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TUTORIAL

Next Generation Genetic Algorithms:
A User’s Guide and Tutorial

Handbook of Metaheuristics
Springer, 2019

Email me:

darrell.whitley@gmail.com

SUBJECT:  Tutorial
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INTELLIGENT LOCAL SEARCH: 

6

Intelligent
Iterated Local Search 
is a very powerful search strategy for
many combinatorial optimization problems.

Tabu Search

Variable Neighborhood Search

Efficient Annealing

Generalized Pattern Search

Nelder-Mead
.



INTELLIGENT LOCAL SEARCH: 
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Stochastic Local Search

Hoos and Stützle



BLIND LOCAL SEARCH: 

8

UNINTELLIGENT LOCAL SEARCH:

BLIND RANDOM LOCAL SEARCH

IS RARELY
A COMPETITIVE SEARCH STRATEGY.



RANDOM MUTATION IS 
OBSOLETE AND USELESS
FOR MANY PROBLEM CLASSES:
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MAX-SAT
NK-Landscapes
All k-bounded Boolean/Pseudo Boolean functions
Traveling Salesman Problem
Graph Coloring
Many Constraint Satisfaction Problems



WHAT DOES EVOLUTIONARY COMPUTATION
HAVE TO OFFER TO THE LARGER FIELD OF
INEXACT METHODS
FOR COMBINATORIAL OPTIMIZATION?
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WHAT DOES EVOLUTIONARY COMPUTATION
HAVE TO OFFER TO THE LARGER FIELD OF

INEXACT METHODS
FOR COMBINATORIAL OPTIMIZATION?
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Recombination

Parallelism



SO WHAT CAN EVOLUTIONARY COMPUTATION
BRING TO THE TABLE?
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This isn’t about

Recombination versus Mutation.

It is really about

Intelligent Local Search versus
Unintelligent Local Search.



CROSSOVER CAN
DETERMINISTICALLY
“TUNNEL” BETWEEN OPTIMA
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P1
P2

recombine P1 and P2

We can often remove randomness from Crossover



TODAY,  I WILL EXPLAIN HOW
LOCAL OPTIMA ARE ARRANGED IN LATTICES
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P1
P2

recombine P1 and P2

We can often remove randomness from Crossover



APPLY INTELLIGENT LOCAL 
SEARCH BEFORE CROSSOVER.
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P1
P2

recombine P1 and P2

In some cases you can prove that recombination 
will not be as effective unless you do local search first.
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K-BOUNDED PSEUDO-BOOLEAN
FUNCTIONS
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K-BOUNDED PSEUDO-BOOLEAN FUNCTIONS:   
MAXSAT
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The location of Improving Moves can be computed on average in 
constant time.   Special versions of this are known from 1992.
A general proof is given by:   Whitley et al.  2013  AAAI.  

K-BOUNDED PSEUDO-BOOLEAN
FUNCTIONS



19

The worst case complexity is O(n) per move when m=O(n).  

PROOF SKETCH:  Create a function where variable xj appears 
in every subfunction.   

When xj is flipped,  the number of nonlinear interactions is O(n).

K-BOUNDED PSEUDO-BOOLEAN
FUNCTIONS
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The location of Improving Moves can be computed on average in 
constant time.    Whitley et al.  2013  AAAI.  

K-BOUNDED PSEUDO-BOOLEAN FUNCTIONS

SKETCH OF PROOF, AVERAGE CASE COMPLEXITY: 

Assume  m=O(n).
Flip each bit once.   The average number of interactions must be O(1).

Pick a constant C.
If a variable appears in less than C subfunctions,  no problem.
When that variable is flipped it has  O(1) interactions .

If a variable appears in more than C subfunctions,  
the variable becomes tabu after it is flipped.   
You must wait N/C flips before it can be flipped again.  

In practice,   we never observed repeating (oscillating) high cost bit flips.
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RANDOM MUTATION IS OBSOLETE.

K-BOUNDED PSEUDO-BOOLEAN
FUNCTIONS
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The MAXSAT community stopped using 
random blind local search 30 years ago (1992)
but they still call it “Blackbox.”

K-BOUNDED PSEUDO-BOOLEAN
FUNCTIONS
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IMPROVING MOVES IN FOURIER/WALSH SPACE

(Warning,  the notation is compressed.)



CONSTANT TIME
IMPROVING MOVES

24See Hoos and Stützle,  Stochastic Local Search, 2005



CONSTANT TIME IMPROVING MOVES
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IMPROVING_MOVE_LIST:  y6, y5

Flip 6,  which interacts with 3 and 8, UPDATE.

IMPROVING_MOVE_LIST:  y8, y5



BEST IMPROVING
AND NEXT IMPROVING MOVES

HAVE THE SAME COST (ALMOST ALWAYS)!
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This speeds up GSAT by 30X



WHAT ABOUT LOOKING 2 OR 3
OR 10 MOVES AHEAD?
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With Thanks to Francisco Chicano



WHAT ABOUT LOOKING 2 
OR MORE MOVES AHEAD?
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Assume you have taken all single bit flip  improving moves.

What happens when you flip bits 5 and 8 at the same time?



WHAT ABOUT LOOKING 2 
OR MORE MOVES AHEAD?

29

Assume you have taken all single bit flip  improving moves.

What happens when you flip bits 5 and 8 at the same time?

NOTHING.     There are no nonlinear coefficients involving 5 and 8. 



30Can be constructed heuristically or exactly.
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If two variables are not connected in the VIG, 
there can be no improving move.

Assume you have taken all of the improving single bit flips.

What happens if you flip 16 and 1 at the same time?   NOTHING.



WHAT ABOUT LOOKING 2 
OR MORE MOVES AHEAD?

fa(1,0,6)       fl(6,10,13)      fq(11,16,17)      fv(15,7,13)
fb(2,1,6)       fm(8,3,6)         fr(12,10,17)      fw(16,9,11)
fc(1,2,4)       fn(7,12,15)      fs(13,12,15)      fx(17,5,16)
fd(4,1,14)     fo(9,11,14)      ft(14,4,16)        fy(3,7,13)
fe(5,4,2)       fp(10,2,17)      fu(9,14,16)        fz(0,6,14)  

32



WHAT ABOUT LOOKING 2 
OR MORE MOVES AHEAD?

fa(1,0,6)       fl(6,10,13)      fq(11,16,17)      fv(15,7,13)
fb(2,1,6)       fm(8,3,6)         fr(12,10,17)      fw(16,9,11)
fc(1,2,4)       fn(7,12,15)      fs(13,12,15)      fx(17,5,16)
fd(4,1,14)     fo(9,11,14)      ft(14,4,16)        fy(3,7,13)
fe(5,4,2)       fp(10,2,17)      fu(9,14,16)        fz(0,6,14)  
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WHAT ABOUT LOOKING 2 
OR MORE MOVES AHEAD?

fa(1,0,6)       fl(6,10,13)      fq(11,16,17)      fv(15,7,13)
fb(2,1,6)       fm(8,3,6)         fr(12,10,17)      fw(16,9,11)
fc(1,2,4)       fn(7,12,15)      fs(13,12,15)      fx(17,5,16)
fd(4,1,14)     fo(9,11,14)      ft(14,4,16)        fy(3,7,13)
fe(5,4,2)       fp(10,2,17)      fu(9,14,16)        fz(0,6,14)  

0,6 0,14 1,0 1,2 1,4 1,6 1,14 2,4
2,5 2,6 2,10 2,17 3,6 3,7 3,8 3,13
4,5 4,14 4,16 5,16 5,17 6,8 6,10  6,13 
6,14  7,12 7,13 7,15 9,11 9,14 9,16 10,12
10,13 10,17 11,14 11,16 11,17 12,13 12,15 12,17
13,15 14,16 16,17

34
If the number of subfunctions is m=O(N)
The number of pairs must be linear
And less than m*2k



WHAT ABOUT LOOKING 3 
OR MORE MOVES AHEAD?

fa(1,0,6)       fl(6,10,13)      fq(11,16,17)      fv(15,7,13)
fb(2,1,6)       fm(8,3,6)         fr(12,10,17)      fw(16,9,11)
fc(1,2,4)       fn(7,12,15)      fs(13,12,15)      fx(17,5,16)
fd(4,1,14)     fo(9,11,14)      ft(14,4,16)        fy(3,7,13)
fe(5,4,2)       fp(10,2,17)      fu(9,14,16)        fz(0,6,14)  

35

There are approximately 3n moves (60)
NOT (n choose 3) = 816.



INTELLIGENT LOCAL SEARCH
LOOKING 2, 3, 4, 5, 6 BITS AHEAD
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Adjacent NK Landscape N=12,000, K=2 (k=3).    

seconds



INTELLIGENT LOCAL SEARCH
LOOKING 2, 3, 4, 5, 6 BITS AHEAD

37
N=12,000,  k=3.  For radius r = 6,  100% globally optimal.

seconds



K BOUNDED FUNCTIONS: MAXSAT

a: 1 -0 6       l: -6 10 13      q: -11 16 17      v: -15 -7 -13
b: 2 -1 6       m: 8 -3 6        r: 12 -10 17      w: 16 -9 -11
c: -1 2 4       n: 7 -12 -15    s: -13 -12 15     x: 17 -5 -16
d: -4 1 14     o: 9 11 14       t: 14 -4 16        y: -3 -7 13
e: -5 4 2       p: -10 -2 17     u: -9 14 16       z: 0 6 -14

38



WHAT ABOUT RECOMBINATION?

fa(1,0,6)       fl(6,10,13)      fq(11,16,17)      fv(15,7,13)
fb(2,1,6)       fm(8,3,6)         fr(12,10,17)      fw(16,9,11)
fc(1,2,4)       fn(7,12,15)      fs(13,12,15)      fx(17,5,16)
fd(4,1,14)     fo(9,11,14)      ft(14,4,16)        fy(3,7,13)
fe(5,4,2)       fp(10,2,17)      fu(9,14,16)        fz(0,6,14)

We could consider  an NK-Landspace

The  variables interactions are the same.

Note we have named the subfunctions:  a to z. 39



40LOCAL OPTIMUM       P1: 000000000000000000
LOCAL OPTIMUM       P2: 111100011101110110



THE RECOMBINATION GRAPH:
PARENT 1: 000000000000000000
PARENT 2: 111100011101110110

41
Delete vertices:   4, 5, 6, 10, 14, 17

q, o, u, w, x, t a, b, c, d, e, p, z l, m, n, r, s, v, y

17

5
4

14

10

6



THE RECOMBINATION GRAPH:
THE DECOMPOSED VIG.
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q, o, u, w, x, t a, b, c, d, e, p, z l, m, n, r, s, v, y

This decomposes the variables and the subfunctions.



THE RECOMBINATION GRAPH:
BE GREEDY

43

q, o, u, w, x, t a, b, c, d, e, p, z l, m, n, r, s, v, y

This decomposes the variables and the subfunctions.



THE RECOMBINATION GRAPH:
BE GREEDY

44

q, o, u, w, x, t a, b, c, d, e, p, z l, m, n, r, s, v, y

Which is Best?
P1 or P2?

This decomposes the variables and the subfunctions.



THE RECOMBINATION GRAPH:
BE GREEDY

45This decomposes the variables and the subfunctions.

q, o, u, w, x, t a, b, c, d, e, p, z l, m, n, r, s, v, y

Which is Best?
P1 or P2?

Which is Best?
P1 or P2?



THE RECOMBINATION GRAPH:
BE GREEDY

46Partition Crossover deterministically returns 
the best of 2q offspring.

q, o, u, w, x, t a, b, c, d, e, p, z l, m, n, r, s, v, y

Which is Best?
P1 or P2?

Which is Best?
P1 or P2?

Which is Best?
P1 or P2?
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PARTITION CROSSOVER AND LOCAL OPTIMA.

The Subspace Optimality Theorem:  

For any k-bounded pseudo-Boolean function, f:

If the parents are local optima,  
then all offspring are local optima 
in the largest hyperplane subspace 
that contains the two parents.  



WHAT DOES THE VIG
AND RECOMBINATION GRAPH LOOK LIKE
ON REAL WORLD PROBLEMS?

48
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THE VIG

N = 1,067,657
(Thanks to Wenxiang Chen)

THE
RECOMBINATION
GRAPH.
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DECOMPOSED EVALUATION
FOR MAXSAT

Crossover
returns the
Best of 
21087 offspring.

All offspring are
Local Optima
in this
subspace.
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(Thanks to Wenxiang Chen)

MORE MAXSAT
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MORE MAXSAT
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These subproblems can be solved by Dynamic Programming!

MORE MAXSAT

Thanks to
Francisco Chicano.

These 
subproblems 
have a tree 
decomposition 
with low width.
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PARTITION CROSSOVER AND LOCAL OPTIMA.

The Subspace Optimality Theorem:  

For any k-bounded pseudo-Boolean function, f:

If the parents are local optima,  
then all offspring are local optima 
in the largest hyperplane subspace 
that contains the two parents.  

TUNNELING BETWEEN OPTIMA in O(N) time.
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TUNNELING BETWEEN LOCAL OPTIMA.
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Adjacent NK Landscape Random NK Landscape

Local Optima Linked by Crossover,   Thanks to Gabriela Ochoa.
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These were 
found using 
Chained-LK.

But it could 
have been 
Lin
Kernighan
Helsgaun
(LKH).

The Traveling Salesman



MAX-3SAT AND PLATEAUS
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MAX-3SAT AND PLATEAUS

58RUN LOCAL SEARCH FIRST,  THEN APPLY CROSSOVER.
There is NO POPULATION.
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RED is intelligent local search.   BLUE is Partition Crossover



61

RED is intelligent local search.   BLUE is Partition Crossover
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MAXSAT

RESULTS.

PARTITION CROSSOVER

HELPS ON

HARD PROBLEMS.
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MAXSAT RESULTS
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THE TRAVELING SALESMAN PROBLEM

What is the shortest circuit that visits the 50 state capitals? 



PARTITION CROSSOVER
DETERMINISTICALLY
“TUNNELS” BETWEEN OPTIMA

65

P1
P2

recombine P1 and P2

We can remove randomness from Crossover



FIRST APPLY INTELLIGENT LOCAL SEARCH!
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P1
P2

recombine P1 and P2



FIRST APPLY INTELLIGENT LOCAL SEARCH!

67

Naïve 2-Opt is O(N3) in complexity!

Intelligent 2-Opt is O(N). 

1) Intelligent evaluation by partial evaluation.

2) Use of Nearest Neighbor moves.

3) Use of “Don’t Look Bits”

THIS IS NOT BLACK BOX.



CAN WE ``TUNNEL’’ BETWEEN OPTIMA?

68

Assume the Parents are Local Optima (under ANY Operator).

Partition Crossover 
deterministically returns 
the best of 2q offspring.



PARTITION CROSSOVER AND TSP
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PARTITION CROSSOVER AND TSP
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PARTITION CROSSOVER AND TSP

71

Group 1

Group 2

Group 4

Group 3
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THE QUASI-LOCAL OPTIMA
FORM A LATTICE IN HYPERSPACE:

Assume you have these connected groups of variables during 
recombination.

Group 1:     v1,    v2,    v4,   v5,    v7,   v9

Group 2:     v11,  v13,  v14, v15, v17, v18

Group 3:     v20,  v21,  v23,  v26, v27, v28

Group 4:     v32,  v33,  v34,  v35, v36, v39



73

THE QUASI-LOCAL OPTIMA
FORM A LATTICE IN HYPERSPACE:

Assume you have these connected groups of variables during 
recombination.

Group 1:     v1,    v2,    v4,   v5,    v7,   v9

Group 2:     v11,  v13,  v14, v15, v17, v18

Group 3:     v20,  v21,  v23,  v26, v27, v28

Group 4:     v32,  v33,  v34,  v35, v36, v39

Parent 1 or Parent 2?

Parent 1 or Parent 2?

Parent 1 or Parent 2?

Parent 1 or Parent 2?

Partition Crossover returns the best of  2^4 = 16 solutions.
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THE QUASI-LOCAL OPTIMA
FORM A LATTICE IN HYPERSPACE:

Group 1.       Group 2.       Group 3.      Group 4.

ALL of the 16 
solutions are 
LOCAL OPTIMA
In the
Hyperplane 
Subspace.
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THESE TUNNELS ARE JUST THE TOPS OF
LATTICES OF QUASI LOCAL OPTIMA.

Each tunnel is one 
recombination, 
and each recombination 
is the top of a lattice.
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THEOREM:  A LATTICE OF QUASI-LOCAL OPTIMA
CAN BE EXPONENTIALLY LARGE:

PROOF BY CONSTRUCTION:    Construct a traveling salesman 
problem (or MAXSAT instance) over N vertices such that it has two 
local optima,  and these two local optima decompose into N/c 
recombining components for some constant c.

This results in a lattice of size 2N/c
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THEOREM:  A LATTICE OF QUASI-LOCAL OPTIMA
CAN BE EXPONENTIALLY LARGE:

The construction builds a chain of recombining components.



TRANSFORMS

¢ SAT to MAXSAT

� For decades,  SAT problems have been 
converted into MAX-3SAT instances.
Modern SAT solvers expect a MAXSAT form.

� TRANSFORMS may also serve as REDUCTIONS 
used to prove NP-Completeness.
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TRANSFORMS

¢ Transforms exist for all Pseudo-Boolean Functions

“All pseudo-Boolean optimization problems can be 
reduced to the quadratic case.” Boros and Hammer 
(2002):186 

This assumes a polynomial evaluation function.

The transformed function is polynomial in size 
relative to the original function.  

79
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TRANSFORMS CAN BE
QUASI-BLACK BOX (BUT NOT REALLY).

T
R
A
N
S
F
O
R
M

The quadratic function is recovered by sampling in O(n2) time.



TRANSFORMS

For example, you could convert a NK landscape where

N = 10,000,  K = 9 (k=10)

Into an NK landscape where

N= 50,000, K=1 (k=2)

A PROJECTION INTO A HIGHER DIMENSION
WITH LOWER NON-LINEARITY 81
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ONE LAST THOUGHT:  

What if DNA is K-bounded?

E.g.,  the fitness landscape is an NK-Landscape
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ONE LAST THOUGHT:  

What if DNA is K-bounded?

What if “gene interaction” looks like this?
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ONE LAST THOUGHT:  

What if DNA is K-bounded?

99.9% of DNA is identical in all humans
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ONE LAST THOUGHT:  

What if DNA is K-bounded?

99.9% of DNA is identical in all humans
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QUESTIONS?  


