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Motivation

Welc et al. Graph Analytics – Do We Have To Reinvent The Wheel?
GRADES’13

• Shortest path algorithms on graphs
• Native Graph DB vs Relational Store
• Relational Store outperforms Graph DB

This work: Graph Pattern Matching
Goals:

• Consider a Graph Pattern Matching workload
• Run it on systems from different domains (RDF, Property Graph,

Relational)
• Get the best performance by modelling in a ”native” domain
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Graph Pattern Matching

• Graph G = (V ,E)

• Query Pattern P – restrictions on nodes and edges
• Answer: subgraph of G that matches P (structural match,

isomorphism)

edge path
neighborhood triangle
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Testbed: LUBM benchmark

• Originally an RDF benchmark
• Data: universities, students, professors, lectures
• 14 SPARQL queries
• Queries: basic graph pattern matching
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• Get rid of reasoning:
• Re-write the queries
• Add the inferred facts to the dataset
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LUBM dataset in three different data models

(a) RDF, SPARQL (b) Relational, SQL

(c) Property Graph, Cypher & native API
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Systems & Datasets

• RDF: Virtuoso 6 (Row store), Virtuoso 7 (Column store),
TripleRush

• Relational: Virtuoso 7 (Column store)
• Property Graph: Neo4j 2.0.1, Sparksee 5.0.0

Datasets:
• LUBM-50: ca. 7 Million triples
• LUBM-8000: ca. 1 Billion triples
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Results
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Lessons learnt (per system)

• Sparksee:
• API-only system
• Application developer has to figure out the execution plan
• Even then the performance is far from optimal

• Neo4j:
• Declarative query language, but no query optimizer (as of 2.0)
• Times out when the graph pattern does not have a fixed starting

point
• Does not scale to large datasets
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Lessons learnt (per system)

• TripleRush:
• fast on small datasets
• too high memory consumption for the larger dataset

• Virtuoso:
• consistently good performance
• column store outperforms row store
• RDF version outperforms relational
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Lessons learnt (per query type)

• Triangle matching challenging for all systems
• Fixed path queries efficient except for Neo4j
• Simple neighborhood matching is efficient
• Voluminous results problematic for all systems
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