

NEUROEVOLUTION LANDSCAPES AND TRAJECTORIES

Collaborators

Jason Adair, Katherine Malan, Nuno Rodrigues, Stefano Sarti, Sara Silva, Leonardo Vanneschi, Nadarajen Veerapen Gabriela Ochoa

UNIVERSITY of STIRLING

UNIVERSITY of STIRLING

MOTIVATION

Visualisation & Analysis Tools

Increased Understanding (Explainability) Informed Algorithm Selection & Configuration

OUTLINE

WHAT IS A (COMPLEX) NETWORK

https://mathworld.wolfram.com/WeaklyRegularGraph.html

Graph Mathematical Object

Behind each complex system, there is an intricate network that encodes the interactions between the system's components. Albert-László Barabási, Network Science

NETWORK VISUALISATION

Art of choosing an appropriate representation that is *aesthetically pleasing* and highlights important *structural properties*

https://kateto.net/network-visualization

Petersen graph

Node-edge diagram graph layouts

FORCE-DIRECTED GRAPH LAYOUT ALGORITHMS

Aesthetic criteria

0

- Vertices are evenly distributed
- The number of edge crossings is minimised
 - The lengths of edges are approximately uniform
- Inherent symmetries in the graph are respected

Fruchterman-Reingold

Kamada–Kawai (organic)

Reingold-Tilford (trees)

Graph Layout

Many Algorithms

Some are simple: circular, star, grid, random.

Others optimise the position of nodes based on different characteristics of the graph.

NETWORK METRICS

Distance

• Diameter

Average shortest path

Topology

Degree distribution

• Mean degree, Assortativity, disparity, centrality

Cohesion

Clustering coefficientCommunity structure

LOCAL OPTIMA NETWORKS (LONS)

FITNESS LANDSCAPES

(S, N, f)

Neighbourhood Structure

Biology, Computational Chemistry Evolutionary Computation & Metaheuristics Machine Learning

> Multimodality Ruggedness Deceptivenes Neutrality

> > 11

2-d slice, (9-d) landscape in Evol. Robotics (Barnet, 2002)

WHAT IS A FUNNEL?

🗲 Х

Protein Folding

T. Splettstoesser www.scistyle.com

LOCAL OPTIMA NETWORKS (LONS)

P. K. Doye. The network topology of a potential energy landscape: a static scale-free network. *Physical Review Letter*, 2002.

G. Ochoa, M. Tomassini, S. Verel, and C. Darabos. A study of NK landscapes' basins and local optima networks. GECCO 2008

Nodes - local optima according to a hillclimbing heuristic

Edges - transitions between optima (basin, escape, crossover)

Characterising Funnels with LONs

Global minimum MLONS
 Sub-optimal sink
 Local minimum in optimal funnel
 Local minimum in sub-optimal funnel
 Monotonic edge

Monotonic Sequence: a descending sequence of adjacent minima

Funnel: the aggregation of all monotonic sequences ending at the same point (or sink).

TRAVELLING SALESMAN (TSP)

Sampling and constructing LONs with escape edges

Algorithm 1 ILS sampling $L \leftarrow \{\}; E \leftarrow \{\}$ (initialise LON data)repeat $s_0 \leftarrow$ RandomInitialSolution $s^* \leftarrow$ HillClimber (s_0) $L \leftarrow L \cup \{s^*\}$ (record LON data)repeat $s' \leftarrow$ RandomMutation (s^*) $s'^* \leftarrow$ HillClimber(s')if $f(s'^*) \leq f(s^*)$ then $L \leftarrow L \cup \{s'^*\}$ (record LON data) $E \leftarrow E \cup \{(s^*, s'^*)\}$ (record LON data) $s^* \leftarrow s'^*$ end if

until ILS termination condition is met until sampling termination condition is met

Chained Lin-Kernighan

(Martin, Otto, Felten, 1992)

- Form of Iterated Local Search
- Diversification & Intensification

Nodes: LK local optima Edges: double-bridge escapes

A Chained-LK run on instance lin318 318 points, drilling application

TSP INSTANCES

c755 Clustered Cities Funnels: 1, Success: 100% E755 Uniform Cities Funnels: 4, Success: 13% att532 (cities in the US) Funnels: 2, Success: 44%

Mapping the global structure of TSP fitness landscapes G Ochoa, N Veerapen (2018) Journal of Heuristics

LONS FOR NEURAL ARCHITECTURE SEARCH

DEEP CNN ARCHITECTURE

A classic convolutional NN architecture

- Total of 16 layers with weights
- Over 130 Million weights!
- 5 blocks: convolution layers follow ed by a max-pooling layer
- Resolution halved after each

VGG: Visual Geometry Group Karen Simonyan and Andrew Zisserman University of Oxford, 2014 Winner of the Visual Recognition Challenge

NEURAL ARCHITECTURE SEARCH (NAS)

- Use of search heuristics to optimize the topology of deep neural networks
- Has produced models that surpass the performance of huma-designed models
- Formulated as a discrete optimisation problem.

 $A^* = \operatorname*{argmax}_{A \in \mathring{A}} \operatorname{Acc}(A)$

ALTERNATIVE NAS SEARCH SPACES

Two cells: Normal & Reduction

Cell (Block) Search Space

Chain Structure

Multi-branch Structure

EXAMPLE OF SEARCH PROGRESS

E. Real etal (2017) Large-scale evolution of image classifiers. International Conference on Machine Learning - (ICML'17)

CELL BASED TABULAR BENCHMARK

Dong, X. et. al. (2021) NATS-Bench: Benchmarking NAS algorithms for architecture topology and size. IEEE Trans. Pattern Analysis and Machine Intelligence

f(a) validation accuracy

• Size of the search space is $5^6 = 15, 625$

G Ochoa, N Veerapen (2022). Neural Architecture Search: A Visual Analysis. Parallel Problem Solving from Nature – PPSN XVII. PPSN 2022.

IMAGE CLASSIFICATION DATASETS

CIFAR10, CIFAR100 60,000 images, 10 & 100 categories

airplane	1	the second	1	X	*	1	2	Y	-	8
automobile					-	The second			1.0	*
bird	S	5	2			A	1	N.	1	4
cat	1		1	Si.			Z.	Å.	No.	1
deer	1	48	X	R	Ĩ	Y	Ŷ	N.	1	
dog	1	1	-		1			N [®]	1	N.
frog	-	19	-		27			5		500
horse	- Adv	T.	A	2	67	1 TAB	-	20		N
ship	-		dirit	-	MA		2	12	1	
truck	ALL NO.		1	R.				1		dea

ImageNet ~ 14 Million images 1,000 categories ImageNet-16-120 reduced res, 120 categories

https://cs.stanford.edu/people/karpathy/cnnembed/

FITNESS DISTANCE CORRELATION

Horizontal axes -Hamming distance to the global optimum, The Spearman correlation coefficients with p-value are also shown.

GENOTYPE MAPS

Genotype maps of the best 1% (top), and worst 1% (bottom) performing cells, sorted according to f_avg.

Each line visualises a cell. Positions are coloured according to the respective operation.

LOCAL OPTIMA NETWORKS

Local optima networks (LONs) for all datasets and the two fitness functions.

The number of nodes *n* and edges *e* are indicated as (*n*, *e*).

Size of nodes: proportional to incoming degree

(d) cifar10, f_{avg} , (10,18) (e) cifar100, f_{avg} , (18,27) (f) ImageNet, f_{avg} , (28,98)

Distribution of average test accuracy at the end of the run Progression of average test accuracy

For each

strategy

5 Search Strategies

- Two versions of Iterated Local Search (ILS) (order shuffle) order to explore neighbours •
- Random Search, Regularized Evolutionary Algorithm, Reinforcement Learning ٠

SEARCH STRATEGIES

INSIGHTS FROM LONS IN NAS

- NAS landscapes are rugged (multi-modal)
- Low number of local optima, from which it is not difficult to escape
- Reducing noise reduces the number of local optima
- ILS can outperform more elaborate evolutionary and reinforcement learning methods!
- No crossover in state-of-the-art EA method!

SEARCH TRAJECTORY NETWORKS

MOTIVATION FOR STNS

Few tools for studying/contrasting behaviour

Typical convergence plot – Only shows dynamics on the objective space

STN DEFINITIONS

Representative Solution	 Solution that represents status of the search process 				
Location	 Subset of solutions, partition of the search space 				
Nodes	 Locations of representative solutions 				
Edges	 Directed, connect two consecutive locations 				
STN	• Directed graph STN = (N, E)				

QUADRIC, D = 10

D = 2

Unimodal function

- Locations visited by PSO
- \rightarrow Search transitions by PSO
- Locations visited by DE
- \rightarrow Search transitions by DE
- Locations visited by both algorithms
- Locations at the start of runs
- Locations at the end of runs
- Location of the global optimum

- **PSO** Particle Swarm Optimisation
- **DE** Differential Evolution

	PSO	DE
Nodes	93	154
Path length	9.2	15.1
Success	100%	100%

Michalewicz, D = 5

Multimodal, large plateaus close to the global optimum

- Locations visited by PSO
- \rightarrow Search transitions by PSO
- Locations visited by DE
- \rightarrow Search transitions by DE
- Locations visited by both algorithms
- Locations at the start of runs
- Locations at the end of runs
- Location of the global optimum

- **PSO** Particle Swarm Optimisation
- **DE** Differential Evolution

	PSO	DE
Nodes	76	61
Path length	7.5	7.0
Success	40%	80%

NEUROEVOLUTION

Evolve weights, fixed topology

Evolve topology, learn weights with gradient-based methods

 $\langle \langle \rangle$

Ο

Evolve both weights and topology

NEAT – Neuroevolution of Augmented Topologies

Genome (Genotype)

	de Node 1 Node 2 Node 3 Sensor Sensor Sensor							
Connect. Genes	In 1 Out 4 Weight 0.7 Enabled Innov 1	In 2 Out 4 Weight-0.5 DISABLED Innov 2	In 3 Out 4 Weight 0.5 Enabled Innov 3	In 2 Out 5 Weight 0.2 Enabled Innov 4	In 5 Out 4 Weight 0.4 Enabled Innov 5	In 1 Out 5 Weight 0.6 Enabled Innov 6	In 4 Out 5 Weight 0.6 Enabled Innov 11	

Network (Phenotype)

(Stanley & Miikkulainen, 2002)

NEAT STNs Neuroevolution of NEAT Augmented Stanley, Miikkulainen, 2002 **Topologies** Phenotype Genotype Genome Key: 412 itness: 3.280683308049253 0 DefaultNodeGene(key=0, bias=-0.2861668293207347, response=1.0, activation=sigmoid, aggregation=sum) 56 DefaultNodeGene(key=56, bias-0.652515409456019, response-1.0, activation-sigmoid, aggregation-sum DefaultConnectionGene(key=(-2, 0), weight=0.48152124882802627, enabled=False) weight: 1.2544 DefaultConnectionGene(key=(-2, 56), weight=1.2544114116043408, enabled=True) DefaultConnectionGene(key=(-1, 0), weight=0.1971913521130632, enabled=True) weight: -1.7652 DefaultConnectionGene(key=(-1, 56), weight=-1.7652938515462782, enabled=True) DefaultConnectionGene(key=(56, 0), weight=0.39375489658630747, enabled=True) Node 56 Node Bias -1 Inputs [(-2, 1), (-1, -2)] bias: -0.6525 Variants Novelty Search Node 0 Node Bias ∅ Inputs [(-1, 0), (56, 0)]* Navigation Crossover NN Representation: [(56, -1, [(-2, 1)] + (-1, -2)]); (0, 0, [(-1, 0), (56, 0)])] Fitness (c): 32807 weight: 0.3937 b'\x80\x03]q\x00(K8J\xff\xff\xff\xff]q\x01(J\xfe\xff (ector RN (with .dumps): ff\xffK\x01\x86q\x02J\xff\xff\xff\xffJ\xfe\xff\xff\; No Crossover • Deceptive ff\x86q\x03e\x87q\x04K\x00K\x00]q\x05(J\xff\xff\xff\ ffK\x00\x86q\x06K8K\x00\x86q\x07e\x87q\x08e Algorithm Key problems bias: -0.2861 Inputs Outputs Input Node Hidden Node

Output Node

S Sarti, JAdair, G Ochoa (2022) Recombination and Novelty in Neuroevolution: A Visual Analysis. SN COMPUT. SCI. 3, 185

enchmarks

 \mathbf{m}

Maze

Mapping NEAT genotypes to locations **Object Serialisation (pickle.dumps)**

38

weight: 0.1971

NOVELTY SEARCH

(Lehman Stanley, ECJ 2011)

Many different genomes produce the same behaviour

Genetic diversity is not sufficient in Neuroevolution

Idea: directly reward a diversity of behaviours

MAZE NAVIGATION

NEAT PERFORMANCE CURVES

Average best fitness (30 runs) generations for the four NEAT variants

(a) Medium Maze Domain

(b) Hard Maze Domain

(c) Novelty, hard map

End

NEAT STNs

Merged models with and without Xover - 9 runs for each strategy

- Size: number of compressed nodes

(d) Fitness, hard map

STNS IN BEHAVIOUR SPACE

Behaviour in the maze domain is simply the (x, y) coordinate of the agent at the end of simulation

Sarti, S., Adair, J., Ochoa, G. (2022) Neuroevolution Trajectory Networks of the Behaviour Space. Applications of Evolutionary Computation. EvoApps 2022.

INSIGHTS FROM STNS IN NEAT

- So far applied only to early versions of NEAT with direct encoding
- Genotype STNs do not scale well to complex problems
- Phenotype/Behaviour space STNs can be useful
- Confirms that Novelty search is useful in deceptive and neutral domains
- Crossover does not seem to be useful!

Problem

- Model
- Instance data

• Search algorithm

Objective function

Optimisation Process

- Illuminated landscape
- Illuminated trajectories
- Better understanding

Conclusion

An accessible and visual approach to understanding problems & methods

LON Resources

- lonmaps.com
- <u>https://github.com/gabro8</u> <u>a/LONs-Numerical</u>

STN Resources

- <u>https://github.com/gabro8a/S</u> <u>TNs</u>
- Web Application http://45.32.184.82

Future work

Using knowledge to select/configure algorithms

Build up software tools!

REFERENCES

LONs for NAS

- N M Rodrigues, K M Malan, G Ochoa, L Vanneschi, S Silva (2022) Fitness landscape analysis of convolutional neural network architectures for image classification, Information Sciences, Vol. 609, pp. 711-726.
- G Ochoa, N Veerapen (2022). Neural Architecture Search: A Visual Analysis. Parallel Problem Solving from Nature PPSN XVII. PPSN 2022. Lecture Notes in Computer Science, vol 13398. Springer, Cham

STNs for NEAT

- S Sarti, JAdair, G Ochoa (2022) Recombination and Novelty in Neuroevolution: A Visual Analysis. SN COMPUT. SCI. 3, 185
- Sarti, S., Adair, J., Ochoa, G. (2022) Neuroevolution Trajectory Networks of the Behaviour Space. Applications of Evolutionary Computation. EvoApps 2022. Lecture Notes in Computer Science, vol 13224. Springer.
- S Sarti, G Ochoa (2021) A NEAT Visualisation of Neuroevolution Trajectories. Applications of Evolutionary Computation EvoApps 2021. Lecture Notes in Computer Science, vol 12694. Springer, Cham.