
© 2014 IBM Corporation

2014/02/15

A Highly Efficient Runtime and Graph Library for Large

Scale Graph Analytics

Ilie Gabriel Tanase – Research Staff Member, IBM TJ Watson

Yinglong Xia, Yanbin Liu, Wei Tan, Jason Crawford,

Ching-Yung Lin – IBM TJ Watson

Lifeng Nai – Georgia Tech

© 2014 IBM Corporation

Visualization

Analytics

Middleware

Database

Huge

Network

Visualization

Graphical

Model

Visualization

Network

Propagation
I2 3D

Network

Visualization

Geo Network

Visualization

Centralities

Communities

Graph Sampling

Network Info

Flow
Shortest Paths

Ego Net Features Graph Matching

Graph Query

Graph Search Bayesian

Networks
Latent Net

Inference
Markov Networks

Graph Processing Interface

Hadoop

BigInsights
Shared Memory

Graph Library
Distr. Memory

Graph Library

G
ra

p
h

A
c
c
e

le
ra

t

o
r

Infospher

e

Streams

(ISS)

Graph Data Interface

GBase (update, scan,

operators, indexing))

HBase

HDFS

Native Store

DB2

DB2 RDF
TinkerPop

Compliant

DBs

System G v1.0 Architecture

Generic Graph

Library

Graph

Communication

Layer

(PAMI/RDMA)

© 2014 IBM Corporation

2014/02/15

The Spectrum of Open Source Graph Technology

disk in memory

machines clusters single machine

s
p

e
e
d

 o
f

p
ro

c
e
s
s
in

g

fa
s
te

r
s
lo

w
e
r

Fulgora
Aurelius

Faunus
Aurelius

OrientDB
NuvolaBase

DEX
Sparsity Tech.

Neo4J
Neo4j.org

Giraph
Apache
Yahoo,FB,…

Jung

GraphLab
CMU

NetworX
NetworX.org

RedisGraph
MIT

Titan
Aurelius

© 2014 IBM Corporation

Motivation and Requirements

 Flexible Graph Datastructure

– In memory only, persistent, both

– Directed, undirected, directed with predecessors

– ACID properties

 Run well on IBM machines including X86, Power, Bluegene

– Large memory, large number of cores

– Clusters with Infiniband or specialized networks (RDMA)

 Commercial solution

© 2014 IBM Corporation

IBM Parallel Programming Library

 C++

– Object oriented design - inheritance

– Generic using templates

 Datastructures – Graphs, Hash Tables, Arrays

 Large shared memory

– Concurrency

 Distributed memory clusters

– Messaging API based on active messages and

RDMA

© 2014 IBM Corporation

IBM PPL Graph class hierarchy

Graph<VertexProperty, EdgeProperty, Directness>

- in memory only

- custom vertex and edge property

InDiskGraph

- in memory and persistent storage

MultipropertyGraph

- StorageType : InMemory, Hybrid

© 2014 IBM Corporation

2014/02/15

Multiproperty Graph

Name : Gabriel

SSN : xxx-xx

Vertex

Key Value

Name : John

Friend

Label

Edge

since : 2010

Person

Label

Company

Name:IBM

Works at
Edge

Since : 2010

© 2014 IBM Corporation

Persistent Storage

•Write through policy for now

•Separate structure from properties : benefits computations based on

structure only

•Efficient graph loading : on demand

•Versioning

© 2014 IBM Corporation

Programming Model/ Runtime

 A graph is a collection of vertices

 Each vertex maintains its in and out edges

 Parallel processing on IBMPPL graph

– Task based model of parallelism

• execute_tasks(wf, num_tasks)

• for_each(graph, wf);

• schedule_task_graph(tg)

– Work stealing

– Two level nested parallelism

– Within shared memory for now

© 2014 IBM Corporation

Performance Add Vertex

1M 2M 3M 4M 5M 10M

0

50

100

150

200

250

300

350

400

Add vertex SG

Add vertex Neo4j

Add vertex Titan

Number of vertices

E
x
e

c
u
ti
o

n
 T

im
e

(s
e
c
)

 Add vertices and for each vertex add a property

 Indexed

 v=add_vertex(); v.set_property(“name”, “vertex0”);

 Titan with Berkeley DB backend

Intel Haswell 24 core 2.7GHz and 256 GB, SSD

© 2014 IBM Corporation

Performance Add Edge

1M 2M 3M 4M 5M 10M

0

5000

10000

15000

20000

25000

AddEdge SG

AddEdge Neo4j

AddEdge Titan

Vertices (Edges=10*Vertices)

E
x
e

c
u
ti
o

n
 T

im
e

(s
e
c
)

 Add edges randomly

 The source and target are specified as vertex
properties

 add_edge(“vertex0”, “vertex7”)

 Index lookup

© 2014 IBM Corporation

Performance - Query

1M 2M 3M 4M 5M 10M

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

TEPS_SG

TEPS_NEO4j

TEPS Titan

Graph Size (Vertices, Edges=10xVertices)

T
E

P
S

 For a given vertex collect all its neighbors up to
depth=3

 ~1000 edges traversed per query

© 2014 IBM Corporation

2014/02/15

© 2014 IBM Corporation

2014/02/15

RDF Graph Construction

• Load the .csv files for vertices

• Load the .csv files for edges

• Construct property graph in memory only

© 2014 IBM Corporation

2014/02/15

Query 2

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

Edges/query

T
E

P
S

© 2014 IBM Corporation

2014/02/15

1 2 4 16 32

0

20000000

40000000

60000000

80000000

100000000

120000000

140000000

160000000

TCMalloc

Q2

Q2 P

Q4

Q4 P

Q6

Q6 P

Cores/threads

T
E

P
S

 (
T

C
M

a
ll
o
c
)

Impact of Parallelism on Throughput

Queries are

assigned to

threads evenly

Queries are

processed by a

single thread

#concurrent

component

© 2014 IBM Corporation

Conclusion

 Graph databases are gaining in popularity

– Google, Facebook, Twitter, Paypal, BAML

Feature System G Native Store Neo4j Titan

Back-end Graph Graph Non-graph

Scaling Yes Moderate Yes

Traversal efficiency Perfect Good Poor

Schemaless Yes Yes No

User defined function Yes No Yes

Performance-critical
App.

Perfect Good Poor

Multi-language APIs C++, Java, Python, Shell Java, Cypher Java, Gremlin

