
Graph Pattern Matching –
Do We Have To Reinvent The Wheel?

Andrey Gubichev Manuel Then

Technische Universität München

June 22, 2014

Andrey Gubichev, Manuel Then 1 / 14



Motivation

Welc et al. Graph Analytics – Do We Have To Reinvent The Wheel?
GRADES’13

• Shortest path algorithms on graphs
• Native Graph DB vs Relational Store
• Relational Store outperforms Graph DB

This work: Graph Pattern Matching
Goals:

• Consider a Graph Pattern Matching workload
• Run it on systems from different domains (RDF, Property Graph,

Relational)
• Get the best performance by modelling in a ”native” domain

Andrey Gubichev, Manuel Then 2 / 14



Motivation

Welc et al. Graph Analytics – Do We Have To Reinvent The Wheel?
GRADES’13

• Shortest path algorithms on graphs
• Native Graph DB vs Relational Store
• Relational Store outperforms Graph DB

This work: Graph Pattern Matching
Goals:

• Consider a Graph Pattern Matching workload
• Run it on systems from different domains (RDF, Property Graph,

Relational)
• Get the best performance by modelling in a ”native” domain

Andrey Gubichev, Manuel Then 2 / 14



Graph Pattern Matching

• Graph G = (V ,E)

• Query Pattern P – restrictions on nodes and edges
• Answer: subgraph of G that matches P (structural match,

isomorphism)

edge path
neighborhood triangle

Andrey Gubichev, Manuel Then 3 / 14



Testbed: LUBM benchmark

• Originally an RDF benchmark
• Data: universities, students, professors, lectures
• 14 SPARQL queries
• Queries: basic graph pattern matching

Student

Professor

Course

Has
Ad

vis
or Teaches

Takes

• Get rid of reasoning:
• Re-write the queries
• Add the inferred facts to the dataset

Andrey Gubichev, Manuel Then 4 / 14



LUBM dataset in three different data models

(a) RDF, SPARQL (b) Relational, SQL

(c) Property Graph, Cypher & native API

Andrey Gubichev, Manuel Then 5 / 14



Systems & Datasets

• RDF: Virtuoso 6 (Row store), Virtuoso 7 (Column store),
TripleRush

• Relational: Virtuoso 7 (Column store)
• Property Graph: Neo4j 2.0.1, Sparksee 5.0.0

Datasets:
• LUBM-50: ca. 7 Million triples
• LUBM-8000: ca. 1 Billion triples

Andrey Gubichev, Manuel Then 6 / 14



Results

Q2 Q4 Q5 Q6 Q7 Q8 Q9 Q12 Q14

1
10

100
1000

10000

Ti
m

e
[m

s]

Sparksee Virtuoso 7.1 Virtuoso 7.1 Rel Neo4j

Andrey Gubichev, Manuel Then 7 / 14



Results

triangle

m
s

Andrey Gubichev, Manuel Then 8 / 14



Results
m
s

Andrey Gubichev, Manuel Then 9 / 14



Results

Q8 Q12

1
10

100
1000

10000

Ti
m

e
[

]

Sparksee Virtuoso 7.1 Virtuoso 7.1 Rel Neo4j

paths

m
s

Andrey Gubichev, Manuel Then 10 / 14



Results

Q6 Q14

1
10

100
1000

10000

Ti
m

e
[

]

Sparksee Virtuoso 7.1 Virtuoso 7.1 Rel Neo4j

unselective

m
s

Andrey Gubichev, Manuel Then 11 / 14



Lessons learnt (per system)

• Sparksee:
• API-only system
• Application developer has to figure out the execution plan
• Even then the performance is far from optimal

• Neo4j:
• Declarative query language, but no query optimizer (as of 2.0)
• Times out when the graph pattern does not have a fixed starting

point
• Does not scale to large datasets

Andrey Gubichev, Manuel Then 12 / 14



Lessons learnt (per system)

• TripleRush:
• fast on small datasets
• too high memory consumption for the larger dataset

• Virtuoso:
• consistently good performance
• column store outperforms row store
• RDF version outperforms relational

Andrey Gubichev, Manuel Then 13 / 14



Lessons learnt (per query type)

• Triangle matching challenging for all systems
• Fixed path queries efficient except for Neo4j
• Simple neighborhood matching is efficient
• Voluminous results problematic for all systems

Andrey Gubichev, Manuel Then 14 / 14


