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The Spectrum of Open Source Graph Technology 
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Motivation and Requirements 

 Flexible Graph Datastructure 

– In memory only, persistent, both 

– Directed, undirected, directed with predecessors 

– ACID properties 

 Run well on IBM machines including X86, Power, Bluegene 

– Large memory, large number of cores 

– Clusters with Infiniband or specialized networks (RDMA) 

 Commercial solution 
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IBM Parallel Programming Library 

 C++ 

– Object oriented design - inheritance  

– Generic using templates  

 Datastructures – Graphs, Hash Tables, Arrays 

 Large shared memory 

– Concurrency  

 Distributed memory clusters 

– Messaging API based on active messages and 

RDMA 
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IBM PPL Graph class hierarchy 

Graph<VertexProperty, EdgeProperty, Directness> 

- in memory only 

- custom vertex and edge property 

InDiskGraph 

- in memory and persistent storage 

MultipropertyGraph 

- StorageType : InMemory, Hybrid 
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Multiproperty Graph 
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Persistent Storage 

•Write through policy for now 

•Separate structure from properties : benefits computations based on 

structure only 

•Efficient graph loading : on demand 

•Versioning 
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Programming Model/ Runtime 

 A graph is a collection of vertices 

 Each vertex maintains its in and out edges 

 

 Parallel processing on IBMPPL graph 

– Task based model of parallelism  

• execute_tasks(wf, num_tasks) 

• for_each(graph, wf); 

• schedule_task_graph(tg) 

– Work stealing 

– Two level nested parallelism 

– Within shared memory for now 
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Performance Add Vertex 
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 Add vertices and for each vertex add a property 

 Indexed 

 v=add_vertex(); v.set_property(“name”, “vertex0”); 

 Titan with Berkeley DB backend 

Intel Haswell 24 core 2.7GHz and 256 GB, SSD 
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Performance Add Edge 
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 Add edges randomly 

 The source and target are specified as vertex 
properties 

 add_edge(“vertex0”, “vertex7”) 

 Index lookup 
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Performance - Query 
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 For a given vertex collect all its neighbors up to 
depth=3 

 ~1000 edges traversed per query 
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RDF Graph Construction 

• Load the .csv files for vertices 

• Load the .csv files for edges 

• Construct property graph in memory only 
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Query 2 
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Conclusion 

 Graph databases are gaining in popularity 

– Google, Facebook, Twitter, Paypal, BAML 

Feature System G Native Store Neo4j Titan 

Back-end Graph Graph Non-graph 

Scaling Yes Moderate Yes 

Traversal efficiency Perfect Good Poor 

Schemaless Yes Yes No 

User defined function Yes No Yes 

Performance-critical 
App. 

Perfect Good Poor 

Multi-language APIs  C++, Java, Python, Shell Java, Cypher Java, Gremlin 


