Correlation Extractors and Their Applications

Yuval Ishai
Technion

Based on joint work with
Eyal Kushilevitz
Rafail Ostrovsky
Amit Sahai
What this talk is about

• Extension of randomness extraction and privacy amplification to correlated sources
• Motivated by cryptographic applications

• …but also think about communication channels:
 – Cleaning channels
 – Converting one channel to another
 – Building channels from scratch
Privacy Amplification
[BBR88, BBCM95,...]

What if x is not uniform?

t-dirty: min-entropy $n - t$

Secure channel

What if x is partially leaked?

t-leaky: Eve learns $f(x)$, $f: \{0,1\}^n \rightarrow \{0,1\}^t$

Solved by randomness extractors [NZ96]

- Alice picks a fresh seed s and sends to Bob over a public channel
- Both parties output $\text{Ext}(s, x)$
Cleaning other types of channels?

- Noise is useful for crypto! \[Wyn75, Csi81, \ldots, CK88, \ldots\]

- \(x \in \mathbb{R} \{0, 1\}^n \)

- \(y = x \oplus e \)
 \(e_i \sim \text{Bern}(p) \)

- Noise can be “dirty” or “leaky”

- Can we build a clean BSC from a dirty BSC?

 - Main challenge: protecting against insiders
Correlation Extractors

- Generalize BSC example to any “channel” \((X,Y)\)
- \((n,m,t,\varepsilon)\) correlation extractor for \((X,Y)\):
 \[(a',b') \leftarrow t\text{-dirty } (X,Y)^n \]
 \[(a,b) \varepsilon\text{-close to } (X,Y)^m \]
- Classical case: \(X=Y \in \mathbb{R} \{0,1\}\)

also from point of view of Alice or Bob!
Main Question

• Are there correlation extractors for arbitrary \((X,Y)\)?
 – If so, how good can they be?

• Question largely unexplored
 – Different from previous extensions of privacy amplification to correlated or “fuzzy” sources

 [Wyn75,BBR88,Mau91,DRS04,DS05,…]

 Only concerned with secrecy against an external Eve

 – Special cases implicit in literature
 • Special types of correlations, locally imperfect sources
 • No prior study of global imperfections
Main Question

• Are there correlation extractors for arbitrary \((X,Y)\)?
 – If so, how good can they be?

• Question still seems challenging even when
 – allowing non-explicit or heuristic constructions
 – allowing unlimited access to fresh randomness, secure communication

• Source of difficulty:
 Conflict between “structure” and “secrecy”

Randomness extraction meets secure computation
Main Result
[I-Kushilevitz-Ostrovsky-Sahai 2009]

- For any finite \((X,Y)\) there is an efficient, constant-round \((n,m,t,\varepsilon)\) correlation extractor with:
 - \(m = \Omega(n)\) [clean instances]
 - \(t = \Omega(n)\) [source imperfection / leakage]
 - \(\varepsilon = 2^{-\Omega(n)}\) [extraction error]
 - \(O(n)\) communication

- Assumes semi-honest parties.
Simple Correlations

Very useful for crypto!
- easy conversion to “chosen input” OTs
 [BG89,Bea95]
- basis for general secure two-party computation
 - requires $O(\text{circuit-size})$ instances of channel
 [GMW87,GV87,GHY87,Kil88,…]

[random] OT channel

(Wat06)
OT Extractor

- Building block for general correlation extractors
- Common generalization of previous primitives

Extractor for bit-fixing sources
Overview of Construction

((X,Y)^n)[t]

OT from "nontrivial" channels [Kil00,CMW04]

(O^m')[t']

some errors as well…

OT Extractor

OT^m'

OT-based secure computation

(X,Y)^m

rational probabilities

"trivial" cases
Efficient OT Extractors

• Careful combination of secure computation and randomness extraction techniques
 – Simpler with polylog(n,1/\varepsilon) loss in m,t

• Idea: Use O(m) “leaky” OTs as a resource for securely computing m fresh OTs.

• Problem: OT-based protocols propagate leakage!
 – Modify computed function to include an extraction step?
 – Leakage still propagates…

• Observation: random OTs are converted into “chosen input” OTs via XORing.
\(\epsilon \)-biased secure computation

Goal: Generate \(m \) “fresh” OTs using \(O(m) \) calls to an OT oracle while making Bob’s oracle inputs \(\epsilon \)-biased.

Masking \(\bullet \bullet \bullet \bullet \bullet \) with outputs of leaky oracle will keep Bob’s fresh OT selections private \([\text{AR94, GW97}]\).

Need to reverse & repeat the process for protecting Alice.
Explicit family of linear codes $C_n:F^{k(n)} \rightarrow F^n$ such that
- F has characteristic 2
- The dual distance of C_n is $\Omega(n)$
- The linear code C^2_n spanned by pointwise products of $c_i, c_j \in C_n$ has minimal distance $\Omega(n)$

Examples:
- RS codes (non-constant F) [BGW88,…]
- AG codes (constant F) [CC06, CCX11]

Can’t use random codes (even non-explicitly)
- last requirement implies efficient decoding [CDG+05]
-biased protocol for AND^m

- Alice’s input: $a \in \{0,1\}^m$
- Bob’s input: $b \in \{0,1\}^m$
- Bob’s output: $a \cdot b$

\[\varepsilon \in C^2 \]

\[\varepsilon \in C \]
\(\varepsilon \)-biased protocol for \(\text{AND}^m \)

- \(a' \cdot b' + z \) is the suffix of a random codeword from \(C^2 \) which starts with \(a \cdot b \) \(\Rightarrow \) reveals no info beyond \(a \cdot b \)

Alice

\[\in C^2 \]

\[\begin{array}{cccccccc}
0 & & & & & & & z \\
\hline
a & & & & & & & a' \\
\end{array} \]

Bob

\[\in C \]

\[\begin{array}{cccccccc}
b & & & & & & & b' \\
\hline
\end{array} \]
ε-biased protocol for AND^m

- $a' \cdot b' + z$ is the suffix of a random codeword from C^2 which starts with $a \cdot b$ \(\Rightarrow\) reveals no info beyond $a \cdot b$
 - Good distance of C^2 guarantees that $a \cdot b$ can be recovered
ε-biased protocol for AND

- Good dual distance of C, |F|=2^c \(\Rightarrow \) b' is \(\Omega(m) \)-wise independent
 - But not \(\varepsilon \)-biased!
- Apply random 3-bit majority encoding to each bit of b'
 - Makes b' \(\varepsilon \)-biased with \(\varepsilon=2^{-\Omega(m)} \)
 - Incorporate decoding into OT-based secure computation protocol

Alice

\[
\begin{array}{cccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{cccccccccc}
a & a & a & a & a & a & a & a & a & a \\
\end{array}
\]

Bob

\[
\begin{array}{cccccccccc}
b & b & b & b & b & b & b & b & b & b \\
\end{array}
\]

1-round OT-based protocol [Kil88,…]
Applications

- Protecting protocols against leakage
- Efficient reductions between channels
- Communication-efficient secure computation
protecting against leakage

OT generation process → leaky storage → OT Extractor → OT-based protocol
efficient reductions between channels

• Much work on OT from noisy channels
 – BSC, “unfair” channels, Gaussian channels, …
 – poly(k) invocations of Ch1 per OT instance, even in semi-honest model

• OT extractors \(\Rightarrow\) constant-rate OTs from any nontrivial channel
 – Bonus feature: leakage-resilience
communication-efficient secure computation

• Secure two-party computation, standard model
• Communication of typical protocols: poly(k) per gate
• [Gentry09]: poly(k) (|input|+|output|) overall!
• But... sometimes life is a sequence of finite tasks
 – circuit of size O(|output|)
 – even [Gentry09] requires poly(k) communication per gate
• Application of OT extractors
 – Constant-rate OT protocol under Θ-Hiding Assumption [CMS99,GR05]
 → general circuit evaluation with O(1) bits per gate
 → constant-rate realization of any discrete channel!
 – Previously known under a nonstandard assumption [IKOS08]
Conclusions

• Defined correlation extractors
• Constructed \((n,m,t,\varepsilon)\) extractor for every finite \((X,Y)\)
 – \(m = \Omega(n)\)
 – \(t = \Omega(n)\)
 – \(\varepsilon = 2^{-\Omega(n)}\)
 – \(O(n)\) communication
• Several applications, all with “constant rate”
 – Cleaning channels
 – Reducing channels to each other
 – Building channels from scratch!
 • Computationally, under \(\Theta\)-hiding assumption
Further Research

- Better parameters
 - Maximize leakage resilience and rate
 - Minimize round complexity
 - Better dependence on domain size?
- Malicious parties
- Multi-party setting
- Computational setting
 - Protecting computationally-secure two-party protocols against side-channel attacks