
Correlation Extractors and

Their Applications

Yuval Ishai
Technion

Based on joint work with

 Eyal Kushilevitz

Rafail Ostrovsky

Amit Sahai

What this talk is about

• Extension of randomness extraction and

privacy amplification to correlated sources

• Motivated by cryptographic applications

• …but also think about communication channels:

– Cleaning channels

– Converting one channel to another

– Building channels from scratch

What if x is not uniform?
t-dirty: min-entropy n-t

Privacy Amplification
[BBR88,BBCM95,...]

Alice Bob

secure channel

xR{0,1}n x

Eve

What if x is partially leaked?
t-leaky: Eve learns f(x), f:{0,1}n

{0,1}t

• Solved by randomness extractors [NZ96]

– Alice picks a fresh seed s and sends to Bob over a

public channel

– Both parties output Ext(s,x)

Cleaning other types of channels?

Alice Bob

BSC

xR{0,1}n y=xe

ei~Bern(p)

• Noise is useful for crypto! [Wyn75,Csi81,…, CK88,…]

• Noise can be “dirty” or “leaky”

• Can we build a clean BSC from a dirty BSC?

– Main challenge: protecting against insiders

Correlation Extractors

• Generalize BSC example to any “channel” (X,Y)

• (n,m,t,) correlation extractor for (X,Y):

a b (a,b) -close to (X,Y)m

Alice Bob

(a’,b’) t-dirty (X,Y)n a’ b’

• Classical case: X=Y R {0,1}

also from point of view

of Alice or Bob!

 Main Question

• Are there correlation extractors for arbitrary (X,Y)?

– If so, how good can they be?

• Question largely unexplored

– Different from previous extensions of privacy

amplification to correlated or “fuzzy” sources
[Wyn75,BBR88,Mau91,DRS04,DS05,…]

Only concerned with secrecy against an external Eve

– Special cases implicit in literature

• Special types of correlations, locally imperfect sources

• No prior study of global imperfections

Main Question

• Are there correlation extractors for arbitrary (X,Y)?
– If so, how good can they be?

• Question still seems challenging even when
– allowing non-explicit or heuristic constructions

– allowing unlimited access to fresh randomness,
secure communication

• Source of difficulty:
Conflict between “structure” and “secrecy”

 Randomness extraction meets secure computation

Main Result

• For any finite (X,Y) there is an efficient,

constant-round (n,m,t,) correlation extractor with:

– m=(n) [clean instances]

– t= (n) [source imperfection / leakage]

– = 2-(n) [extraction error]

– O(n) communication

• Assumes semi-honest parties.

constant support size,

rational probabilities

[I-Kushilevitz-Ostrovsky-Sahai 2009]

Simple Correlations

shared randomness

private randomness

binary symmetric channel

X

Y

0

1

0 1 finite correlation (X,Y)

discrete memoryless channel

pxy=Pr[Y=y|X=x]

erasure channel / Rabin-OT

 (random) OT channel

X=(s0,s1)

Y=(r,sr)

Very useful for crypto!

• easy conversion to “chosen input” OTs

 [BG89,Bea95]

• basis for general secure two-party computation

 - requires O(circuit-size) instances of channel

 [GMW87,GV87,GHY87,Kil88,…]

[WW06]

OT Extractor

• Building block for general correlation extractors

• Common generalization of previous primitives

OT Extractor

OT Combiner
[HKN+05,…]

Extractor

Extractor for

bit-fixing sources

Overview of Construction

((X,Y)n)[t]

(X,Y)m

(OTn’)[t’]

“trivial”

cases

OTm’

OT-based secure computation

rational probabilities

OT from “nontrivial” channels
[Kil00,CMW04]

OT Extractor

some errors as well…

Efficient OT Extractors

• Careful combination of secure computation and

randomness extraction techniques

– Simpler with polylog(n,1/) loss in m,t

• Idea: Use O(m) “leaky” OTs as a resource for

securely computing m fresh OTs.

• Problem: OT-based protocols propagate leakage!

– Modify computed function to include an extraction step?

– Leakage still propagates…

• Observation: random OTs are converted into

“chosen input” OTs via XORing.

-biased secure computation

• Goal: Generate m “fresh” OTs using O(m) calls to an OT

oracle while making Bob’s oracle inputs -biased

• Masking with outputs of leaky oracle will keep

Bob’s fresh OT selections private [AR94,GW97]

• Need to reverse & repeat the process for protecting Alice.

Alice

Bob

OT OT OT OT OT OT

Building Block

• Explicit family of linear codes Cn:F
k(n)Fn such that

– F has characteristic 2

– The dual distance of Cn is (n)

– The linear code C2
n spanned by pointwise products of

ci,cj Cn has minimal distance (n)

• Examples:

– RS codes (non-constant F) [BGW88,…]

– AG codes (constant F) [CC06, CCX11]

• Can’t use random codes (even non-explicitly)

– last requirement implies efficient decoding [CDG+05]

-biased protocol for ANDm

• Alice’s input: a{0,1}m

• Bob’s input: b{0,1}m

• Bob’s output: ab

Alice

Bob

a

b

 a’

 b’

C

C

0 z

C2

-biased protocol for ANDm
• a’b’+z is the suffix of a random codeword from C2 which

starts with ab reveals no info beyond ab

Alice

Bob

a

b

 a’

 b’

C

C

0 z

C2

-biased protocol for ANDm
• a’b’+z is the suffix of a random codeword from C2 which

starts with ab reveals no info beyond ab

– Good distance of C2 guarantees that ab can be recovered

Alice

Bob

a

b

 a’

 b’

0 z

1-round OT-based protocol [Kil88,…]

-biased?

-biased protocol for ANDm
• Good dual distance of C, |F|=2c b’ is (m)-wise independent

– But not -biased!

• Apply random 3-bit majority encoding to each bit of b’
– Makes b’ -biased with =2-(m)

– Incorporate decoding into OT-based secure computation protocol

Alice

Bob

a

b

 a’

 b’

0 z

1-round OT-based protocol [Kil88,…]

-biased?

Applications

• Protecting protocols against leakage

• Efficient reductions between channels

• Communication-efficient secure computation

protecting against leakage

OT-based protocol

OT Extractor

OT generation process

leaky storage

efficient reductions between channels

• Much work on OT from noisy channels

– BSC, “unfair” channels, Gaussian channels, …

– poly(k) invocations of Ch1 per OT instance, even in semi-

honest model

• OT extractors constant-rate OTs from any nontrivial channel

– Bonus feature: leakage-resilience

Alice

Bob Ch1 Ch2
OT

communication-efficient secure computation

• Secure two-party computation, standard model

• Communication of typical protocols: poly(k) per gate

• [Gentry09]: poly(k) (|input|+|output|) overall!

• But… sometimes life is a sequence of finite tasks
– circuit of size O(|output|)

– even [Gentry09] requires poly(k) communication per gate

• Application of OT extractors
– Constant-rate OT protocol under -Hiding Assumption

[CMS99,GR05]

 general circuit evaluation with O(1) bits per gate

 constant-rate realization of any discrete channel!

– Previously known under a nonstandard assumption
[IKOS08]

Conclusions

• Defined correlation extractors

• Constructed (n,m,t,) extractor for every finite (X,Y)

– m=(n)

– t= (n)

– = 2-(n)

– O(n) communication

• Several applications, all with “constant rate”

– Cleaning channels

– Reducing channels to each other

– Building channels from scratch!

• Computationally, under -hiding assumption

Further Research

• Better parameters

– Maximize leakage resilience and rate

– Minimize round complexity

– Better dependence on domain size?

• Malicious parties

• Multi-party setting

• Computational setting

– Protecting computationally-secure two-party

protocols against side-channel attacks

