
NEUROEVOLUTION LANDSCAPES AND TRAJECTORIES
Gabriela OchoaCollaborators

Jason Adair, Katherine 
Malan, Nuno Rodrigues, 
Stefano Sarti,  Sara Silva, 
Leonardo Vanneschi, 
Nadarajen Veerapen

JoLEA



2



MOTIVATION

Visualisation & 
Analysis Tools

Increased 
Understanding 
(Explainability)

Informed 
Algorithm 

Selection & 
Configuration
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OUTLINE

Complex Networks

G. Theory ~1700,  ~2000

Local Optima Networks 
(LONs)

2008, NAS 2022

Search Trajectory 
Networks (STNs)

2020, NE  2021, 2022
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WHAT IS A (COMPLEX) NETWORK

Behind each complex system, there is an intricate network that encodes the 
interactions between the system’s components. Albert-László Barabási, Network Science

Graph  
Mathematical Object 

https://mathworld.wolfram.com/WeaklyRegularGraph.htm l

Network  
Data Driven Instantiation 

Protein Homology 
32,727 Proteins 
1.2 M Edges

http://www.visualcomplexity.com/
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https://mathworld.wolfram.com/WeaklyRegularGraph.htm
http://www.visualcomplexity.com/


NETWORK VISUALISATION
Art of choosing an appropriate 
representation that is 
aesthetically pleasing and 
highlights important structural 
properties 

Petersen graph   

Node-edge diagram graph layouts

https://kateto.net/network-visualization
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https://kateto.net/network-visualization


Aesthetic criteria
○ Vertices are evenly distributed
○ The number of edge crossings is minimised
○ The lengths of edges are approximately uniform 
○ Inherent symmetries in the graph are respected

FORCE-DIRECTED GRAPH LAYOUT ALGORITHMS

7Fruchterman-Reingold Kamada–Kawai (organic) Reingold-Tilford (trees)
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Source https://www.data-imaginist.com/2017/ggraph-introduction-layouts/

Many Algorithms

Some are simple:  
circular, star, grid, 
random.

Others optimise the 
position of nodes 
based on different 
characteristics of the 
graph. 

Graph 
Layout

https://www.data-imaginist.com/2017/ggraph-introduction-layouts/


NETWORK METRICS
Distance
• Diameter
• Average shortest path

Topology
• Degree distribution
• Mean degree, Assortativity, disparity, centrality 

Cohesion
• Clustering coefficient
• Community structure
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LOCAL OPTIMA NETWORKS (LONS) 
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FITNESS LANDSCAPES

Search Space

Neighbourhood 
Structure

Fitness Function
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Biology, Computational Chemistry
Evolutionary Computation & Metaheuristics
Machine Learning

(S, N, f)

Multimodality

Ruggedness

Deceptivenes

Neutrality 

2-d slice, (9-d) landscape in Evol. Robotics (Barnet, 2002)



WHAT IS A FUNNEL?

T.  Splettstoesser
www.scistyle.com

Protein FoldingUnimodal Multimodal Funnel

((Kerschke et al., GECCO 2015)
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http://www.scistyle.com/


LOCAL OPTIMA NETWORKS (LONS)
Nodes - local optima according to a hill-
climbing heuristic

Edges - transitions between optima 
(basin, escape, crossover)

P. K. Doye. The network topology of a potential energy landscape: a static scale-free 
network. Physical Review Letter, 2002.

G. Ochoa, M. Tomassini, S. Verel, and C. Darabos. A study of NK landscapes' basins and 
local optima networks. GECCO 2008 13
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Characterising Funnels with LONs
Global minimum
Sub-optimal sink
Local minimum in optimal funnel
Local minimum in sub-optimal funnel
Monotonic edge

Monotonic Sequence: a descending 
sequence of adjacent minima

Funnel: the aggregation of all 
monotonic sequences ending at the 
same point (or sink). 

14

MLONs



TRAVELLING SALESMAN (TSP)
Sampling and constructing LONs with escape edges

Chained Lin-Kernighan 
(Martin, Otto, Felten, 1992)

● Form of Iterated Local Search
● Diversification & Intensification

Nodes: LK local optima
Edges: double-bridge escapes

2-exchange         double-bridge
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324 Genetic Programming and Evolvable Machines (2018) 19:317–349

1 3

2.0 from the SIR repository [5].1 For the sake of simplicity, we do not consider the 
test cases that do not have all 12 input parameters. This effectively reduces the num-
ber of test cases from 1608 to 1578. Array indices are not checked in the original pro-
gram. We introduce a check to accept valid indices and generate an arbitrary output 
value for invalid indices. This prevents the program from crashing and improves the 
efficiency of the sampling process, which is described in the next subsection.

4  Genetic improvement sampling procedures

A full enumeration of the search space, or even of the local optima, for the two 
programs is unmanageable. Therefore a sample of high-quality local optima in the 
search space is generated. Since we only consider mutations of comparison and 
Boolean operators, a simple representation for a solution is a vector of integers. 
Consequently, any metaheuristic could be used to explore the search space—pro-
vided that it also generates local optima for the LONs. Here we consider Iterated 
Local Search and a genetic algorithm hybridised with local search.

4.1  Iterated local search

Iterated Local Search, or ILS (Algorithm  1), starts from a locally-optimal solu-
tion and then alternates between a random mutation and a best-improvement hill-
climber. The termination criterion is a fixed number of iterations. At each step, only 
non-worsening local minima are accepted. The fitness, or objective value, of a solu-
tion is the number of test cases that it fails. Both the hill-climber and the mutation 
consider the first degree or 1-move neighbourhood, i.e., neighbouring solutions only 
differ by a single element. To build the networks, the ILS is run 1000 times and the 
stopping criterion for each run is 10000 iterations.

1 http://sir.unl.edu/conte nt/sir.php.



A Chained-LK 
run on instance 

lin318
318 points, 

drilling 
application
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c755 Clustered Cities
Funnels: 1, Success: 100%

E755 Uniform Cities
Funnels: 4, Success: 13%

Mapping the global structure of TSP fitness landscapes
G Ochoa, N Veerapen (2018)  Journal of Heuristics 
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att532 (cities in the US)
Funnels: 2, Success: 44%

TSP INSTANCES 



LONS FOR NEURAL ARCHITECTURE SEARCH

18
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THE NEURAL 
NETWORK ZOO

“With new neural network architectures 
popping up every now and then, it’s hard to 
keep track of them all.” Fjodor Van Veen
https://www.asimovinstitute.org/neural-network-zoo/

https://www.asimovinstitute.org/neural-network-zoo/
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DEEP CNN 
ARCHITECTURE

A classic convolutional NN architecture
• Total of 16 layers with weights
• Over 130 Million weights!
• 5 blocks: convolution layers follow ed 

by a max-pooling layer
• Resolution halved after each block

VGG16

VGG: Visual Geometry Group
Karen Simonyan and Andrew Zisserman
University of Oxford, 2014
Winner of the Visual Recognition Challenge



NEURAL ARCHITECTURE SEARCH (NAS)
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Search 
Space

Search 
Strategy

Performance 
Estimation 
Strategy

• Use of search heuristics to optimize the topology of deep 
neural networks

• Has produced models that surpass the performance of 
huma-designed models

• Formulated as a discrete optimisation problem.  



ALTERNATIVE NAS SEARCH SPACES
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Chain 
Structure

Multi-branch 
Structure Cell  (Block) Search Space 

Two cells: 
Normal & 
Reduction 



EXAMPLE OF SEARCH PROGRESS

23
E. Real etal (2017) Large-scale evolution of image classifiers. 
International Conference on Machine Learning - (ICML'17)



CELL BASED TABULAR BENCHMARK

Tabular benchmark  
(NATS-Bench - Image 

classification)

Cell-based search space

Fitness Landscape Analysis 
(DOS, FDC, LONS)

Impact of noise in 
performance estimation
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           x Nimage conv cell
Residual 

block 
(stride = 2)

           x Ncell
Residual 

block 
(stride = 2)

           x Ncell
global avg. 

pool

Fixed macro-skeleton

Discrete optimisation problem 
max a∈ A f(a) 
f(a) validation accuracy 

Cell (DAG) 

Genotype

• DAG with 6 edges. 
• Each edge can be one of 

5 operations
• Size of the search space is 

56 = 15, 625

Dong, X. et. al. (2021) NATS-Bench: Benchmarking NAS algorithms for architecture 
topology and size. IEEE Trans. Pattern Analysis and Machine Intelligence

G Ochoa, N Veerapen (2022). Neural Architecture Search: A Visual Analysis. 
Parallel Problem Solving from Nature – PPSN XVII. PPSN 2022. 



IMAGE CLASSIFICATION DATASETS

25https://cs.stanford.edu/people/karpathy/cnnembed/

CIFAR10, CIFAR100  60,000 images, 10 &100 categories ImageNet  ~ 14 Million images  1,000 categories
ImageNet-16-120   reduced res, 120 categories

https://www.cs.toronto.edu/~kriz/cifar.html

https://cs.stanford.edu/people/karpathy/cnnembed/
https://www.cs.toronto.edu/~kriz/cifar.html


FITNESS DISTANCE CORRELATION
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Horizontal axes -Hamming distance to the global optimum, 
The Spearman correlation coefficients with p-value are also shown.



GENOTYPE MAPS
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Genotype maps of the best 1% (top), 
and worst 1% (bottom) performing
cells, sorted according to f_avg. 

Each line visualises a cell. Positions are 
coloured according to the respective 
operation.
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LOCAL OPTIMA 
NETWORKS

Local optima networks (LONs) for 
all datasets and the two fitness 
functions.

The number of nodes n and 
edges e are indicated as (n, e).

Size of nodes: proportional to 
incoming degree



SEARCH STRATEGIES
29

Progression of average test accuracy.

5 Search Strategies 
• Two versions of Iterated Local Search (ILS) (order, shuffle) – order to explore neighbours
• Random Search,  Regularized Evolutionary Algorithm, Reinforcement Learning

Distribution of average test accuracy at the end of the run.

30 Runs
For each 
strategy 



INSIGHTS FROM LONS IN NAS

•NAS landscapes are rugged (multi-modal)
• Low number of local optima, from which it is not 

difficult to escape
• Reducing noise reduces the number of local optima 
• ILS can outperform more elaborate evolutionary and 

reinforcement learning methods! 
•No crossover in state-of-the-art EA method!

30



SEARCH TRAJECTORY NETWORKS
31



MOTIVATION FOR STNS

Typical convergence plot – Only shows 
dynamics on the objective space

Few tools for studying/contrasting behaviour

32

Generalise 
LONs

Algorithms 
with no 
Local 

Search

Population-
based 

Algorithms



STN DEFINITIONS

• Solution that represents status of the search processRepresentative Solution

• Subset of solutions, partition of the search spaceLocation

• Locations of representative solutionsNodes

• Directed, connect two consecutive locationsEdges

• Directed graph STN = (N, E)STN
33



MAPPING SOLUTIONS TO 
LOCATIONS

• [12.2029055, 
1.570796323, 
1.284991569]

Solution

• Precision (0.1)
• [12.2, 1.6, 1.3]

Rounding

• [122, 16, 13]

Integer

• ID of node
• 122.16.13

Concatenate

34

Solution space 
is divided into 
hypercubes 

Example  D = 3



QUADRIC, D = 10

D = 2

35

Unimodal function

PSO – Particle Swarm 
Optimisation

DE – Differential Evolution

PSO DE
Nodes 93 154

Path length 9.2 15.1

Success 100% 100%
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Michalewicz, D = 5

D = 2

D = 3

Multimodal, large 
plateaus close to the 
global optimum

PSO – Particle Swarm 
Optimisation 

DE – Differential Evolution

PSO DE
Nodes 76 61
Path length 7.5 7.0

Success 40% 80%



NEUROEVOLUTION

Evolve weights, fixed 
topology

Evolve topology, learn 
weights with gradient-based 

methods

Evolve both weights and 
topology

Evolve components, 
hyperparameters,  learning 

rules
37

NEAT – Neuroevolution of 
Augmented Topologies

(Stanley & Miikkulainen, 2002) 



NEAT STNS
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S Sarti, JAdair, G Ochoa (2022) Recombination 
and Novelty in Neuroevolution: A Visual Analysis.                    
SN COMPUT. SCI. 3, 185

Mapping NEAT genotypes to locations
Object Serialisation (pickle.dumps)

Be
nc

hm
a

rk
s • Maze 

Navigation
• Deceptive 

problems

A
lg

or
ith

m
 V

a
ria

nt
s • Novelty Search

• Crossover
• No Crossover

Neuroevolution of
Augmented 
Topologies



NOVELTY SEARCH

Many different genomes produce the same behaviour

Genetic diversity is not sufficient in Neuroevolution

Idea: directly reward a diversity of behaviours

39

(Lehman Stanley, ECJ 2011)



MAZE NAVIGATION 
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Virtual Robot

Fitness-based search

Novelty search

Crossover vs. no Crossover

Medium 
Maze

Hard Maze
Deceptive problem 

Goal

Start

Deceptive traps



NEAT PERFORMANCE CURVES
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Average best fitness (30 runs)  generations for the four NEAT variants



NEAT STNS
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Merged models with and without Xover
- 9 runs for each strategy
- Size: number of compressed nodes



STNS IN 
BEHAVIOUR
SPACE
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Novelty, Medium Fitness, Medium

Novelty, Hard Fitness, Hard

Behaviour in the maze 
domain is simply the (x, y)  
coordinate of the agent 
at the end of simulation

Sarti, S., Adair, J., Ochoa, G. (2022) Neuroevolution Trajectory Networks of the Behaviour Space.  
Applications of Evolutionary Computation. EvoApps 2022. 



INSIGHTS FROM STNS IN NEAT

• So far applied only to early versions of NEAT with direct 
encoding 
•Genotype STNs do not scale well to complex problems
• Phenotype/Behaviour space STNs can be useful
•Confirms that Novelty search is useful in deceptive and 

neutral domains
•Crossover does not seem to be useful!
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Future work
Using knowledge to 
select/configure algorithms

Build up software tools!
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Conclusion

An accessible and visual 
approach to understanding 
problems  & methods

STN Resources 
• https://github.com/gabro8a/S

TNs

• Web Application 
http://45.32.184.82

LON Resources 
• lonmaps.com
• https://github.com/gabro8

a/LONs-Numerical

https://github.com/gabro8a/STNs
http://45.32.184.82/
http://lonmaps.com/publications/
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