Fair Performance Comparison of Evolutionary

Multi-Objective Algorithms
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In this talk, | will explain the following:

In computational experiments, we can easily obtain
clearly different comparison results depending on the
settings of our computational experiments.
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Fig. 2. Results on DDMOP

In Fig. 1, NSGA-II (ID 1) 1s worst, and PREA (ID 10) 1s not good.
In Fig. 1, NSGA-II (ID 1) 1s good, and PREA (ID 10) is the best.



Multi-Objective Optimization

Optimization Problems
Single-Objective Problem:

Maximize f (X)

Multi-Objective Problems:

Maximize fl(X), fz(X)
Maximize f{(X), /5(x), f53(x)

Maximize f(X), f,(x), f5(x), f4(x)
Maximize fl(x)a f2(x)9 f3(X), f4(X), fS(x)a * e



Popularity of Multi-Objective Optimization Research

The number of papers with “Multi-objective” or “Multiobjective”
in the paper titles (Scopus Database: January 17, 2024)
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Almost all problems have multiple objectives
Example: Multi-objective neural architecture search

Complexity




Almost all problems have multiple objectives

<: Feature selection
in classifier design

- Number of features



Evolutionary Multi-Objective Optimization (EMO)
= Evolutionary Search for Pareto Optimal Solutions

The Goal of EMO: To find a set of well-distributed solutions
over the entire Pareto front.
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Example of Good Search Behavior of an EMO algorithm



Difficulties Iin
Fair Performance Comparison of Evolutionary
Multi-Objective Optimization Algorithms

(0) Visual Comparison

(1) Specification of Termination Condition

(2) Specification of Population Size

(3) Choice of Performance Indicators (e.g., HV, IGD)

(4) Setting in Performance Indicators (e.g., reference point)
(5) Choice of Test Problems

This Talk is mainly based on my recent paper:

Hisao Ishibuchi, Lie Meng Pang, and Ke Shang, “Difficulties in Fair
Performance Comparison of Multi-Objective Evolutionary Algorithms”
IEEE Computational Intelligence Magazine (February 2022)




Single-Objective Optimization: Maximize f (x)

f(x) /Optimal solution

A

Maximize




The final result of optimization is a single solution.
Comparison of solutions is easy.

fx) “@ is better than @ ”

A

\

Maximize
P

i




Two-Objective Optimization: Maximize f(x), f,(x)

The final result of optimization is a solution set.
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Algorithm comparison

> Comparison between solution sets
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The final result of optimization is a solution set.
Comparison of solution sets is not easy.

Which is a better solution set?
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The final result of optimization is a solution set.
Comparison of solution sets is not easy.

In the case of two objectives, we can understand the quality of each
solution set even if we cannot say which is better.

Which is a better solution set?

>
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The final result of optimization is a solution set.
Comparison of solution sets is not easy.

In the case of two objectives, we can understand the quality of each
solution set even if we cannot say which is better.
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Which is a better solution set between A and B?

>

Maximize f,
Maximize f,

Maximize f, Maximize f,

A is clearly better. A is better.



Which is a better solution set between A and B?

Maximize f,
Maximize f,

Maximize f, Maximize f,

A seems to be better. Which is better ?
(Not clear)



Which is a better solution set between A and B?

Pareto front Pareto front
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Which is a better solution set between A and B?

Pareto front Pareto front
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Solution Set A Solution Set B

B is better since B covers the entire Pareto Front.



Which is a better solution set between A and B?
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Which is a better solution set between A and B?

Pareto front

Solution Set A Solution Set B

A is better since A covers the entire Pareto Front.

Visual comparison is easy for some cases.



Four-Objective Problems (Parallel Coordinates)

Which is the best solution set among A, B and C?
(Minimization. All solutions are on the Pareto front in [0, 1]%)
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H. Ishibuchi et al., "Optimal distributions of solutions for hypervolume maximization
on triangular and inverted triangular Pareto fronts of four-objective Problems," IEEE
SSCI 2019, pp. 1857-1864.



Four-Objective Problems (Parallel Coordinates)

Which is the best solution set among A, B and C?
(Minimization. All solutions are on the Pareto front in [0, 1]%)
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Solution Set A is clearly bad.
Solution set C looks better than B, or B is better than C ?



Four-Objective Problems (Parallel Coordinates)

Which is the best solution set among A, B and C?
(Minimization. All solutions are on the Pareto front in [0, 1]%)
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Four-Objective Problems (Parallel Coordinates)

Which is the best solution set among A, B and C?
(Minimization. All solutions are on the Pareto front in [0, 1]%)
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Solution Set A Solution Set B Solution Set C

Solution Set B is clearly the best.
A is only inside, and C is only on the boundary.
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Visual comparison is very difficult
for many-objective problems
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Visual comparison is very difficult

for many-objective problems
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Frequently-Used Performance Indicators
- Hypervolume (HV) Indicator
- Inverted Generational Distance (IGD) Indicator.

A
R HYV Indicator
£ : : : :
- Size of this dominate region
>
>
Maximize f,
A
) 7 IGD Indicator
Q n
£ Oé Average distance from each
5 reference point to the nearest
= | — Paretofront O« ___ .
® Reference st solution (Average arrow length)
olution Set

- - )
Maximize f,;



Difficulties in
Fair Performance Comparison of Evolutionary
Multi-Objective Optimization Algorithms

(0) Visual Comparison

(1) Specification of Termination Condition

(2) Specification of Population Size

(3) Choice of Performance Indicators (e.g., HV, IGD)

(4) Setting in Performance Indicators (e.g., reference point)
(5) Choice of Test Problems

This Talk is mainly based on my recent paper:

Hisao Ishibuchi, Lie Meng Pang, and Ke Shang, “Difficulties in Fair
Performance Comparison of Multi-Objective Evolutionary Algorithms”
IEEE Computational Intelligence Magazine (February 2022)
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Totally different termination conditions have been used in
the literature in the EMO community:

ParEGO Paper [1]: 100 - 260 solution evaluations (~ 10?)
Expensive problems  for expensive multi-objective optimization

NSGA-III Paper [2]: 22.75 - 405 thousand solution evaluations
Standard problems  for many-objective optimization (~ 10? K)

LMEA Paper [3]: 1 - 230 million solution evaluations (~ 10* M)

Large-scale for large-scale many-objective optimization.
problems

[1] J. Knowles, "ParEGO: A hybrid algorithm with on-line landscape approximation for
expensive multiobjective optimization problems"”, IEEE Transactions on Evolutionary
Computation (2005).

[2] K. Deb and H. Jain, “An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, Part I: Solving problems with box
constraints,” IEEE Transactions on Evolutionary Computation (2014).

[3] X. Zhang, Y. Tian, R. Cheng, and Y. Jin, “A decision variable clustering-based evolutionary
algorithm for large-scale many-objective optimization,” IEEE Transactions on Evolutionary
Computation (2018).
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Suggestion 1:
To use the same termination condition as in many other papers
especially in well-known papers (e.g., 300 solution evaluations in
expensive multi-objective optimization).
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Fig. 5. Average HV results for 7-objective HINY19.

Suggestion 1:
To use the same termination condition as in many other papers
especially in well-known papers (e.g., 300 solution evaluations in
expensive multi-objective optimization).

Suggestion 2:
To use various termination conditions, and compare different
algorithms under the anytime algorithm framework.



Difficulties in
Fair Performance Comparison of Evolutionary
Multi-Objective Optimization Algorithms

(0) Visual Comparison

(1) Specification of Termination Condition

(2) Specification of Population Size

(3) Choice of Performance Indicators (e.g., HV, IGD)

(4) Setting in Performance Indicators (e.g., reference point)
(5) Choice of Test Problems

This Talk is mainly based on my recent paper:

Hisao Ishibuchi, Lie Meng Pang, and Ke Shang, “Difficulties in Fair
Performance Comparison of Multi-Objective Evolutionary Algorithms”
IEEE Computational Intelligence Magazine (February 2022)




Experimental Results
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Fig. 10. Average HV results of the final population for five-objective
WEG3. [Ishibuchi et al. IEEE CIM 2022]

When the four algorithms are compared under the population size 210,
MOEA/D is clearly the worst. However, MOEA/D is the best when the
population size is very large.




Observation.
Our experimental results strongly
depend on the population size.

Question.
How to specify the population
size?
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Population size specification is important |
Different specifications for different algorithms are unfair.
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Comparison is unfair since frequently-used performance indicators
such as HV and IGD can be improved by increasing the number of
non-dominated solutions. Algorithm A will be evaluated as better.



Performance indicator values are usually improved by increasing
the number of solutions in the examined solution set.

HV Indicator

IGD Indicator
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Observation.
Our experimental results strongly
depend on the population size.

Question.
How to specify the population
size?

Suggestion 1:
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To use the same population size specification as in many other papers
especially in well-known papers (e.g., 210).
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To use the same population size specification as in many other papers
especially in well-known papers (e.g., 210). Other settings: 100, 500, ...



Observation.
Our experimental results strongly
depend on the population size.

Question.
How to specify the population
size?

Suggestion 1:

Better 1.9
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To use the same population size specification as in many other papers
especially in well-known papers (e.g., 210). Other settings: 100, 500, ...

Suggestion 2:

To use the best specification for each algorithm, and to select a pre-
specified number of solutions from all the examined solutions for

performance comparison.




Framework with an Unbounded External Archive
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Final Population vs. Selected Solution Set
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Final Population vs. Selected Solution Set

SMS-EMOA on DTLZ2
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Final Population vs. Selected Solution Set
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Improvement by Subset selection

Reason: The final population is not the best subset
of all the examined solutions.
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Improvement by Subset selection
Reason: The final population is not the best subset

of all the examined solutions.

[7] M. Li, X. Yao, “An empirical investigation of the optimality and
monotonicity proper-ties of multiobjective archiving methods” EMO 2019.
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Table 2. The average deterioration ratio (DR) of 30 runs of the eight algorithms. The
lower the better; 0.00% (in boldface) means that there is no archived solution which is
dominated by the solutions eliminated in the previous archiving process.

Problem |NSGA-II|NSGA-I1+¢|SPEA2|SPEA24SDE| IBEA |SMS-EMOA | MOEA /D|NSGA-III
SCH1 0.00% 0.10% 0.00% 0.08% 0.20% 0.00% 0.25% 0.00%
SCH2 0.00% 0.22% 0.00% 0.14% 0.36% 0.00% 0.50% 0.00%
FON 10.21% 10.66% 4.05% 5.13% 1.02% 0.02% 2.99% 0.66%
KUR 5.06% 6.12% 1.83% 2.05% 0.49% 0.05% 5.86% 3.74%
ZDT1 3.79% 2.78% 1.90% 0.94% 0.05% 0.67% 21.65% 0.68%
ZDT2 2.42% 1.74% 1.23% 0.47% 0.11% 0.42% 29.26% 0.77%
ZDT3 3.46% 2.42% 1.92% 1.48% 0.06% 0.85% 22.98% 2.64%
ZDT4 0.58% 0.41% 0.40% 0.21% 0.26% 0.73% 12.25% 0.53%
ZDT6 0.97% 0.67% 0.62% 0.20% 0.00% 0.72% 19.00% 0.60%
WFG1 1.11% 0.60% 1.13% 0.30% 0.00% 3.96% 16.16% 2.11%
WFG2 1.81% 1.37% 1.20% 0.75% 0.03% 1.02% 17.46% 2.64%
WFG3 7.48% 4.75% 4.22% 1.71% 0.05% 0.45% 16.89% 1.72%
WFG4 8.34% 5.25% 4.70% 2.50% 0.08% 0.45% 15.81% 3.81%
WFGHSH 10.46% 8.00% 5.06% 4.12% 0.09% 0.31% 18.16% 2.13%
e o o

DTLZ2-5| 12.55% 2.40% 18.23% 1.14% 0.17% 0.02% 1.13% 2.69%

Average | 5.424% 3858679 [1940% 1.561% 0421% 1 01615 g366% | 3160

A
©®, © Examined

[1] M. Li and X. Yao, “An empirical investigation of the o2 0 %0000 osolutions
optimality and monotonicity properties of o © 0%°%%%00
multiobjective archiving methods,” EMO 2019.
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Final Population vs. Selected Solutions

Using a HV-based greedy subset selection algorithm,
210 solutions are selected from all the examined solutions.
[Ishibuchi et al. IEEE CIM 2022]
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When the four algorithms are compared using the final population with
the standard population size 210, MOEA/D is the worst. When they are
compared using the selected 210 solutions, MOEA/D is the best.




Observation.
Our experimental results strongly
depend on the population size.

Question.
How to specify the population
size?

Suggestion 1:

Better 1.9

1

-
oo

Average HV Value
>  ~

1001
210

5985

=6-0-DEA

=6-MOEA/D-Tch
=©-NSGA-IlI
MOEA/DD

-
- O
(@]
N

10°
Population Size

10%

To use the same population size specification as in many other papers
especially in well-known papers (e.g., 210). Other settings: 100, 500, ...

Suggestion 2:

To use the best specification for each algorithm, and to select a pre-
specified number of solutions from all the examined solutions for

performance comparison.




Difficulties in
Fair Performance Comparison of Evolutionary
Multi-Objective Optimization Algorithms

(0) Visual Comparison

(1) Specification of Termination Condition

(2) Specification of Population Size

(3) Choice of Performance Indicators (e.g., HV, IGD)

(4) Setting in Performance Indicators (e.g., reference point)
(5) Choice of Test Problems

This Talk is mainly based on my recent paper:

Hisao Ishibuchi, Lie Meng Pang, and Ke Shang, “Difficulties in Fair
Performance Comparison of Multi-Objective Evolutionary Algorithms”
IEEE Computational Intelligence Magazine (February 2022)




Difficulties in the use of the HV indicator
HV-based comparison results depend on the reference point.

Q. Which is the better solution set between A and B
(Two-Objective Maximization Problem)




Difficulties in the use of the HV indicator

HV-based comparison results depend on the reference point.

When the reference point is close to the Pareto front:

A

B

A is better!

Reference point




Difficulties in the use of the HV indicator
HV-based comparison results depend on the reference point.

When the reference point is far from the Pareto front:

f B is better !

Reference point



Depending on the specification of the reference point, each
solution set can be evaluated as the best solution set by HV:
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Fig. 20. Four solution sets with 66 solutions on an inverted triangular

linear Pareto front.
inear Pareto front [Ishibuchi et al. IEEE CIM 2022]



Depending on the specification of the reference point, each
solution set can be evaluated as the best solution set by HV:
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H. Ishibuchi et al., "Optimal distributions of solutions for hypervolume maximization on
triangular and inverted triangular Pareto fronts of four-objective Problems," IEEE SSCI 2019,
pp. 1857-1864.



Why ?
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Figure 12: Hypervolume contribution of each of the uniformly distributed solutions on
a linear Pareto front. ~ (Minimization Problem)

H. Ishibuchi, R. Imada, Y. Setoguchi, and Y. Nojima, “How to specify a reference point in
hypervolume calculation for fair performance comparison,” Evolutionary Computation, 2018



Obtained solution sets by SMS-EMOA
(Near optimal solution distribution for HV maximization. Ishibuchi 2018)
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Figure 12: Hypervolume contribution of each of the uniformly distributed solutions on
a linear Pareto front.



Obtained solution sets by SMS-EMOA
(Near optimal solution distribution for HV maximization. Ishibuchi 2018)
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Obtained solution sets by SMS-EMOA
(Near optimal solution distribution for HV maximization. Ishibuchi 2018)
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How to specify the reference point ?

One ldea:
Each solution in the uniformly distributed solution set
has the same HV contribution.

Suggested !
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(b)r = 1.1. (c) r = 1.25. (d) r=1.5.

Figure 12: Hypervolume contribution of each of the uniformly distributed solutions on
a linear Pareto front. ~ (Minimization Problem)

H. Ishibuchi, R. Imada, Y. Setoguchi, and Y. Nojima, “How to specify a reference point in
hypervolume calculation for fair performance comparison,” Evolutionary Computation, 2018



Reference Point Specification for Fair Comparison
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This suggestion is useful for linear Pareto fronts.



Difficulties in the use of the HV indicator

Uniformly distributed solution sets are not the best solution set
for HV when the Pareto front is non-linear.
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[Ishibuchi et al. IEEE CIM 2022]



Obtained solution sets by SMS-EMOA
(Near optimal solution distribution for HV maximization. Ishibuchi 2018)
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Obtained solution sets by SMS-EMOA
(Near optimal solution distribution for HV maximization. Ishibuchi 2018)
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Difficulties in the use of the HV indicator

Uniformly distributed solution sets are not the best solution set
for HV when the Pareto front is non-linear.

.. h ..
1. .0. ¢ o 1 ."0..0..0'.0
S .' . o.. e o - e - ° :
f3 : o @ ® ® @ f3 .. @ o0
o0 o ® e ©® ° o®
0 » 0 R v . i
0 Seeseese® o o - %e 37
f 2 \“\/"/ fl f2 K“\../ & 1
1 1 1 1
(a) DTLZ2. (b) Minus-DTLZ2.

Fig. 18. Hypervolume optimal distributions of 45 solutions for r = (2.
2,2).

.-:n. 1
e @ ° o
1 ..o L o.. 1 .o . ¢ : P
2]de o ® o g 0 ¢ 8 =
f 5 o o o 8P f3 ®<9 & 9 &9
OR2 e o o o o® 0L % s o o J
®e o0 0 S0 8 O
fo o f fo ege® fi
171 171
(a) DTLZ2. (b) Minus-DTLZ2.

HV optimal solution sets

More uniform solution sets

Fig. 19. Solution sets generated by the 45 uniform weight vectors. [lS hibuchi et al. IEEE CIM 202 2]



Recent Results: Even for linear triangular Pareto fronts,
uniformly distributed solutions are not always optimal for HV.
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Computation, vol. 26, no. 2, pp. 349-363, April 2022.



Difficulties in the use of the IGD indicator
|GD-based comparison results depend on the reference point set.

(IGD: The average distance from each reference point to the nearest solution)

Q. Which is the better solution set between A and B
(Two-Objective Maximization Problem)

Maximize f,

Maximize f, Maximize f,



Difficulties in the use of the IGD indicator
|GD-based comparison results depend on the reference point set.

(IGD: The average distance from each reference point to the nearest solution)

Q. Which is the better solution set between A and B
(Two-Objective Maximization Problem)

Better

Maximize f,
Maximize f,

Maximize f, Maximize f,



Difficulties in the use of the IGD indicator

|GD is not Pareto compliant

Q. Which is the better solution set between A and B
(Two-Objective Maximization Problem)

IGD-based comparison result: B is better.

0 ——IGD s larger _ 0

- ® Reference Point
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Difficulties in the use of the IGD indicator

|GD is not Pareto compliant

Q. Which is the better solution set between A and B
(Two-Objective Maximization Problem)

A. A is better than B based on Pareto dominance.
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Difficulties in the use of the IGD indicator

IGD™* is weakly Pareto compliant

Q. Which is the better solution set between A and B
(Two-Objective Maximization Problem)

IGD*-based comparison result: B is better.

0 IGD?* is smaller

| —Pareto Front

x
-------

0 2 4 6 8

10

10

IGD* is larger

10



Suggestions about Indicators

(i) To use multiple indicators (e.g., HV, IGD, IGD*). Reviewers
often suggest the use of multiple indicators.

(i) To use multiple reference points in the HV indicator (i.e.,
multiple comparison results). This can be viewed as using
multiple indicators.

(iii) To use a large number of uniformly distributed reference
points for IGD and IGD* (e.g., 100,000 reference points).



Suggestions about Indicators

(i) To use multiple indicators (e.g., HV, IGD, IGD*). Reviewers
often suggest the use of multiple indicators.

(i) To use multiple reference points in the HV indicator (i.e.,
multiple comparison results). This can be viewed as using
multiple indicators.

(iii) To use a large number of uniformly distributed reference
points for IGD and IGD* (e.g., 100,000 reference points).

(Uniform reference points are not always good)



Depending on the reference point set, each of the following
solution sets can be evaluated as the best solution set.
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Fig. 22. Three solution sets with 78 solutions and 91 reference points.
The IGD value of each solution set 1s shown n parentheses.

[CIM 2022]
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(3) For more reference
points (e.g., 20,100
points), (b) is the best
solution set for IGD.

[CIM 2022]



How to specify a set of reference points

Current Standard:
Use of a large number of uniformly distributed solutions as
reference points for IGD calculation.

This is not always a good method.

H. Ishibuchi, R. Imada, Y. Setoguchi, and Y. Nojima, “Reference point
specification in inverted generational distance for triangular linear Pareto
front,” IEEE Trans. on Evolutionary Computation, 2018.



Optimal Distribution of Solutions for IGD

When an infinitely large number of uniformly distributed
reference points on the Pareto front are used, the best
distribution of solutions is as follows (m : population size)




Optimal Distributions for IGD are not always intuitive
(when we use a large number of uniform reference points)
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Depending on the reference point set, each of the following
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The IGD value of each solution set 1s shown n parentheses.

(3) For more reference
points (e.g., 20,100
points), (b) is the best
solution set for IGD.

[CIM 2022]



Optimal Distributions for IGD are not always intuitive
(when we use a large number of uniform reference points)
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Optimal Distributions for IGD are not always intuitive
(when we use a large number of uniform reference points)

When randomly generated 100,000 reference points are used,
the optimal distributions of solutions are as follows:
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P I B BB
0.0 0.0

H. Ishibuchi, R. Imada, Y. Setoguchi, and Y. Nojima, “Reference point
specification in inverted generational distance for triangular linear Pareto
front,” IEEE Trans. on Evolutionary Computation, 2018.



Additional Explanations

Near IGD-Optimal Distribution of Solutions

for Random 100,000 Reference Points
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2-Objective problem:
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Difficulties in
Fair Performance Comparison of Evolutionary
Multi-Objective Optimization Algorithms

(0) Visual Comparison

(1) Specification of Termination Condition

(2) Specification of Population Size

(3) Choice of Performance Indicators (e.g., HV, IGD)

(4) Setting in Performance Indicators (e.g., reference point)
(5) Choice of Test Problems

This Talk is mainly based on my recent paper:

Hisao Ishibuchi, Lie Meng Pang, and Ke Shang, “Difficulties in Fair
Performance Comparison of Multi-Objective Evolutionary Algorithms”
IEEE Computational Intelligence Magazine (February 2022)




Literature Review about the Performance of NSGA-II

Very poor performance of NSGA-Il on many-objective test
problems has been reported in the literature.

Some Examples:

(1) The average HV value by NSGA-II on the 5-objective DTLZ1
test problem is zero [1].

[1] T. Wagner, N. Beume, and B. Naujoks: “Pareto-, aggregation-, and
indicator-based methods in many-objective optimization,” EMO 2007.

(2) NSGA-Il is outperformed by random search on the 10-
objective DTLZ2 test problem [2].

[2] S. Mostaghim and H. Schmeck: “Distance based ranking in many-
objective particle swarm optimization,” PPSN 2008.



Literature Review about the Performance of NSGA-II

Very poor performance of NSGA-Il on many-objective test
problems has been reported in the literature.

Reported results in [3]:

(3) NSGA-II (2002) is clearly outperformed by MOEA/D (2007),
NSGA-III (2014), MOEA/DD (2015) and 6-DEA (2016) on
many-objective DTLZ and WFG test problems.

[3] H. Ishibuchi, Y. Setoguchi, H. Masuda, and Y. Nojima: “Performance of
decomposition-based many-objective algorithms strongly depends on
Pareto front shapes,” IEEE Trans. on Evolutionary Computation (2017).



Literature Review about the Performance of NSGA-II

Very poor performance of NSGA-Il on many-objective test
problems has been reported in the literature.

Reported results in [3]:

(3) NSGA-II (2002) is clearly outperformed by MOEA/D (2007),
NSGA-III (2014), MOEA/DD (2015) and 6-DEA (2016) on
many-objective DTLZ and WFG test problems.

[3] H. Ishibuchi, Y. Setoguchi, H. Masuda, and Y. Nojima: “Performance of
decomposition-based many-objective algorithms strongly depends on
Pareto front shapes,” IEEE Trans. on Evolutionary Computation (2017).

We have also reported very good performance of
NSGA-Il in the same paper [3].



Best algorithm percentage for each test problems with 3, 5, 8 and 10
objectives: IGD-based comparison results with randomly generated
100,000 reference points.

Algorithm | DTLZ1-4 | WFGI-9 Dhﬁj?f: ] %gﬁs_'g
NSGA-III 6.25 16.67 12.50 5.56
0-DEA 18.75 44.44
MOEADD | 6250 1111 ,
MOEAD-PBI | 12.50 5.56 0.00 0.00
MOEAD-Tch | 0.00 5.56 0.00 333
MOEA/D-WS | 0.00 0.00 6.05 0.00
MOEAD-IPBI| _ 0.00 0.00 12.50 16.67
NSGA-II 16.67 68.75 69.44

[Ishibuchi et al. IEEE CIM 2022]

NSGA-Il is outperformed by many-objective algorithms on many-
objective DTLZ problems




Best algorithm percentage for each test problems with 3, 5, 8 and 10
objectives: IGD-based comparison results with randomly generated

100,000 reference points.
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NSGA-III 6.25 16.67
f-DEA 18.75 44.44
MOEA/DD 62.50 11.11
MOEA/D-PBI 12.50 5.56
MOEA/D-Tch 0.00 5.56
MOEA/D-WS 0.00 0.00
MOEA/D-IPBI 0.00 0.00
NSGA-II 00 16.67
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[Ishibuchi et al. IEEE CIM 2022]

NSGA-Il is outperformed by many-objective algorithms on many-
objective DTLZ problems




Best algorithm percentage for each test problems with 3, 5, 8 and 10

objectives: IGD-based comparison results with randomly generated
100,000 reference points.

Algorithm | DTLZ1-4 | WFGL-9 | WU Minus-
NSGA-III 6.25 16.67 '

6-DEA 18.75 444 F 000 ]| 00
MOEADD | 62.50 1111 I o000 | o0
MOEAD-PBL | 12.50 5.56
MOEAD-Tch | 0.00 5.56
MOEAD-WS | 0.00 0.00
MOEAD-IPBI| _ 0.00 0.00

NSGA-II 00 16.67

[Ishibuchi et al. IEEE CIM 2022]

NSGA-Il outperforms many-objective algorithms on many-
objective Minus-DTLZ problems
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DTLZ: Minimize f; (x)

Minus-DTLZ: Minimize —f; (x)
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H. Ishibuchi, Y. Setoguchi, H. Masuda, and Y. Nojima, “Performance of

decomposition-based many-objective algorithms strongly depends on Pareto
front shapes,” IEEE TEVC 2017.

MOEA/D-PBI




H. Ishibuchi, Y. Setoguchi, H. Masuda, and Y. Nojima, “Performance of
decomposition-based many-objective algorithms strongly depends on Pareto
front shapes,” IEEE TEVC 2017.

MOEA/D-PBI
5\ M

Pareto front Weight vector




Best algorithm percentage for each test problems with 3, 5, 8 and 10

objectives: IGD-based comparison results with randomly generated
100,000 reference points.

Algorithm | DTLZ1-4 | WFGL-9 | WU %ﬁﬁsg
NSGA-III 6.25 16.67 12.50

0-DEA 18.75 44.44

MOEADD | 6250 1111
MOEAD-PBI | 12.50 5.56
MOEAD-Tch | 0.00 5.56
MOEA/D-WS | 0.00 0.00
MOEAD-IPBI| _ 0.00 0.00

NSGA-II 00 16.67

[Ishibuchi et al. IEEE CIM 2022]

NSGA-Il outperforms many-objective algorithms on many-
objective Minus-DTLZ problems




Difficulties in
Fair Performance Comparison of Evolutionary
Multi-Objective Optimization Algorithms

(5) Choice of Test Problems

Performance comparison results depend on the choice of test
problems. It may be needed to use a wide variety of test
problems including realistic test problems.

R. Tanabe and H. Ishibuchi, “An easy-to-use real-world multi-objective optimization
problem suite,” Applied Soft Computing, vol. 89, April 2020.



Recent Development: Proposal of Real-World Problem Sets

[1] Tanabe, R., Ishibuchi, H.: An easy-to-use real-world multi-objective
optimization problem suite. Applied Soft Computing, Article 106078 (2020).

[2] He, C., Tian, Y., Wang, H., Jin, Y.: A repository of real-world datasets for data-
driven evolutionary multiobjective optimization. Complex & Intelligent Systems
6, 189-197 (2020).

[3] Kumar, A., Wu, G., Ali, M. Z., Luo, Q., Mallipeddi, R., Suganthan, P. N., Das, S.:
A benchmark-suite of real-world constrained multi-objective optimization
problems and some baseline results. Swarm and Evolutionary Computation 67,
Article 100961 (2021).

Some examples of Irregular Pareto Fronts from [2].

Fig.3 The approximate POF of DDMOP2 Fig.4 The approximate POF of DDMOP3 Fig.5 The approximate POF of DDMOP5
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Some examples of Pareto Fronts from [2].

Fig.3 The approximate POF of DDMOP2 Fig.4 The approximate POF of DDMOP3 Fig.5 The approximate POF of DDMOP3

[1] 16 RE problems: Tanabe, R., Ishibuchi, H.: An easy-to-use real-world multi-objective
optimization problem suite. Applied Soft Computing, 106078 (2020).

[2] 7 DDMOP problems: He, C., Tian, Y., Wang, H., Jin, Y.: A repository of real-world datasets
for data-driven evolutionary multiobjective optimization. Complex & Intelligent Systems 6, 189-

197 (2020).

[3] 50 RCM problems: Kumar, A., Wu, G., Ali, M. Z., Luo, Q., Mallipeddi, R., Suganthan, P. N.,
Das, S.: A benchmark-suite of real-world constrained multi-objective optimization problems

and some baseline results. Swarm and Evolutionary Computation 67, 100961 (2021).
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[1] 16 RE problems: Tanabe, R., Ishibuchi, H.: An easy-to-use real-world multi-objective
optimization problem suite. Applied Soft Computing, 106078 (2020).

[2] 7 DDMOP problems: He, C., Tian, Y., Wang, H., Jin, Y.: A repository of real-world datasets
for data-driven evolutionary multiobjective optimization. Complex & Intelligent Systems 6, 189-

197 (2020).

[3] 50 RCM problems: Kumar, A., Wu, G., Ali, M. Z., Luo, Q., Mallipeddi, R., Suganthan, P. N.,
Das, S.: A benchmark-suite of real-world constrained multi-objective optimization problems

and some baseline results. Swarm and Evolutionary Computation 67, 100961 (2021).



Comparison Results on DTLZ and Real-world Problems

1: NSGA-II 3: SMS-EMOA & HypE 5: MOEA/DD 7: SparseEA 9: R2ZHCA-EMOA
2: MOEA/D-PBI  4: NSGA-III 6: RVEA 8: DEA-GNG 10: PREA
DTLZ Real-World Problems (RE)
=10} Worst = 10f
<
~ 8} ez 8}
h 6 S 6f
< 4]
B 4 L § 4 L
Z 2t Z 2t
0 Best 0
1 2 3 4 5 6 7 8 910 1 2 3 45 6 7 8 910
_;.é ol Real-World Problems (DDMOP) Worst _;; Lok Real-World Problems (RCM)
~ 8 ez 8t
%ﬁ 6 %) 6t
s 4 s 4
< 27 < 27
0 Best 0

1 2 3 4 5 6 7 8 910
Algorithm

1 2 3 4 5 6 7 8 9 10

Algorithm

Totally different comparison results of ten EMO algorithms
between the test problem DTLZ and the real-world problems

H. Ishibuchi, Y. Nan, and L. M. Pang, “Performance evaluation of multi-objective
evolutionary algorithms using artificial and real-world problems,” Proc. EMO 20235.
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[1] 16 RE problems: Tanabe, R., Ishibuchi, H.: An easy-to-use real-world multi-objective
optimization problem suite. Applied Soft Computing, 106078 (2020).

[2] 7 DDMOP problems: He, C., Tian, Y., Wang, H., Jin, Y.: A repository of real-world datasets
for data-driven evolutionary multiobjective optimization. Complex & Intelligent Systems 6, 189-

197 (2020).

[3] 50 RCM problems: Kumar, A., Wu, G., Ali, M. Z., Luo, Q., Mallipeddi, R., Suganthan, P. N.,
Das, S.: A benchmark-suite of real-world constrained multi-objective optimization problems

and some baseline results. Swarm and Evolutionary Computation 67, 100961 (2021).



Suggestions:

(i) To focus on a class of problems (not all problems), and to
demonstrate the usefulness of the proposed algorithm on
that class of problems.

(i) To design a general robust and flexible framework which
can be easily modified for different problems, and
demonstrate its usefulness on various problems.



Conclusion:

Fair performance comparison of EMO algorithms is difficult.
We can easily obtain clearly different comparison results.

Today’s Contents

(0) Visual Comparison

(1) Specification of Termination Condition

(2) Specification of Population Size

(3) Choice of Performance Indicators (e.g., HV, IGD)

(4) Setting in Performance Indicators (e.g., reference point)
(5) Choice of Test Problems

This Talk is mainly based on my recent paper:

Hisao Ishibuchi, Lie Meng Pang, and Ke Shang, “Difficulties in Fair
Performance Comparison of Multi-Objective Evolutionary Algorithms”
IEEE Computational Intelligence Magazine (February 2022)







Solution Selection in Our Computational Experiment

A simple distance-based subset selection in [13].
(i) Selection of the first solution: An extreme solution.
(i) Selection of the others: The most distant solution from the selected ones.

[13] H. K. Singh, K. S. Bhattacharjee, and T. Ray, “Distance-based subset selection for
benchmarking in evolutionary multi/many-objective optimization” IEEE TEVC (2019).

For further discussions on solution selection, see

[14] H. Ishibuchi, L. M. Pang, and K. Shang, "Solution subset selection for final
decision making in evolutionary multi-objective optimization" arXiv (2020).



Experimental Results (NSGA-II)

(b) NSGA-II on Minus-DTLZ2.

(a) NSGA-II on DTLZ2.



Experimental Results (MOEA/D)

(b) MOEA/D on Minus-DTLZ.2.

(a) MOEA/D on DTLZ2.



Experimental Results (SMS-EMOA)

(b) SMS-EMOA on Minus-DTLZ2.

(a) SMS-EMOA on DTLZ2.



