GRATIN: Accelerating Graph Traversals
in Main-Memory Column Stores

Marcus Paradies! Michael Rudolf!

!Database Technology Group
TU Dresden, Germany
{m.paradies,michael.rudolf0l}@sap.com
wolfgang.lehner@tu—-dresden.de

ABSTRACT

Native graph query and processing capabilities have become in-
dispensable for modern business applications in enterprise-critical
operations on data that is stored in relational database management
systems. Traversal operations are a basic ingredient of graph algo-
rithms and graph queries. As a consequence, they are fundamental
for querying graph data in a relational database management system.

In this paper we present GRATIN, a concise secondary index struc-
ture to speedup graph traversals in main-memory column stores.
Conventional approaches for graph traversals rely on repeated full
column scans, making it an inefficient approach for deep traversals
on very large graphs. To tackle this challenge, we devise a novel and
adaptive block-based index to handle graphs efficiently. Most impor-
tantly, GRATIN is updateable in constant time and allows supporting
evolving graphs with frequent updates to the graph topology.

We conducted an extensive evaluation on real-world data sets
from different domains for a large variety of traversal queries. Our
experiments show improvements of up to an order of magnitude
compared to a scan-based traversal algorithm.

1. INTRODUCTION

Efficient graph traversals are crucial to every graph database man-
agement system and the foundation for a large variety of graph
algorithms, such as finding shortest paths, detecting (strongly) con-
nected components, and answering reachability queries. Although
graph traversals have been an area of active research for more than
four decades, novel algorithms for traversing graphs with billions
of edges within seconds received greater attention more recently
again [2, 3, 20].

More and more enterprises from various industries are starting to
explore and analyze the connections between data records in tradi-
tional customer-relationship management and enterprise-resource-
planning systems. For example, enterprises want to optimize a
supply chain network, update an employee hierarchy or query a
product batch traceability graph. Existing solutions for perform-

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

GRADES’ 14, June 22, 2014, Snowbird, UT, USA

Copyright is held by the owner/authors. Publication rights licensed to ACM.
ACM 978-1-4503-2982-8/14/06. .. $15.00

DOI: http://dx.doi.org/10.1145/2621934.2621941.

Christof Bornhévd? Wolfgang Lehner!

2SAP Labs, LLC
Palo Alto, CA 94304, USA

christof.bornhoevd@sap.com

ing graph operations on these systems use SQL in combination with
application logic to process the data. Since the majority of enterprise-
critical systems exclusively run on relational DBMSs, employing a
specialized system for storing and processing graph data is typically
not sensible: Beside the maintenance overhead for keeping the two
systems in sync, combining graph and relational operations is hard
to realize as it requires data transfer across system boundaries.

Especially for performance-critical analytical applications, main-
memory column stores have proven to outperform traditional disk-
based, row-oriented DBMSs by multiple orders of magnitude. They
are also increasingly used as a data platform for a wide range of
different data models and allow combining them seamlessly in
cross-data-model operations [10, 21]. Surprisingly, native support
for storing, querying, and manipulating graphs in (main-memory)
column-oriented DBMSs has received only little attention in the
database community so far.

In this paper we explore one specific step in the direction of
seamlessly integrating graph processing functionality into a column-
oriented DBMS. By providing an implementation for efficient graph
traversals as a central building block, developing more complex
graph algorithms and graph query support can be facilitated. To
this end, we introduce an index data structure for speeding up graph
traversals in a main-memory, column-oriented DBMS. The tradeoff
between memory consumption and traversal speed improvement is
configurable and can therefore be adapted to the system’s workload.
The contributions of our work can be summarized as follows:

e We introduce our configurable block-based index data struc-
ture GRATIN for speeding up graph traversals.

e We conduct an extensive experimental evaluation for a large
variety of real-world data sets and traversal queries to show
the effectiveness and efficiency of our approach.

The remainder of this paper is structured as follows: in Section 2
we describe the graph traversal as the underlying building block
of many graph algorithms. We present our index data structure for
graph traversals in Section 3 and provide an extensive experimental
evaluation in Section 4. Finally, we discuss related work in Section 5
before we conclude the paper in Section 6.

2. GRAPH TRAVERSALS

A graph traversal algorithm visits vertices of a graph in an ordered
way and keeps track of discovered vertices and their level of dis-
covery. We define a graph traversal as a tuple x = (.5, ¢,), where
S is the set of start vertices, c is the collection boundary, and r is
the recursion boundary. A traversal visits vertices in a breadth-first
manner and outputs visited vertices discovered between level c and
level . For example, x = ({3}, 2, 2) traverses from vertex 3 and

id type name ... title
id=1 1 User John - ?
name=Jon 2 Product 2 The Shining
ype=User

pemrated 3 Product ? ... TheStand
rating=4.0 rating=5.0 4 Category Horror ?
5 Category Literature . ?
id=3
id=2 — titte=The Stand
title=The Shining type=Product (b) Vertex table.
type=Product
id=5 Vi Vi type ... ratin
name-Literature s Tz WP 9
type=Category 2 3 similar . .. ?
2 4 belongs ?
3 4 belongs P ?
1 3 rated 5.0
type=Category
1 2 rated 4.0
4 5 category ... ?
(a) Example graph. —
(c) Edge table.

Figure 1: Mapping of a property graph to relational tables.

collects only vertices with a distance of two from the start vertex.
We expose data being stored in relational tables as a property graph.
The property graph data model has emerged as the de-facto stan-
dard for general purpose graph processing in enterprise environ-
ments [16]. It represents multi-relational directed graphs where
vertices and edges can have assigned an arbitrary number of at-
tributes in a key/value fashion. Figure 1 illustrates the mapping of a
property graph into two universal tables, one for the vertices (Vertex
Table) and one for the edges (Edge Table), respectively. Each vertex
and edge is mapped to a single database record and each attribute is
mapped to a separate column. Each vertex has a unique identifier as
the only mandatory attribute.

A straight-forward implementation of a graph traversal in a col-
umn store could run repeated full column scans and positional
lookups to process the traversal. On modern hardware, column
scans can be efficiently parallelized on thread and instruction level.

3. GRATIN

For graph traversals with a large traversal depth a scan-based ap-
proach with repeated full column scans is intolerably expensive.
However, we can speed up traversals and avoid costly full column
scans by constraining the scan range to only a small fraction of
the entire column. A traversal accelerated by a secondary index
can significantly outperform a scan-based traversal for sparse graph
topologies or vertices with a small neighborhood. To that end, we
propose GRATIN, a secondary index to speed up graph traversals
in main-memory column stores. GRATIN is an efficient and con-
cise block-based index structure that maps each distinct value in a
column to one or multiple blocks. The blocks divide the column
logically in non-overlapping and continuous column fragments. We
represent a block as a tuple (id, start, end) and uniquely identify it
by its id. GRATIN accelerates the most crucial operation in graph
traversals, that is, to return all neighbors of a given vertex. Our
design goals are:

e Maintainability. Index maintenance is the most critical oper-
ation for any index structure aiming at providing fast access
to the graph topology. In the worst case, a single insertion or
deletion can trigger a complete recreation of the index.

e Integrability. GRATIN has to be integrable into a main-
memory column store. Therefore, it has to provide a concise
representation and efficient positional access to the fragments
of a column.

e Simplicity. GRATIN should rely on simple data structures that
provide fast access in constant time and simple synchroniza-
tion across multiple threads.

Column

I
I
1 2 :
2| 2 By : Block ranges Value code Blocks Health factor
| |
302 I 1 1 2 ® hp, =10
—_ |
4 11 : 2 2 1|3 © hey,=05
{5 By ‘
513 | 3 3 2 ® hpy=10
[| L
62 } By
I

minimal blocksize: 2

Figure 2: Updating the index after a new value has been inserted.

Figure 2 depicts a column and the corresponding GRATIN with
a minimal blocksize 2. Initially, we assume that the column is
clustered by value. A GRATIN consists of two main data structures,
a block index (bi) and a block range vector (brv). The block index
maps each value code to a set of blocks. If the column is perfectly
clustered, each value code points to exactly one block. The block
range vector is a concise data structure for representing block ranges.
Since the blocks are continuous and non-overlapping, we store only
the end position of the block. The block boundaries of a block b can
be directly derived from [brv[b — 1] + 1,brv[b]]. For example,
block 2 spans the range [4, 5] in the column. Block IDs are only
represented implicitly in the block range vector and therefore do not
consume any memory.

A request to GRATIN extracts for a given value the corresponding
blocks from the block index and materializes the block ranges by
using the block range vector. The output is a set of blocks, where
each block is described by its ID, its start, and its end position.
Algorithm 1 details the lookup routine.

Algorithm 1: Index lookup in GRATIN

Input : Set of values S.
Output: Set of blocks C' with range information.

1 begin

2 forall the s; € S do

3 B+ bi[s];

4 forall the k € B do

5 | C < CU(kbrvlk—1]4 1,brv[k]);

3.1 Index Construction

We construct GRATIN by first scanning the complete column and
storing temporary information about block boundaries and values in
these blocks. This initial step can be efficiently implemented in a
column store with a single parallelized full column scan operation.
GRATIN does not rely on a fixed block size, but instead increases
the block size such that all occurrences of a value can be retrieved
from a single block. This is due to the fact that many graphs exhibit
a power-law distribution of the vertex outdegree. We provide an
adaptive mechanism that allows handling low outdegree vertices
and high outdegree vertices equally well. Initially, the construction
algorithm receives a minimal block size k£ and creates blocks of
at least that size. If the outdegree of a vertex is larger than k, the
construction algorithm increases the block size accordingly.

3.2 Update Handling

In many realistic scenarios graphs change over time and demand
mechanisms to efficiently support insertions, updates, and deletions
of edges and vertices, respectively. Thus, an index structure that
aims at accelerating graph traversals on evolving graphs also has
to provide efficient update operations. GRATIN has been carefully
designed to handle both static graphs and evolving graphs with
frequent changes to the graph structure.

For most graph applications, in-place updates of the graph topology
are relatively rare events [12] while insertions and deletions can
occur frequently. We handle deletions through the visibility control
layer of the DBMS on top of the index structure. Deleted records are
marked as invalid and are not visible anymore for incoming queries.
Although in-place updates are rare, we cannot exclude them from
our study. In GRATIN we process an in-place update as a deletion
followed by an insertion.

When a new edge or vertex is to be inserted, we append it to
the end of the table. Append operations are a common strategy
to allow column stores to preserve the compression of the static
fraction of the column while still providing acceptable performance
for insertions. However, appending a value can violate the edge clus-
tering criterion. Edge clustering groups edges by source vertex and
increases the spatial locality for neighborhood queries. Although
GRATIN does not rely on edge clustering, it shows the best perfor-
mance for an optimal or nearly optimal clustering. In a perfectly
clustered column we map each value code to exactly one block. If
the column is not perfectly clustered, we map each value code to at
most | B| blocks, where B denotes the set of blocks.

Figure 2 illustrates the insertion of a new value and the subsequent
updates to the index structure. An update consists of two operations:
1) If there is an unfinished block with a block size smaller than the
minimal block size, we update the block range vector. Otherwise we
create a new block and append its stop position to the block range
vector, and 2) we append the ID of the newly created block to the
block list of the value code.

Frequent insertions increase the number of blocks per value and
also the number of blocks that have to be scanned for a single value.
Therefore, we use a measure to quantify the quality of the index
structure with respect to query performance. For each entry ¢ in the
block index vector we define the so-called health factor as h; = ‘B—li‘,
where B; refers to the set of blocks for value 7. The health factor A;
reaches its maximum (h; = 1.0) if all occurrences of a value code
can be fetched from a single block. For sets of blocks, the health
factor decreases inversely proportional to the size of the block set.
The health factor of the index structure is then defined as follows.

1
h=r—> h 1

If the health factor h of the index is below a threshold 7, we consider
the index structure as not suitable anymore to considerably speed
up graph traversals. In this case, a reorganisation task creates a
new edge clustering and rebuilds the index. To rebuild the edge
clustering, the old index structure can be leveraged.

3.3 Graph Traversals with GRATIN

GRATIN can be used to accelerate the scan-based traversal as de-
scribed in Section 2. It replaces the full column scans with an
index scan followed by a set of block scans. We sketch the revised
level-synchronous traversal accelerated by GRATIN in Algorithm 2.
Instead of using a parallelized full column scan, we consult GRATIN
with a set of vertices and retrieve a set of candidate blocks. Next, we
scan each block and output the hit positions into P. Since the block
sizes are usually quite small, a parallelization of a single block scan
operation is typically not sensible. Instead, we parallelize across
the calls of the block scan routine and run multiple block scans in
parallel.

4. EXPERIMENTAL EVALUATION

We evaluate GRATIN on three different data sets for a variety of
traversal queries. Specifically, we report on the execution time of

Algorithm 2: Graph traversal with GRATIN

Input : Traversal configuration k = (S, ¢, r).
Output: Set of discovered vertices R.
1 begin
2 if c = 0 then
3 L R+ S; // Add start vertices to result
4 p<1; Dy + S;
5 while p < r do
6
7
8
9

if D, = () then
|| return; // wo nore vertices to aiscover

P« 0

B+ @; // set of blocks
10 Vi.lookup(Duw, B);
11 forall the b; € B do
12 L Vis.scanBlock(b;.start, b;.end, Dy, P);
13 D, @; // Reset working vertex set
14 Vimaterialize(P, Dy); // uateriatize vertices tron P
15 if p > c then
16 L R < RU Dy; // aad vertices from Dy to result R
17 | p<p+ 1L

18 return R2;

traversal queries for static and dynamic graphs, the time to construct
GRATIN, and its memory footprint.

Experimental Setup

We have implemented GRATIN as a prototype in the context of the
in-memory column-oriented SAP HANA database. All values in the
vertex and edge tables are dictionary-encoded, allowing the traversal
algorithms to operate directly on the value codes. Deletions only
invalidate records, which are then removed during periodic reor-
ganization processes. Newly inserted values are always appended
to the end of the corresponding columns. In-place updates are
implemented as a deletion followed by an insertion.

Initially, we loaded the data sets into the corresponding vertex
and edge tables. We ran all experiments on a single server machine
operating SUSE Linux Enterprise Server 11 (64 bit) with Intel Xeon
X5650 running at 2.67 GHz, 12 hardware threads, 32 kB L1d cache,
32kB L1i cache, 256 kB L2 cache, 12 MB L3 cache shared, and
48 GB RAM. To evaluate GRATIN on a wide range of different graph
topologies, we selected three real-world graph data sets from the
domains co-purchasing networks (AM), citation networks (PA), and
road networks (CR). For each data set, we report the number of
vertices |V/|, the number of edges | E|, the average vertex outdegree
dout, the maximum vertex outdegree max(doy:), the estimated
graph diameter 5, and the raw size in Table 1.

4.1 Construction Time and Index Size

We investigated the impact of the graph topology and the block size
on the construction time and the memory footprint of GRATIN and
report our results for all three data sets in Table 2. GRATIN is very
space-efficient and consumes only up to 3% of the raw data size.
The block range vector is a preallocated array and keeps one entry
per block. Each block requires only 4 bytes to encode its ID, start,

Table 1: Evaluated data sets with their topology statistics.

ID \%| |E| douwt max(dout) 5 Raw Size (MB)
AM 04M 33M 16.8 27K 7.7 81.2
CcR 19M 27M 2.8 12 4950 132.1
A 37M 165M 8.7 793 9.4 346.3

Amazon (AM) California-Roads (CR) Patents (PA)
T T T T 147 | T T
he
/
20| 1+ 12} o - 25
2 / z z
g / 5 Z 101 o Z 20}
T 5r o7 g b 5
E / E sl o E
e e E 15
= =] = 15
S 10| g . g
s of S
3 3 3 =
= 2 e 2
o 5L 2oyl *] i B o o e
— 50 o =
a— 2+ — ‘ (03 o o {
N = | 2 g —O—F o o § ¢
Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il
1 2 3 4 5 6 7 1 2 3 5 6 7 1 2 3 4 5 6 7
of Traversal Iterations # of Traversal Iterations # of Traversal Iterations
—Jl—- SCAN —@— GRATIN-512 GRATIN-4096 O GRATIN-32768
Figure 3: Comparison of scan-based traversal and GRATIN-based traversal for different block sizes.
Amazon (AM) California-Roads (CR) Patents (PA)
15 T 15 15 T
g g g
E 10+ o E] 10 - o E 10 - o
g g8 g
g g g
£ g £
2 2 2
o <] o
& 51 8 g 51 8 & 51 al
g & g
1h o 10 o 1 o
Il Il Il Il Il Il Il Il
512 4096 32768 512 4096 32768 512 4096 32768

Block size

Block size

Block size

Figure 4: Improvement of GRATIN-based traversal over scan-based traversal for traversal queries over 4 hops.

and end position. In general, larger block sizes result in a smaller
memory footprint of the block range vector. The block index is
internally represented as an array with a size equal to the number
of distinct elements in the column. For each entry, the block index
maintains a list of 4 byte keys denoting the mapped block IDs.
GRATIN can be efficiently constructed with a single scan pass over
the entire source vertex column. This can be trivially parallelized
and allows creating the block range vector and the block index with
minimal overhead. All GRATIN instances took considerably less
than a second for construction, ranging from 60 ms to about 500 ms.

4.2 Traversal Performance

We compared the execution performance of a GRATIN-based traver-
sal with a functionally equivalent scan-based traversal. For each
run, we randomly selected 100 different start vertices and generated
single-source vertex traversal queries with varying depth ranging
from 1 to 10. When we compared GRATIN with the scan-based
traversal, we used the same query configurations for both runs. For
each run, we excluded the slowest and the fastest query, and report
execution times averaged over 100 runs.

Static Graphs. We compare GRATIN with different block sizes
{512, 4096, 32768} against a scan-based traversal and present the
results in Figure 3. For all data sets, the GRATIN-based traversal
clearly outperforms a scan-based traversal by up to a factor of 5.
Surprisingly, GRATIN performs worse than a scan-based traversal

Table 2: Memory footprint and construction times for all data sets
with block size 512.

ID Memory Footprint (in MB)

AM 0.80 0.06
CR 3.97 0.30
PA 4.30 0.50

Construction Time (in s)

for traversals with depth greater six on data set AM. If the interme-
diate result is very large, a scan-based traversal can outperform an
index-based traversal due to a large number of single index lookups.
Moreover, smaller block sizes result in a better execution perfor-
mance than larger block sizes. Especially for deep traversals with
many block scans, smaller blocks reduce the amount of data to fetch
from memory into the caches of the CPU.

Figure 4 depicts the improvement of the GRATIN-based traversal
over a scan-based traversal. We report the improvement in multiples
of the scan-based approach and evaluate traversal queries on block
sizes {512, 4096, 32768}. For all data sets, the improvement factor
decreases for increasing block sizes.

The execution performance of a traversal query highly depends
on the selected start vertex and the size of intermediate results. We
executed 1,000 queries from randomly selected start vertices and
present the execution times for scan-based traversal (¢) and GRATIN-
based traversal (+) for all data sets in Figure 6. For data set CR the
execution times show only a low variance, which is caused by the
low variance in the vertex out-degree distribution. In contrast, the
results on data sets PA and AM show an improvement by multiple
factors for many traversal queries. However, some traversal queries
exhibit a worse performance for GRATIN-based traversal due to large
intermediate result sizes.

Dynamic Graphs. To evaluate the execution performance of
GRATIN on dynamic graphs, we ran a fixed set of traversal queries.
After each run, we performed a batch insert of 20,000 edges. In
Figure 5, we report the slowdown factor of the execution of the set
of traversal queries. We use the initial execution time as a basis and
relate the following execution times to the first measurement. In ad-
dition, we report the health factor of GRATIN after each batch insert.
For data set AM, the traversal queries show the largest slowdown
with factor 2.2 after the insertion of 100,000 edges in total. For the

Amazon (AM)

California-Roads (CR)

Patents (PA)

22
11 11
16
2l
o - ~ _— Ho0.8 ~ 0.8
. ;P ;- 1
5 {06 ¢ g5 14 106 ¢ 5 106 ¢
g 16l 5 g 5 g 5
g 16 3 £ 3 £ g
£ / o4 s g Ho4 'z £ -
o / 3 3 12f E - £
2 =) 2 == o ==
2/ Ho.2 @ 0.2 @ 0.2
/
/
I Ho 1r Ho Ho
Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il
0 420K +20K +20K +20K +20K 0 420K +20K +20K 420K +20K 0 420K +20K +20K +20K +20K

ABatch Insertions

ABatch Insertions

ABatch Insertions

Figure 5: Evaluation of traversal performance on dynamic graphs. Slowdown factor describes the relative execution time in multiples of the

execution time on a static graph.

other data sets, the slowdown factor is between 1.3 and 1.6. Even
after a large number of insertions, GRATIN remains usable and still
provides an acceleration over a scan-based traversal algorithm.

Amazon (AM) California-Roads (CR) Patents (PA)
50 T T T T T T T T T
2/ 1 65l 1
45 SEa]
) Ll 245 1 60 - |
a B
,ga . N
0 ¢ 21] 55| 54
§ . :
o 20 <] 50 - 8 g
35| e il
“3 181 g] 451 R
t 2 o H
30 Loa 8 o o 5!
2 ted 16| o 8 b 40 1 1
g PP | 8 E ?
) - 8
£ ca g L H i 51 L
iZ’)f ‘§§1 14 OE 35 i
g PP 2 i °
5 De 12| g 4 s0p EOEEEJ
20 - :gggf ° 8 gé
s F H -
P 10—o§i R 25 iIE§l1
BER . 8 o !
151 AERR sl ° i.¢
f% g 8 B 20 - g“g;g’
s s N o ° EERER
§fc 1 s slgle .8t
10 . N 6| b e o278
H R
B T
S af i) ’iA 104 L S
st [il TR
[] - 8 . n
BEE i i Pt
i £ [H | H
| Hhse 2gqfad 1 Teld l”f
Pl | [ot :l' il
2 4 6 8 10 2 4 6 8 10 2 4 5 8 10

Traversal Iteration Traversal Iteration Traversal Iteration

o SCAN 4 GRATIN-512
Figure 6: Query time for scan-based traversal and GRATIN-based
traversal for different data sets.

S. RELATED WORK

We overview related work covering parallel and distributed breadth-
first search, graph indexing, and database indexing in this section.

Graph Processing. The question of how to traverse graphs has
been a topic in research for about 40 years. Christofides introduced
first approaches for graph traversals in 1973 [4], which where, due
to the existing hardware, only constructed serially.

The first parallel approaches where introduced by Crauser et
al. [7]. They are based on a distribution of vertices over several
computing nodes and initially only realized as theoretical PRAM
algorithms. An implementation of a distributed breadth-first search
relying on high parallelism and distribution over an immense number
of computation nodes was done by Yoo et al. [25]. They are able
to process about 30 billion edges. But as their algorithm is based
on splitting an adjacency matrix into parts, it is not applicable to a

graph storage concept based on an edge list.

With the growth of data graphs, additional highly optimized, matrix
decomposition based approaches have been presented, such as the
one by Bulu¢ and Madduri [2].

A common property of all these approaches is, that they only
work on static data and compute the optimal data split for a fixed
number of computation nodes once. They do not provide any update
support and, combined with the underlying storage structure, are
not applicable to our problem statement.

The update supporting approach proposed by Prabhakaran et al. [14]
is also based on a graph specific storage structure, which cannot be
established in our case.

So all existent, efficient, and parallel traversal approaches, even
though possibly supporting updates, rely on a specialized storage
structure, which does not fit our problem statement. Similar to our
implementation in the context of SAP HANA, all these approaches
rely on a level-synchronous traversal, which builds the resulting
traversal tree level by level.

Index Structures. To support graph access and improve the per-
formance of traversal queries, there are several different graph in-
dexing approaches. Zhao et al. [28] introduced an index structure
that is based on simple graph structures and was improved by them a
few years later [27]. They increase the performance of traversals on
spatial road networks by reducing the number of accesses to external
storage. Even though our data is held in memory, this approach may
be applicable to our problem statement as well. Although I/O per-
formance is not the fundamental problem of in-memory algorithms,
we can adapt the basic principle of regrouping data.

Corneil et al. [6] apply an ordering to the vertices based on the
idea by Rose et al. [18]. They try to determine an ordering based
on the detection level of the vertices and create a path-based index
structure, which may consume too much memory to be applicable.
A similar idea is to use an index on reachability as proposed by Trif31
et al. [22]. Their index structure is based on pre- and post-ordering
values, which are determined during an initial traversal process that
calculates the transitive closure. Besides the fact that their index
is not capable of storing distances, which is an important implicit
part of our problem statement, the only guaranteed update time is a
complete recreation of the index.

A different way of indexing is introduced by Yan et al. [24] and
Zhao et al. [29]. In contrast to existing path-based methods they try
to identify frequent substructures. An extension proposed by Zhang
et al. [26] applies a similar idea to frequent subtrees, which inherit
more structural information.

All those data structures may be invalidated by insertion or dele-
tion, which may require a complete index recreation. As a direct
consequence, their approach cannot guarantee an acceptable up-

per boundary for inserts. Also, further performance improvements,
which where done by Wang et al. [23] and use edit distances be-
tween similar substructures, cannot solve the problem of a too high
boundary for manipulation time.

As established by Sakr et al. [19] and as explained above, the
existing graph indices are not applicable to dynamic data. Therefore,
most graph databases measure their performance only on static data
without guaranteed update performance, as discussed by Ciglan
et al. [5] and Dominguez-Sal et al. [8]. This contradicts our goal
to be capable of handling dynamic data and provide strict upper
boundaries for manipulation time.

Next to a distinct indexing of graph structures, there is the pos-
sibility of using a data based indexing. Most relational databases
that do not reside in memory rely on high performance index struc-
tures to improve data access. First thoughts about the application
of existing index structures to data residing in memory were pub-
lished by Lehman et al. [11]. They adapted B- and APL-Trees to
memory, but did not consider applying a column-oriented instead
of a row-oriented data layout as used by SAP HANA. Rao et al. [15]
improved the performance of B-Trees for data in memory by taking
cache sizes into account but did not present new ideas regarding
index structures, as shown by Lu et al. [13].

A first, slight structural change was introduced by Bohannon et
al. [1]. They propose to modify storage structures of index trees to
reduce cache misses, but do not touch the actual tree structure of
the index. The cache awareness of index trees was improved until
patented by Rokicki [17]. Even though existing index structures
have been very well adapted to in-memory use cases, they do not fit
our problem. A graph traversal usually searches for column entries
belonging to a certain set, so the use of a classical tree index would
result in a single lookup for at least every source vertex and would
thus be rather inefficient.

A more suitable approach is discussed by Faust et al. [9]. They
propose a Paged Index to reduce the amount of data to be processed
during column scans in main-memory column stores. The basic idea
of splitting the whole column into smaller parts is also persued in
this paper. But while their index structure consists of a consecutive
bit-vector that stores the relevant pages for certain entries and relies
on clustered data, we apply the idea to fit unclustered data and
typical graph traversal requests.

6. CONCLUSION

We presented GRATIN, a secondary index structure to accelerate
graph traversals in main-memory column stores. GRATIN is a con-
cise block-based index that maps each distinct value to a set of
blocks. For perfectly clustered columns, GRATIN maintains a 1:1
mapping. We proposed an efficient update mechanism to support
graph manipulations while keeping the index maintenance overhead
low. Our extensive evaluation shows that GRATIN can speed up
graph traversals by up to an order of magnitude while still being
memory-efficient and simple to maintain.

7. REFERENCES

[1] P. Bohannon, P. Mcllroy, and R. Rastogi. Main-memory index
structures with fixed-size partial keys. In SIGMOD Record, volume 30,
pages 163-174, 2001.

A. Bulug and K. Madduri. Parallel breadth-first search on distributed
memory systems. In Proc. SC’11, pages 65-77, 2011.

[3] J. Chhugani, N. Satish, C. Kim, J. Sewall, and P. Dubey. Fast and
Efficient Graph Traversal Algorithm for CPUs: Maximizing
Single-Node Efficiency. In Proc. IPDPS’12, pages 378-389, 2012.
N. Christofides. The optimum traversal of a graph. Omega,
1(6):719-732, 1973.

[2

—

4

[inam)

[5] M. Ciglan, A. Averbuch, and L. Hluchy. Benchmarking traversal
operations over graph databases. In Proc. ICDE Data Engineering
Workshops, pages 186—189, 2012.

[6] D.G. Corneil and R. Krueger. Simple vertex ordering
characterizations for graph search. Electronic Notes in Discrete
Mathematics, 22:445-449, 2005.

[71 A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders. A parallelization
of Dijkstra’s shortest path algorithm. In Mathematical Foundations of
Computer Science 1998, volume 1450 of LNCS, pages 722-731. 1998.

[8] D. Dominguez-Sal, N. Martinez-Bazan, V. Muntés-Mulero, P. Baleta,

and J. L. Larriba-Pey. A Discussion on the Design of Graph Database

Benchmarks. In Proc. TPCTC’10, pages 25-40, 2011.

M. Faust, D. Schwalb, and J. Krueger. Fast column scans: Paged

indices for in-memory column stores. In Proc. IMDM’13, 2013.

[10] P.-A. Larson, C. Clinciu, C. Fraser, E. N. Hanson, M. Mokhtar,

M. Nowakiewicz, V. Papadimos, S. L. Price, S. Rangarajan,
R. Rusanu, and M. Saubhasik. Enhancements to SQL Server Column
Stores. In Proc. SIGMOD’13, pages 1159-1168, 2013.

[11] T.J. Lehman and M. J. Carey. A study of index structures for main
memory database management systems. Proc. VLDB, pages 294-303,
1986.

[12] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over Time:

Densification Laws, Shrinking Diameters and Possible Explanations.

In Proc. KDD’05, pages 177-187, 2005.

H. Lu, Y. Y. Ng, and Z. Tian. T-tree or B-tree: Main memory database

index structure revisited. In Proc. ADC’10, pages 65-73, 2000.

[14] V. Prabhakaran, M. Wu, X. Weng, F. McSherry, L. Zhou, and
M. Haridasan. Managing large graphs on multi-cores with graph
awareness. In Proceedings of the USENIX Annual Technical
Conference, volume 12, pages 41-52, 2012.

[15] J. Rao and K. A. Ross. Making B+-Trees Cache Conscious in Main
Memory. In Proc. SIGMOD 00, pages 475-486, 2000.

[16] M. A. Rodriguez and P. Neubauer. Constructions from Dots and Lines.
Bulletin of the American Society for Information Science and
Technology, 36(6):35-41, 2010.

[17] T. G. Rokicki. Main memory bank indexing scheme that optimizes
consecutive page hits by linking main memory bank address
organization to cache memory address organization. US Patent
6,070,227, 2000.

[18] D.J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of
vertex elimination on graphs. SIAM Journal on Computing,
5(2):266-283, 1976.

[19] S. Sakr and G. Al-Naymat. Graph indexing and querying: a review.
International Journal of Web Information Systems, 6(2):101-120,
2010.

[20] H. Shang and M. Kitsuregawa. Efficient Breadth-First Search on Large
Graphs with Skewed Degree Distributions. In Proc. EDBT’13, pages
311-322, 2013.

[21] V. Sikka, F. Farber, W. Lehner, S. K. Cha, T. Peh, and C. Bornhovd.
Efficient Transaction Processing in SAP HANA Database: The End of
a Column Store Myth. In Proc. SIGMOD’12, pages 731-742, 2012.

[22] S. Tril and U. Leser. Fast and practical indexing and querying of very
large graphs. In Proc. SIGMOD’07, pages 845-856, 2007.

[23] X. Wang, X. Ding, A. K. Tung, S. Ying, and H. Jin. An efficient graph
indexing method. In Proc. ICDE’12, pages 210-221.

[24] X. Yan, P. S. Yu, and J. Han. Graph indexing: a frequent
structure-based approach. In Proc. SIGMOD’04, pages 335-346,
2004.

[25] A. Yoo, E. Chow, K. Henderson, W. McLendon, B. Hendrickson, and
U. Catalyurek. A scalable distributed parallel breadth-first search
algorithm on BlueGene/L. In Proc. SC’05, pages 25-44, 2005.

[26] S.Zhang, M. Hu, and J. Yang. Treepi: A novel graph indexing method.
In Proc. ICDE’07, pages 966-975, 2007.

[27] J. L. Zhao and H. K. Cheng. Graph indexing for spatial data traversal
in road map databases. Computers & Operations Research,
28(3):223-241, 2001.

[28] J. L. Zhao and A. Zaki. Spatial data traversal in road map databases: A
graph indexing approach. In Proc. CIKM’94, pages 355-362, 1994.

[29] P.Zhao, J. X. Yu, and P. S. Yu. Graph indexing: tree + delta <= graph.
In Proc. VLDB’07, pages 938-949, 2007.

[9

—

[13

—

	Introduction
	Graph Traversals
	GRATIN
	Index Construction
	Update Handling
	Graph Traversals with GRATIN

	Experimental Evaluation
	Construction Time and Index Size
	Traversal Performance

	Related Work
	Conclusion
	References

