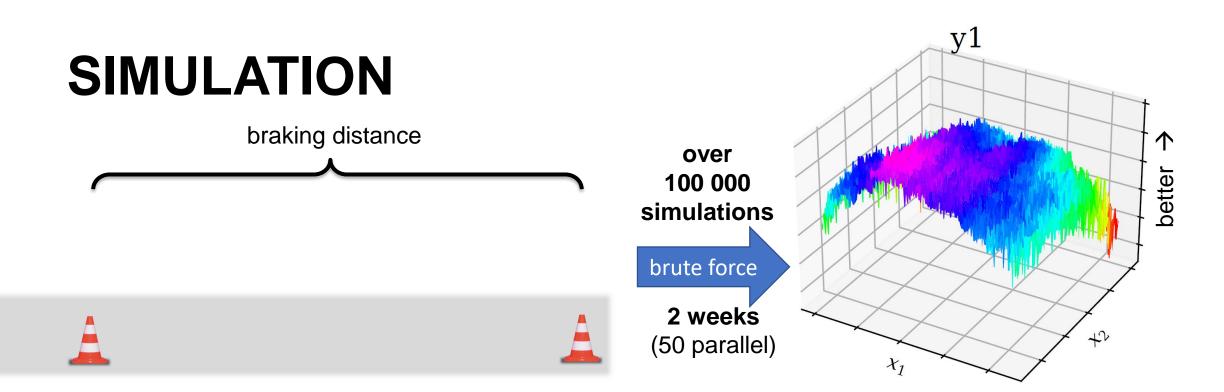


VEHICLE DYNAMICS IN PRACTICE: SELECTION OF THE BEST CMA-ES CONFIGURATION

André Thomaser

REAL-WORLD PROBLEM

emergency straight-line full-stop braking maneuver



Maneuver phases

- 1) Acceleration of vehicle to 103.5 km/h
- 2) No acceleration or deceleration until 103 km/h
- 3) Applying brakes until vehicle stop

Average braking distance
$$y = \frac{1}{10} \sum_{k=1}^{10} \int_{t_s}^{t_e} v(t) dt$$

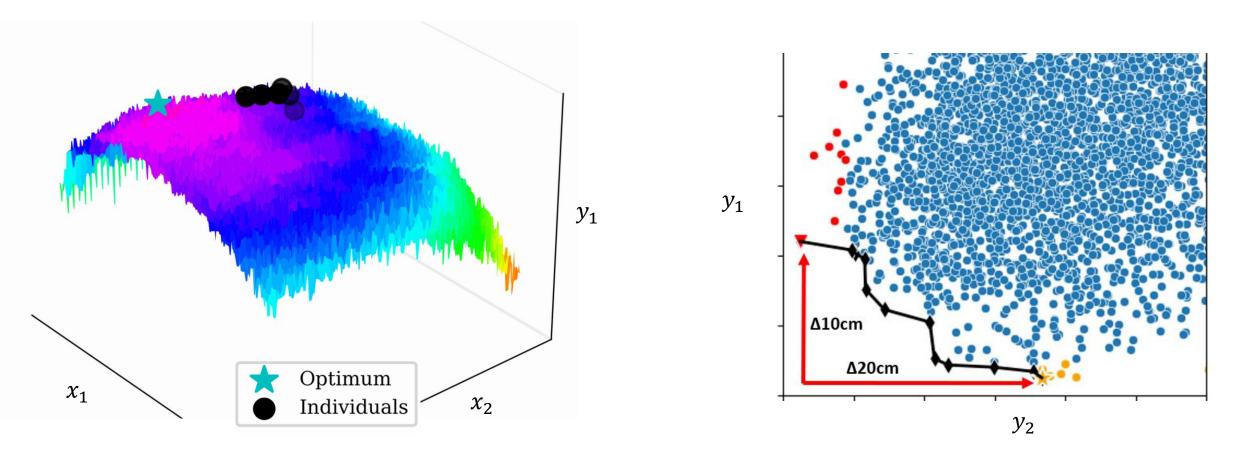
$$\underset{x \in X}{\text{minimize } y(x), \qquad X = \{x \in \mathbb{R}^2 : B_{lb} \le x \le B_{ub}\}}$$

Simulation Information

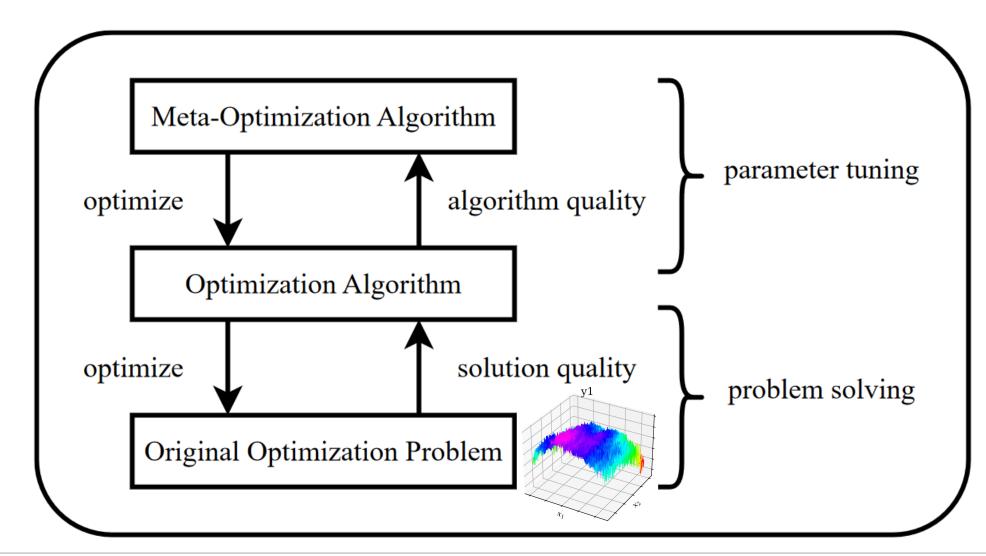
- Two-track model (16 degrees of freedom)
- Tire model MF-Swift (Pacejka's Magic Formula)*
- Control systems Anti-lock Braking System (ABS)

 $\underset{x \in X}{\text{minimize } y(x), X} = \{x \in \mathbb{R}^2 : B_{lb} \le x \le B_{ub}\}$

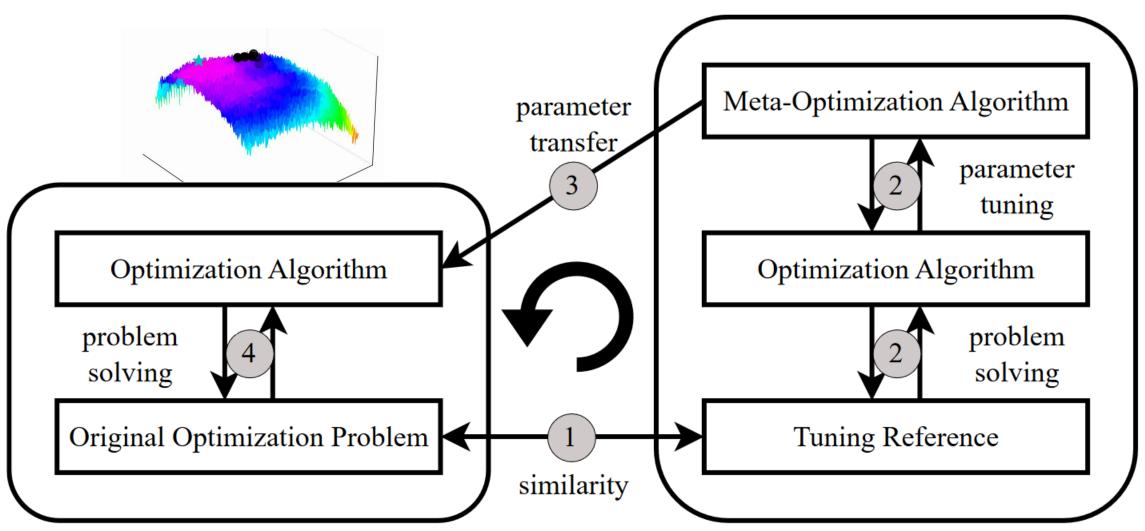
Vehicle Settings

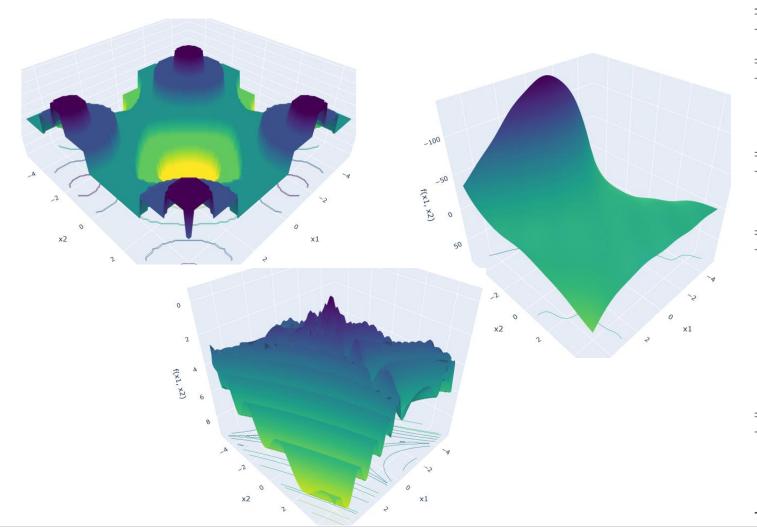

	Name	Tires	Vehicle Load
ſ	y1	High performance	Partially loaded
	y2	Medium performance	Partially loaded
	y3	Under performance	Partially loaded
	y4	High performance	Fully loaded
	y5	High performance	Little loaded

*Siemens Digital Industries Software. 2020. Tire Simulation & Testing. https://www.plm.automation.siemens.com/global/en/products/simulationtest/ tire-simulation-testing.html

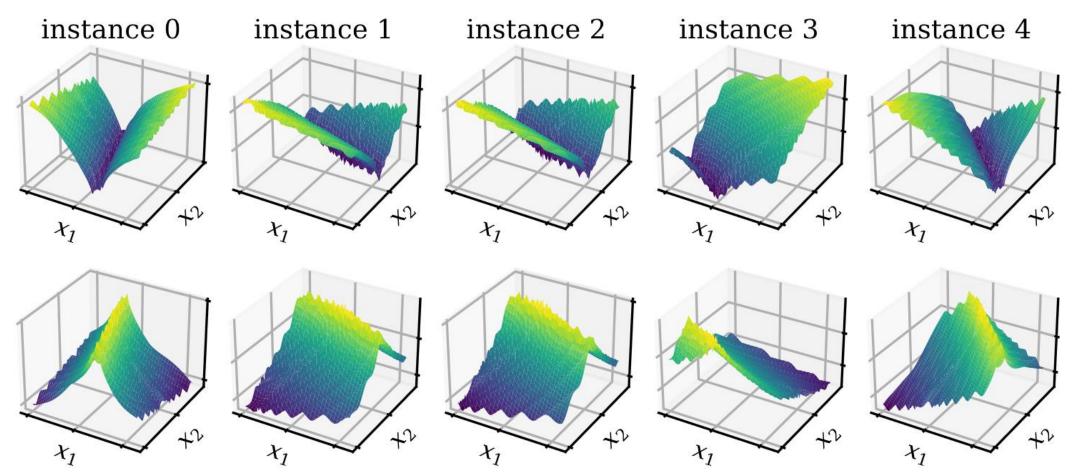

DATA AS BENCHMARK PROBLEMS

CMA-ES run (without further simulation)


Multi-objective – Pareto Front

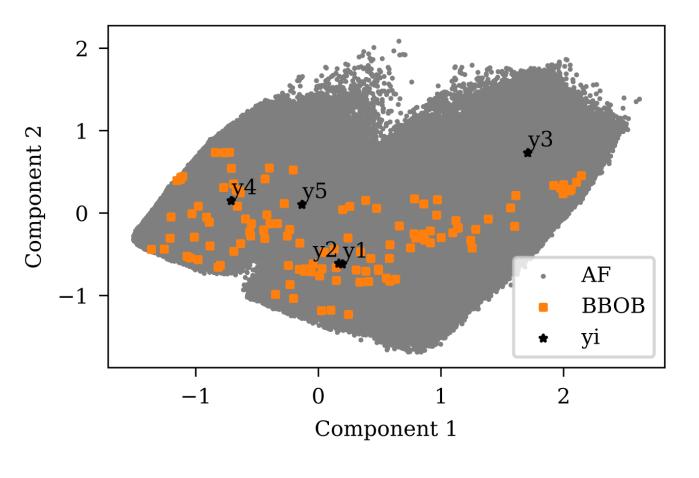

PARAMTER TUNING

PARAMTER TUNING - TRANSFER


ARTIFICIAL FUNCTION GENERATOR*

NT							
Notation	Meaning	Syntax					
Numbers							
а	A real constant	a					
rand	A random number	rand					
Decision variables							
х	Decision vector	(x_1,\ldots,x_d)					
xl	First variable	x_1					
xt	Translated decision vector	$(x_2,\ldots,x_d,0)$					
xr	Rotated decision vector	\mathbf{xr}					
index	Index vector	$(1,\ldots,d)$					
	Binary operate	ors					
add	Addition	a + x					
sub	Subtraction	a - x					
mul	Multiplication	$a \cdot x$					
div	Division	a/x					
Unary operators							
neg	Negative	-x					
rec	Reciprocal	1/x					
multen	Multiplying by ten	10x					
square	Square	x^2					
sqrt	Square root	$\sqrt{ x }$					
abs	Absolute value	x					
exp	Exponent	e^x					
log	Logarithm	$\ln x $					
sin	Sine	$\sin(2\pi x)$					
COS	Cosine	$\cos(2\pi x)$					
round	Rounded value	$\lceil x \rceil$					
	Vector-oriented op	erators					
sum	Sum of vector	$\sum_{i=1}^{d} x_i$					
mean	Mean of vector	$\frac{1}{d}\sum_{i=1}^{i} x_i$					
cum	Cumulative sum of vector	$(\sum_{i=1}^{1} x_i, \dots, \sum_{i=1}^{d} x_i)$					
prod	Product of vector	$\prod_{i=1}^{d} x_i$					
max	Maximum value of vector	$\max_{i=1,\ldots,d} x_i$					

*Tian et al. A Recommender System for Metaheuristic Algorithms for Continuous Optimization Based on Deep Recurrent Neural Networks


ARTIFICIAL FUNCTIONS

 10^5 artificial functions (AF), 5 instance by rotation & shifting, inverse function (* -1) \rightarrow 10⁶ different AF

EXPLORATORY LANDSCAPE ANALYSIS

Principal component analysis

Features

- 55 features (calculated with pflacco)
- 1000 samples
- PCA → dimensionality 31

Similarity of two problems p_1 and p_2 :

 $d(p_1, p_2) = \|F_{p_1} - F_{p_2}\|_2$

Vehicle Settings

Name	Tires	Vehicle Load
y1	High performance	Partially loaded
y2	Medium performance	Partially loaded
y3	Under performance	Partially loaded
y4	High performance	Fully loaded
y5	High performance	Little loaded

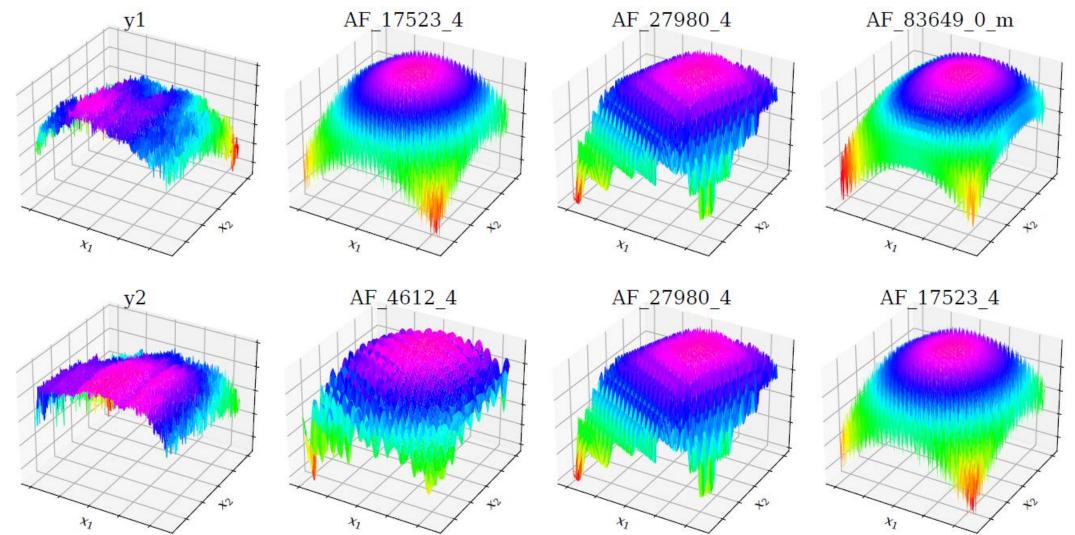
EXPLORATORY LANDSCAPE ANALYSIS

Features

- 55 features (calculated with pflacco)
- 1000 samples
- PCA → dimensionality 31

Similarity of two problems p_1 and p_2 :

$$d(p_1, p_2) = \left\| F_{p_1} - F_{p_2} \right\|_2$$

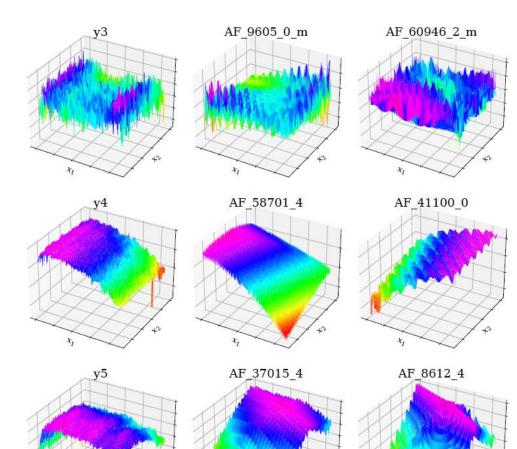

Vehicle Settings

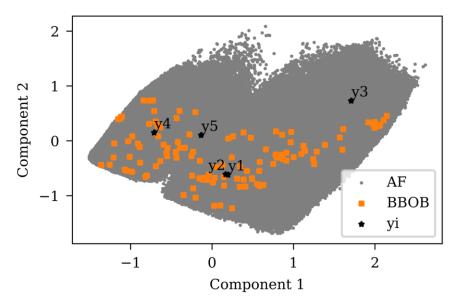
Name	Tires	Vehicle Load
y1	High performance	Partially loaded
y2	Medium performance	Partially loaded
y3	Under performance	Partially loaded
y4	High performance	Fully loaded
y5	High performance	Little loaded

Similarity

y1 -	0	0.84	6.3	4.3	4.2			
y2 -	0.84	0	6.4	4.2	4.3			
уЗ –	6.3	6.4	0	6	6			
y4 -	4.3	4.2	6	0	2.6			
<u>y</u> 5 –	4.2	4.3	6	2.6	0			
$AF_{sim,1}$ –	0.95	1.1	1	0.74	1.3			
$AF_{sim,2}$ –	1.1	1.2	1.1	0.91	1.4			
$AF_{sim,3}$ –	1.1	1.2	1.2	1	1.4			
$BBOB_{sim}$ –	2	2	2.9	2.3	2.6			
Sphere -	5.1	5.1	7.1	4.2	4.6			
	y1	ا ب	2	4	I Е			
	y2	у3	<i>y</i> 4	<u>y5</u>				
	Name	e Most similar BBOB Function						
	y1	Büche-Rastrigin Function f_4						
	y2	Büche-Rastrigin Function f_4						
	y3	Weierstrass Function f_{16}						
	y4	R	Rastrigin Function f_3					
	y5	R	Rastrigin Function f_3					

SIMILAR FUNCTIONS

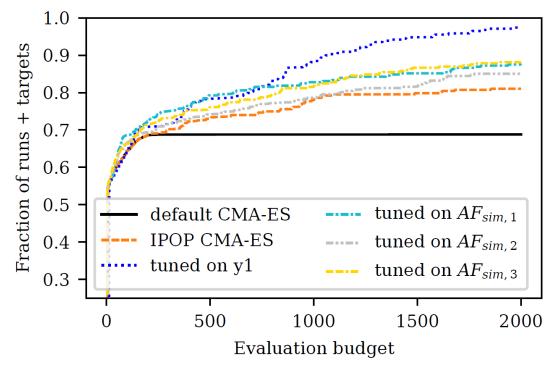



SIMILAR FUNCTIONS

AF_3403_3_m

AF_35436_4_m

AF_34338_4



HYPERPARAMETER SPACE

Hyperparameter	Description	Space
λ	Number of children derived from parents	{4,6,,20}
μ_r	Ratio of parents selected from population	$\{0.2, 0.3,, 0.8\}$
σ_0	Initial standard deviation	{0.1,0.2,,0.9}
Bound correction	Correction if individual out of bounds	{saturate, unif, COTN, toroidal, mirror}
Active update	Covariance matrix update variation	{on, off}
Elitism	Strategy of the evolutionary algorithm	$\{(\mu,\lambda),(\mu+\lambda)\}$
Mirrored sampling	Mutations are the mirror image of another	{on, off}
Orthogonal	Orthogonal sampling	{on, off}
Threshold	Length threshold for mutation vectors	{on, off}
Weights	Weights for recombination	{default, equal, $\frac{1}{2}^{\lambda}$ }
Restart	Local restart of CMA-ES	{off, IPOP, BIPOP}

- Algorithm quality AUC: Area under the ECDF curves (81 target values logarithmically distributed from 10^8 to 10^(-8))
- 100 CMA-ES runs on tuning reference

RESULTS

CMA-ES on real-world problem y1

Average 3 tuning runs per problem

default –	0.3	0.31	0.41	0.27	0.4	
IPOP -	0.24	0.17	0.31	0.12	0.35	
tuned on y1 –	0.15	0.16	0.38	0.35	0.26	
tuned on y 2 –	0.2	0.11	0.31	0.25	0.29	
tuned on y3 –	0.24	0.16	0.28	0.12	0.35	
tuned on y 4 –	0.26	0.17	0.31	0.094	0.37	
tuned on y5 –	0.18	0.15	0.44	0.39	0.15	
tuned on $AF_{sim, 1}$ –	0.19	0.11	0.38	0.14	0.3	
tuned on $AF_{sim, 2}$ –	0.23	0.19	0.35	0.11	0.33	
tuned on $AF_{sim, 3}$ –	0.19	0.13	0.39	0.2	0.34	
tuned on BBOB _{sim} –	0.26	0.17	0.32	0.2	0.33	
tuned on Sphere –	0.26	0.2	0.36	0.2	0.35	
	I	I	1		I	Ì
	on y1	on y2	on y3	on y4	on y5	

[→] Goal: Minimize 1 - AUC

CONCLUSION

- Changing the vehicle setting changes the problem landscape
- Tuning CMA-ES to similar artificial functions improved performance on the five real-world problems
- Better performance compared to the default CMA-ES configuration, IPOP CMA-ES, and also to CMA-ES tuned to BBOB functions

Open Questions:

- Is the computational effort for computing the ELA justified?
- Does tuning on several similar functions increase the robustness?