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Il This talk combines three different Multiobjective Perspectives - MOO® !l
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Multi-Objective Performance Measurement
Multi-Objective Automated Algorithm Configuration
... with special focus on Multimodality

In a nutshell: We will present (automatically) optimized '

hyperparameter settings of evolutionary multiobjective
optimizers
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Talk Outline

... why is that of crucial importance and why do we need to make this so complicated ??

we aim to reduce the barrier to build-
ing, deploying, maintaining high-quality Al Problom Instances

pipelines (predictable, robust, performant) o oo -
mmm

- low-quality algorithmic components

are a risk within larger Al pipelines —>] . —
= Find 4 Good
. . Algorith TSRS ) parameters
- use meta-algorithmic (Auto-ML)- T G :3 parameter
frameworks to (help) construct Al et
systems with robust components _I%I_ Parameer

- e.g. automated algorithm selection,
automated algorithm configuration




The world is multi-objective ...



Multi-Objective Optimization (MOO)

- Multi-objective optimization problems (MOP) have multiple (conflicting) objectives
- Solution is usually a set of trade-offs between objectives
- Find all solutions that are Pareto optimal
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Multi-Modal MOPs

Many MOPs are multimodal ...

- Multiple global and local optima

- Different points in the decision space map to the same point in objective space
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Multi-Modal MOPs

Many MOPs are multimodal ...

- Multiple global and local optima

- Different points in the decision space map to the same point in objective space

Decision space Objective space Decision space Objective space

— Goal: diverse solution set in decision space and convergence towards Pareto front
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How do we measure these criteria? ...

Diversity in Decision Space Convergence in Objective Space

Solow Polasky measure (SP) Dominated hypervolume (HV)
- Area of non-dominated points and
reference point r
- Accounts for convergence and spread in
objective space

- Pairwise distances of points
- Measures diversity of decision space

- Should be maximized

- To be maximized
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Solow-Polasky

Diversity: Solow-Polasky Measure
SP(P) =3 i<ij<u M,’,T1 €[, u]

P Population of x individuals
M~" Moore-Penrose generalised inverse matrix of M with M; ; = exp(—d(P;, P;))

d (Euclidean) distance between two individuals



Evolutionary Multi-Objective Optimisation Algorithms

Most Evolutionary Mult-Objective Algorithms (EMOAs) are not designed for diversity in
decision space but rather for convergence and diversity in objective space

max Convergence max Diversity
ConvergenceDiversity Convergence Diversity

< We will use automated algorithm configuration (AAC) to find EMOA hyperparameters
that will (simultaneously) yield decision space diversity



EMOASs: Diversity-Convergence Trade-Off

- Rook et al,, 2022 pointed to hyperparameter
sensitivity

- Single-Objective Configurations for SP
impacts convergence behavior (HV)
and vice versa

HV

SP

@ SO-AAC
@ Default
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EMOASs: Diversity-Convergence Trade-Off

_ EMOA (MO-)SMAC
- Rook et al,, 2022 pointed to hyperparameter x2f  gp
Gn0. 0 e ®

sensitivity B ‘
- Single-Objective Configurations for SP e o HV .

impacts convergence behavior (HV) e .

and vice versa i ol Vw_; ° .
- Can we mitigate the trade-off between = 0

SP and HV? i ° e
- Use multi-objective AAC (MO-AAC) for o« SP

HV and SP simultaneously — oA

@ Default



(Multi-Objective) Automated
Algorithm Configuration



Automated Algorithm Configuration (AAC)

Find a configuration for an algorithm that optimises
its overall performance

il



Automated Algorithm Configuration (AAC)

Find a configuration for an algorithm that optimises
its overall performance

0" = argmaxp(Ag, 7)
)

® Configuration space
A Algorithm
Z Problem domain (usually represented by a set of instances (N))

p Performance measure



Automated Algorithm Configuration (AAC)

Find a configuration for an algorithm that optimises
its overall performance

0" = argmaxp(Ag, 7)
)

® Configuration space

A Algorithm

Z Problem domain (usually represented by a set of instances (N))
p Performance measure

Challenges Algorithm Configurators
- Large and mixed-type search spaces - SMAC, ParamlLS

- Expensive evaluations - iRace, GGA, ...
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Multi-Objective AAC

Find a set of configurations for an algorithm that approaches the

trade-off surface of the overall performances

Formulated as multi-objective optimisation problem:

0" = {0 €0 | ﬂg'ee/{g} p(Ag’aI) < p(Ag,I)}

Algorithm Configurators

- MO-SMAC
- MO-ParamlLS
- (ParEGO)

MO-SMAC

- Does not aggregate objectives
- Predicted Hypervolume improvement
- Returns set of configurations



SMAC

SMAC: Key Steps

- Initialization:
Generate initial configurations and evaluate their performance.

- Model Building:
Construct a probabilistic model of the performance across the configuration space.



SMAC

SMAC: Key Steps

- Initialization:
Generate initial configurations and evaluate their performance.

- Model Building:
Construct a probabilistic model of the performance across the configuration space.

- Acquisition Function:
Use an acquisition function to select new configurations to evaluate,
balancing exploration and exploitation.

- Iteration:
Evaluate the selected configurations, update the model with the new data,
and repeat the process.



SMAC - MO-SMAC

Get new . Return
?
Start > configuration > Intensify Budget left? incumbent
Runhistory
Fit Empiri
Generate t Empirical
candidates k— Performance
Model (EPM)

Intensification: Process of selecting and re-evaluating promising configurations more
frequently to ensure their performance is accurately assessed.

Empirical Performance Model: Gaussian Process Model (Bayesian Optimisation)

27



SMAC — MO-SMAC

Modification 1: Intensification

- Incumbent is a population of configurations
- Racing continues until closest' configuration 6 € ©;,. dominates the challenger

Modification 2: Empirical performance model

- EPM based on Predicted Hypervolume Improvement

"Based on the Euclidean distance between the aggregated performance on the overlapping instances 28



Modification 2: Empirical performance model

Runhistory

EPM
Random Forest

V obj.

Acquisition
function
PHVI

EPM
Random Forest

Random
Search
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Experiments




Experimental Setup (adapted from Rook et al., 2022)

Configurators: SMAC-SP, SMAC-HV, MO-SMAC
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Experimental Setup (adapted from Rook et al., 2022)

Configurators: SMAC-SP, SMAC-HV, MO-SMAC

- 7 EMOAs
* NSGA-II, Omni-Optimizer, 17 EMOASs. X '3 configurators:
SMS-EMOA, MOEA/D, it e .
HIGA-MO, MOLE, MOGSA 21 scenarios
- Btestinstances oneseenano ..
- ZDT (5), MMF (19), DTLZ (5) , BiObj-BBOB (3) 110 folds: : 10 runs : :25 validations:
- 10-fold cross-validation (CV) tramtest

) 33 instances
- 10 configuration runs per CV-fold

- 25 validation runs per instance

32



Overview Experiments / Research Questions

(MO-)SMAC
............... 3b.
2a
\
X o’
e 3a
- e
oo 8P
¢ @®MO-AAC
fi ©®SO-AAC



1. How competitive are EMOAs configured with (MO-)AAC?

HV‘ o o’
: 1\,.
30
.:I\,.
@MO-AAC
@ SO-AAC



1. How competitive are EMOAs configured with (MO-)AAC?

After MO configuration, we compare the two extreme non-dominated solutions to the
SO configurations of SP and HV
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- MO-SMAC finds better configurations for SP compared to SMAC-SP
- SMAC and MO-SMAC find comparable configurations for HV



2a. How configurable are EMOAs?

(MO-)SMAC
............... 3b.
2a
\
X o’
e 3a
- e
oo 8P
¢ @®MO-AAC
fi ©®SO-AAC
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2a. How configurable are EMOAs?

We assess the quality of the PF approximation in performance indicator space by the
Hypervolume Indicator, i.e. HV*

Omni-Optimizer (2.
MOLE (3.
HIGA-MO (3.
(4.

0
2
6
MOEA/D (4.0

—_ = — —

2

F W

- o
L~

(MO-)SMAC

1
H
CcD

L SMS-EMOA (5.7)

NSGA-II (5.0)

MOGSA (4.5)

HV*

— Omni-Optimizer outperforms all other EMOAs
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2b. How configurable are EMOAS?

(MO-)SMAC
............... 3b.
2a
\
X o’
e 3a
- e
oo 8P
¢ @®MO-AAC
fi ©®SO-AAC
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2b. How configurable are EMOAS?

We assess the nondominated configurations generated by MO-SMAC separately
regarding SP and HV in original objective space.

123 4567

H
cD| T4
Omni-Optimizer (2.0
MOLE (3.2

L SMS-EMOA (5.7)

NSGA-II (5.0)

HIGA-MO (3.6
MOEA/D (4.0

SP

< Gradient-based EMOAs rank better for SP

MOGSA (4.5)

NSGA-II (1.4
SMS-EMOA (2.3
Omni-Optimizer (2.8
MOEA/D (4.5

— Omni-Optimizer outperforms all other EMOAs for SP
— Classical EMOAs rank best for HV

ﬁ MOGSA (6.4)
HIGA-MO (6.0)

MOLE (4.6)



3 How does the trade-off between SP and HV look like?

(MO—)SMAC
o 3.
HV a o - We will look at the non-dominated (MO-)AAC
' 1’&. : configurations per algorithm in detail
° - We will investigate the trade-off behaviour
® 3 ; per EMOA regarding SP and HV
.T'°

.........8SP

@MO-AAC
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3 How does the trade-off between SP and HV look like?

(MO—)SMAC
T 3
HV a o - We will look at the non-dominated (MO-)AAC
' 1’&. : configurations per algorithm in detail
° f - We will investigate the trade-off behaviour
® 3 ; per EMOA regarding SP and HV
® - We will identify 'best trade-off solutions’
il\lo )
......’P
@MO-AAC
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3 How does the trade-off between SP and HV look like?

Algorithm # configs | unique configs | non-dominated
MOLE 19 19 1
MOGSA 17 17 2
NSGA-II 27 27 4
HIGA-MO 17 17 3
MOEA/D 29 29 3
Omni-Optimizer 42 40 4
SMS-EMOA 23 23 3

- In general few non-dominated configurations
- Omni-Optimizer has the most configurations
- Omni-Optimizer and NSGA-II tie on non-dominated configurations

- (MO-) Configuration has a higher impact on SP

42



3 How does the trade-off between SP and HV look like?

Trade-off behaviour per EMOA regarding SP and HV including best trade-off solutions

NSGA-II Omni-Optimizer SMS-EMOA
0.99 ® o092 ° °
° ' 0.97 ° °
® non-dominated 0.99 0.95 ° e ®° 4
@ dominated ; ; : .3 ;O.QS x8& H °
x L[] [ ]
® default " 0.991e ' ° 0 @ o
x 0.97 ° 0.98 °
e so-sp o . %.: : f o0
S0-HV 0.99 al®fere 1.00 225% o ) o °
2.16 2.08 2.00 1.92 26 24 22 2.08 2.00 1.92 1.84
B trade-off -SP -SP -Sp
MOEA/D MOGSA MOLE HIGA-MO
[] [} []
[ ] °
0.88] @ 0.84 0.95 s . 088
° s ° . ° °
>0.92 > 088 @ | >0960 geere >
T o o - o0 T T 090
0.96 o o e 4 0.92 . o8 0.97] %o © I,
~ L A4 ] ° ®
5o % 0.961x 0.98 0.91LE
210 1.95 1.80 24 20 16 25 24 23 22 2.16 2.08 2.00

-sP -sp -sp -sp
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3 How does the trade-off between SP and HV look like?

Joint view on EMOA trade-off behaviour: Overall best configurations

] EMOA
0.90 ® MOEA/D
. MOGSA
® MOLE
0.92 ® SMS-EMOA
® NSGA-II
® HIGA-MO
:'.: 0.95 Omni-Optimizer
(] W trade-off
0.97
7] .,.. PY overall non-dominated
8 True
1.00 %% 33 [ 3 @® False
2.6 2.4 2.2 2.0
-SP

- 5 non-dominated overall configurations
- Omni-Optimizer achieved the best overall performance
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Summary & Conclusion

Decision space Objective space Decision space Objective space

- We showed the huge potential of Multiobjective Automated Algorithm
Configuration for EMOAs
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Summary & Conclusion

Decision space Objective space Decision space Objective space

- We showed the huge potential of Multiobjective Automated Algorithm
Configuration for EMOAs

- Showed superiority of MO-AAC to SO-AAC

- Successfully analysed the trade-off between convergence in objective space
and diversity in decision space

- Showed configurability of EMOAs, Omni-Optimizer has overall best performance
- Proposed new default configurations for the considered setting

46



Future Work

- Widen the scope of the experimental study
- Extend decision (and objective) space
- Use additional benchmark sets, e.g., PeekABoo!
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- Widen the scope of the experimental study
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- Analyse multiobjective configuration landscape
- Investigate MO-AAC as an optimization problem itself

- Depending on the landscape other configurators like MO-ParamILS could work better

48



Future Work

- Widen the scope of the experimental study
- Extend decision (and objective) space
- Use additional benchmark sets, e.g., PeekABoo!

- Analyse multiobjective configuration landscape
- Investigate MO-AAC as an optimization problem itself

- Depending on the landscape other configurators like MO-ParamILS could work better

- 'Vicious circle’ of meta-configuration?
- Configurators can be configured as well



Multimodal Multi-objective Optimization: Bridging the Gap
Between Problem Domains and Research Communities
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