data

HDFS namenode

HDFS datanode

Linux file system

…

HDFS datanode

Linux file system

…

File namespace /foo/bar
block 3df2

Application

HDFS Client

HDFS architecture

event.cwi.nl/lsde2015

Namenode responsibilities

• Managing the file system namespace:

– Holds file/directory structure, metadata, file-to-block mapping, access

permissions, etc.

• Coordinating file operations:

– Directs clients to datanodes for reads and writes

– No data is moved through the namenode

• Maintaining overall health:

– Periodic communication with the datanodes

– Block re-replication and rebalancing

– Garbage collection

event.cwi.nl/lsde2015

Putting everything together

datanode daemon

Linux file system

…

tasktracker

slave node

datanode daemon

Linux file system

…

tasktracker

slave node

datanode daemon

Linux file system

…

tasktracker

slave node

namenode

namenode daemon

job submission node

jobtracker

event.cwi.nl/lsde2015

Summary

• Introduced the notion of utility computing

• Introduced cloud computing and the need for infrastructure

• Presented some of the tools necessary for manipulating Big Data

• We will next turn to the internals of such platforms

