
Using semijoin programs to solve
traversal queries in graph databases

Norbert Martinez-Bazan
Sparsity Technologies

Barcelona
norbert@sparsity-technologies.com

David Dominguez-Sal
Sparsity Technologies

Barcelona
david@sparsity-technologies.com

ABSTRACT

Graph data processing is gaining popularity and new solu-
tions are appearing to analyze graphs efficiently. In this pa-
per, we present the prototype for the new query engine of the
Sparksee graph database, which is based on an algebra of op-
erations on sets of key-value pairs. The new engine combines
some regular relational database operations with some ex-
tensions oriented to collection processing and complex graph
queries. We study the query plans of graph queries expressed
in the new algebra, and find that most graph operations can
be efficiently expressed as semijoin programs.

1. INTRODUCTION
The use of graphs in analytic environments is getting

more generalized, with real applications in many different
environments like social network analysis, fraud detection,
network traffic optimization, etc. Graph databases are one
important solution to consider in the management of large
datasets. A graph database (GDB) is any storage system
that uses graph structures with nodes, edges, and proper-
ties to represent and store data. Some graph database in-
dustrial projects are, for example, Neo4J [4], a Java-based
open-source graph database engine; Sparksee [6] (formerly
DEX), a multi-platform graph database management sys-
tem for efficient graph management in memory constrained
environments; or Titan [8] a distributed and cloud-enabled
graph database. There are other solutions to store and query
graphs, such as the Resource Description Framework [5]
(RDF) triple storages, or distributed engines specialized in
the efficient processing of complex graph algorithms over
large graphs, such as Pregel [14] with the vertex-centric com-
putation model, or GraphLab [13], a parallel computation
abstraction tailored to machine learning.

One of the most important challenges for graph databases
is how to express graph queries and how to solve them effi-
ciently. While other solutions have standard languages, such
as SPARQL [7] for RDF, or domain-specific languages to
write parallel graph analysis algorithms as Green-Marl [12],

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Proceedings of the Second International Workshop on Graph Data Manage-

ment Experience and Systems (GRADES 2014), June 22, 2014, Snowbird,
Utah, USA.
Copyright 2014 ACM 978-1-4503-2982-8 ...$15.00.

there is still a lack of formalization and standardization in
the area of graph databases. In recent years several pro-
poses have raised from the research community, for exam-
ple GSPARQL [18], with graph extensions for SPARQL, or
GQL [11] for querying graph patterns, but these solutions
are still far for being adopted by the community. Instead,
there is an important gap between the current industrial
approach with libraries of very efficient APIs for procedural
languages as Java, and high level languages like Gremlin [2]
and Cypher [1] that combine pipes or data flows of results
from the execution of graph APIs. It is very difficult to opti-
mize complex graph oriented programs based on direct calls
to low level APIs. Thus, one of the current challenges for
graph databases is to define an algebra with a set of query
operations that, combined into the form of query plans, can
be optimized and executed efficiently in a query engine to
solve different flavors or graph queries such as edge traversals
(hops), graph pattern matching, graph algorithms, etc.

In this paper, we propose an algebra with a set of oper-
ations to solve graph queries in Sparksee, and we introduce
extensions to SQL-like features to compute recursive pro-
grams and collection-oriented procedures typical for graph
algorithms. The operations of this algebra are capable to re-
produce the behavior of the current Sparksee APIs and, at
the same time, are flexible enough to be combinable in the
form of query plans that are suitable for optimization using
the most usual database query optimization techniques as
well as future optimizations more specific of graph patterns
and graph traversals. Also, by adapting the operations to
the graph data representation of the Sparksee engine, the
query runtime will be able to take advantage of compressed
bitmap processing and combination.

An important property of the operations is that most of
them belong or have been adapted from the relational alge-
bra, and the data structures in the form of key-value pairs
are close to the relational model with multivalued attributes
(Non First Normal Form relations). In particular, our main
operation is the semijoin, which has been widely used in
database technology for distributed systems, and semijoin
program optimization has been studied and formalized in
detail [10,19]. Thus, our proposal is a compromise between
the relational model and the noSQL and, in more detail,
key-value pairs storages and graph querying systems. On
the other hand, our procedural extensions for parallel sub-
query execution and recursion can be used to simulate graph
analytical frameworks for the computation of complex graph
algorithms over huge graphs.

This paper is organized as follows. In Section 2, we intro-
duce briefly the current graph data model and implemen-
tation of Sparksee. Section 3 presents the mapping of the
Sparksee structures to key-value pairs, and details the alge-
bra operations and their use to rewrite the Sparksee APIs.
In Section 4 we analyze different queries from a public graph
benchmark, focusing in the use and optimization of semijoin
programs. Finally, Section 5 summarizes the conclusions
and proposes the future work.

2. SPARKSEE GRAPH DATABASE
Sparksee [15,16] (formerly DEX) is a graph database de-

fined and implemented using a combination of several spe-
cialized structures that allow for an efficient management of
very large graphs. The logical data model in Sparksee is a
labeled and attributed directed multigraph, also known as
Property graph. In a Sparksee graph each node and each
edge has a unique label that denotes the object type. Edges
point towards a direction, from the tail or source node to the
head or destination node. Nodes and edges have also a vari-
able list of attribute values. Figure 1 shows a simple graph
that models a Social Network. In this example, the graph
has three types of nodes: Person, Post and Tag ; and five
types of edges: relationships between people (knows), post-
ing (hasCreator), tagging (hasTag), people preferences (has-
Interest and likes). Each node and edge has some attributes
associated, such as the name, the date or the content.

Figure 1: Example of a Sparksee graph.

Our proposal to manage large graphs with a limited amount
of memory is based on object identifiers (oids) and two types
of structures: compressed bitmaps and maps. Each object
(a node or an edge) in a Sparksee graph has a unique iden-
tifier in the graph, called oid. An oid is represented by a
positive integer number, and a collection of objects is a set
of distinct oids. There exists an oid generator to provide
consecutive unique oids to nodes and edges when they are
created. A bitmap or bit-vector is a collection of presence
bits that denotes which objects are selected or related to
other objects. These bitmaps are compressed as described
in [16]. A map is an inverted index with key values associ-
ated to bitmaps or data values, and it is used as an auxiliary
structure to complement bitmaps, providing full access to all
the data stored in the graph. We combine these two types
of structures to build a more complex one: the link. A link
is a binary association between unique identifiers and data
values. It provides two basic functionalities: given an oid, it
returns the value; and, if it is fully indexed, given a value it
returns all the oids associated to it.

Following a partitioned storage model, a graph in Spark-
see is represented as a combination of links. Figure 2 depicts
the structures that represent the graph in the Social Network
example presented in Figure 1. The links have been graphi-
cally divided into three groups: the first group, OBJECTS,
contains the links that allows for accessing the nodes and
edges in the graph; the second group, RELATIONSHIPS,
is divided into two sets of links (TAILS and HEADS) that
are related to the connectivity among nodes; and the third
group, ATTRIBUTES, contains all the links for accessing
attribute values in an object or to obtain the objects related
to a certain value. In this figure each link is shown with both
indexes (from oid to value and from value to oids). Bitmaps
are depicted as uncompressed although Sparksee compresses
them for efficiency.

3. QUERYING SPARKSEE
In this section, we present a new graph query algebra that

we are implementing for future Sparksee releases. These op-
erations are combined to build query plans, which solve the
most common graph queries: edge traversals (hops), pat-
tern matching, graph statistics, etc. The main requirements
for the algebra are: (i) to take advantage of modern multi-
core CPUs and their cache hierarchy; (ii) to allow the max-
imum degree of parallelization: intra-operator, intra-query
and inter-query; (iii) to be suitable for a future Sparksee dis-
tributed graph database with partitioned graphs; (iv) to be
able to map the current Sparksee API operations and data
structures for compatibility issues; and (v), to adapt and
reuse as much as possible the knowledge generated by more
than 30 years of research in the area of relational, object
oriented and RDF databases. Thus, we introduce first the
data structures that represent the Sparksee links, and then
the operations of the algebra classified in two groups: the
relational-like operations that operate with links, and the
procedural extensions to solve complex queries using collec-
tion oriented processing and recursion.

3.1 Links as key-value pairs
All data structures in the graph query pipeline are imple-

mented as sets of key-value pairs (KVP). Each KVP set has
two columns: the first one, named K , contains unique keys
that are either an oid or scalar datatype (e.g. a literal string,
an integer, a real number, a boolean, etc.); the second one,
named V , contains a tuple formed by one or more elements,
which are in turn a scalar datatype, an oid or collections of
oids. In the new version of the engine, we represent the cur-
rent Sparksee links presented in Section 2 with one or two
KVP. The first one, which we call oid-to-value (OV), maps
the left part of the link and sets K as an oid and V as a
label, oid or scalar datatype. The second one, which we call
value-to-oids (VOS), sets K as a label, oid or scalar datatype
to a collection of oids. The first one is always present, but
the second one only exist if indices are created.

In the paper, we identify the persistent KVPs that rep-
resent the links with a prefix that indicates its type (OV
or VOS), followed by the name of the content of the KVP
(e.g. LABELS, TAILS or ATTR) and the object type (e.g.
hasTag or Post). For instance, Figure 3 depicts the four
KVPs that represent the relationship hasTag and language

shown in Figure 2, with the unique keys underlined. Then,
the new KVP representation of Figure 2 uses two KVP for
the labels, four for each edge type (tails and heads), and one
or two for each attribute depending on the indexation.

Figure 2: Social network graph represented as a collection of Sparksee links

Notice that an oid can be reached as a K in an OV or as a
V from its corresponding VOS. And, each scalar datatypes
or oid that appears as V in a OV is also as K in a VOS. This
allows an optimizer to select which is the most convenient
way to access to oids and scalar datatypes depending on
their usage inside query plans.

OV TAILS hasTag

K V

8 { 3 }

9 { 4 }

11 { 5 }

12 { 5 }

VOS TAILS hasTag

K V

3 { 8 }

4 { 9 }

5 { 11, 12 }

OV ATTR language

K V

3 ca

4 en

5 ca

VOS ATTR language

K V

ca { 3, 5 }

en { 4 }

Figure 3: Two links represented as OV and VOS

3.2 Basic operations
In our algebra, each operation receives one or more argu-

ments such as KVPs, filter constants or configuration pa-
rameters, and returns one single KVP with the result of the
operation. Thus, all operations can be combined by pass-
ing the results of one or more operations as parameters to
another one. By convention, the reserved keywords of the al-
gebra appears always in lowercase and the variables defined
by the programmer are in uppercase.

The basic operations operations of the algebra are rela-
tional operations that manage KVP as relations with two
columns. With these operations, it is possible to process
all the simple graph API such as edge traversal or attribute
management. The operations are:

• Scan(<KVP name>): retrieves one persistent KVP
by name. In the paper, we denote the string concate-
nation as ’||’ to build the KVP names.

• Select(R, Exp): filters R to restrict the result to those
pairs that match the expression Exp.

• Semijoin(R, S, Exp): performs a join between the
pairs in R and S that matches the expression Exp,

and returns the projection of the columns of the left
operand.

• Equijoin(R, S): combines R and S by finding common
elements in the K columns.

• Group(R, [G1, ..., Gn], [A1, ..., Am]): computes the
aggregates Ai over the pairs in R, optionally grouped
by the grouping columns Gj .

• Sort(R, [S1, ..., Sn]): sorts R based on the Si sorting
conditions.

• Limit(R, N): restricts R to a maximum of N pairs.
• Project(R, Exp, [Exp1, ..., Expn]): returns a projec-

tion over K and/or V from R. Expression Exp is the
new key (must be unique), and expressions Exp1...n
are the new elements of V . If the new key is a collec-
tion of oids, then it is split in as many pairs as oids in
the collection.

• Union(R, S), Intersection(R, S) and Difference(R, S):
the classical set-oriented operations over the pairs of
two KVPs.

• Product(R, S): returns the cartesian product of the
keys and values in R and S, with temporary oid keys
for each new pair.

For readability, we write temporary results Ti as “let T1 =
Exp1, . . . , Tn = Expn in R”. This evaluates the expressions
Expi and stores their results in the temporary variables Ti.
After that, it evaluates R using the Ti temporary results as
parameters.

Writing basic graph operations: It is easy to express
basic graph queries with the presented operations. For ex-
ample, we retrieve all the nodes with a certain label or the
label associated to a node as:

NODES(T) ::= select(scan("VOS_LABELS"), k=T)

NODE_TYPE(N) ::= select(scan("OV_LABELS"), k=N)

Finding the edges of a node involves a selection on the
VOS TAILS for the outgoing, or on a VOS HEADS for the
ingoing. If the parameter is a set of nodes instead of a single

one, then it uses a semijoin, which is a generalization of a
restriction [10]. For example, to find the outgoing edges of
type E starting at a certain tail node or the ingoing from a
set of head nodes:

EDGES_OUT(N, E) ::=

select(scan("VOS_TAILS_" || E), k=N)

EDGES_IN(R, E) ::=

semijoin(R, scan("VOS_HEADS_" || E), k=k)

A more frequent operation is to find the neighbors or ad-
jacent nodes following the edges of a certain type. This
operation is also known as 1-hop. In our case, it previously
obtains the edges, and then looks for the adjacent nodes.

NEIGHBORS_OUT(N, E) ::=

semijoin(scan("OV_HEADS_" || E), EDGES(N, E), k=k)

Notice that this traversal involves two operations: one
semijoin and one select, or two semijoins when there are
more than one starting node. In some cases it is better to
have an extra index that materializes the neighborhoods of
the nodes by edge type. These optional KVP indexes are
named as OUT and IN. Figure 4 details an example of them
for the hasTag edge type shown on Figure 3.

OUT hasTag

K V

3 { 6 }

4 { 7 }

5 { 6, 7 }

IN hasTag

K V

6 { 3, 5 }

7 { 4, 5 }

Figure 4: Neighborhood KVPs

While with these indexes the expressions are simpler and
their evaluation will be more efficient, their construction and
maintenance is more expensive, in particular for updates and
deletes. Their use should be restricted only to frequently
traversed edge types with infrequent removals, which is the
case of social networks where relationships are added mas-
sively but only a few of them are removed. With the index,
the neighborhood operation for a single node is rewritten as:

NEIGHBORS_OUT(N, E) ::=

select(scan("OUT_" || E), k=N)

When multiple types of edges are required then the result is
the union of the same expression executed for each distinct
edge type.

A k-hop expression is expressed similarly by concatenating
k-1 semijoins after the first select. Thus, by combining mul-
tiple traversals and filters we express the graph query friends
of a friend (FOAF) or, which is the same, the 2-hops from
a node:

FOAF(N, E) ::=

let R = scan("OUT_" || E)

in select(semijoin(R, select(R, k=N), k=v), k<>N)

Another graph function, the degree of the outgoing edges
of a node, uses aggregates to compute the degree of a node.

DEGREE_OUT(N, E) ::=

group(NEIGHBORS_OUT(N, E), [], [sum(length(v))])

Attributes are managed like nodes, edges and relation-
ships. Thus, the value of a node for an attribute is retrieved
as:

ATTR(N, A) ::= select(scan("ATTR_" || A, k=N)

3.3 Procedural operations
In the previous subsection, we have seen how we express

simple graph queries with the combination of the operations
of KVPs. While some of these operations have an inher-
ent parallelism because they can be transformed into the
union of the operation over chunks or partitions of the orig-
inal KVP (e.g. in select, semijoin, project, etc.), in other
queries there is a need for collection oriented computation.
For example, to compute all the triangles in a subgraph it
is necessary to evaluate a query for each node (or edge) of a
subgraph and merge the results in a single KVP.

Furthermore, there are many graph algorithms that ob-
tain a set of results iteratively until an exit condition or
some threshold have been reached, such as Breadth First
Search (BFS) traversal. For these complex queries, we pro-
vide specific procedural operations that receive one or more
subqueries that will be executed under certain conditions.

The first procedural operation “foreach P in R do Q”eval-
uates the subquery Q for each pair P in R, and the results
are returned as a single KVP merged during a reduce union
phase.

The second procedural operation is the recursive, which
is defined as:

with V1=P1, ..., Vn=Pn

do T1 = Exp1,..., Tm = Expm [until C | steps K]
return Tx

where Vi are the initial parameters of the recursive proce-
dure with the contents of the Pi expressions. At each step,
the expresions Expj after the do keyword are evaluated se-
quentially and the results stored in the temporary variables
Tj . The process is repeated until the expression C evaluates
to an empty result or an optional maximum number of K
iterations have been executed. Thus, the Tj expressions are
evaluated at least once with the initial parameters, and the
result of the recursive operation is the last content of one of
the temporary variables Tx.

With these extensions we find largest hub among all nodes
for a given node and edge type:

HUB(N, E) ::=

let D = foreach X in NODES(N)

DEGREE_OUT(X, E)

in semijoin(D, group(D, [], [max(v)]), v=v)

Additionally, a BFS traversal that departs from a node
up to a certain depth level K is:

BFS(N, E, K) ::=

with R=N

do S=R,

R=NEIGHBORS_OUT(S, E)

until semijoin(R, S, k<>k)

steps K

return R

In this section, we have presented the algebra of opera-
tions used to build the query engine of the Sparksee graph
database engine. We have seen that the traversal of edges,
one of the most frequent operations in graph queries, is
solved with the concatenation of two or more semijoins, and
even a recursive k-hop algorithm performs semijoins itera-
tively until another semijoin raises the end condition. In the
next section we analyze this use of semijoins as the pivotal
operation inside Sparksee query plans.

Figure 5: SN Benchmark Q5

4. QUERY ANALYSIS
In this section, we analyze the usage of semijoins in real

graph queries, and we pinpoint some optimizations that
could be evaluated and implemented in future Sparksee ver-
sions. For the evaluation of the proposal, we use the Inter-
active Social Network Benchmark proposed by the Linked
Data Benchmark Council [9] (LDBC). This benchmark aims
at evaluating RDF and graph database technologies.

We analyze the first interactive queries documented in
the SNB workload generator (QGEN) to test our proposal.
LDBC also provides a synthetic dataset generator (DBGEN)
that builds a complex social network, which mimics real sce-
narios such as Facebook or Twitter. We loaded in Sparksee
v5.0 the validation datasets with 100K users during 3 years
of activity to verify the correctness of the query plans. The
latest versions of DBGEN and QGEN were downloaded at
the end of March 2014 from the LDBC GitHub public repos-
itory [3]. For the analysis of semijoin programs in Sparksee,
first we examine some common graph operations that trans-
late into semijoin programs, and later we quantify the usage
of semijoins and other operations in LDBC queries.

4.1 Semijoin programs
One of the LDBC queries, Q5, is a good example of typical

graph operations that translate into semijoins in Sparksee.
This query looks for the forums that the friends and friends
of the friends of one person have joined after a certain date;
for each of these forums, the query returns the number of

posts they made there. Figure 5 shows an optimized query
plan, where semijoins are represented as boxes and the other
operations as ellipses. Each operation has a numeric iden-
tifier. A semijoin always has two inputs: the vertical solid
line is for the left operand, which is going to be the source
for the result, while the dashed lateral line comes from the
right operand as the filter of the semijoin. Semijoins also
have extra information: the two columns of the comparison
(k for key or v for values), the signature of the result (node
or edge types, datatypes...). The figure is also divided in
two blocks, which are the two examples that we are use to
analyze the semijoin usage: the upper of the query plan is a
2-hop operation, the classical friends and friends of a friend
search, and the rest of the query plan is the equivalent of a
pattern matching expression with a filter on the edges.

First, notice that in both examples all semijoins opera-
tions compare oids or collections of oids, and values of other
datatypes are accessed only inside select filters. It is im-
portant to remember that the internal implementation of the
persistent OV and VOS KVPs in Sparksee have the unique
keys indexed, and that collections of oids are always com-
pressed in the form of bitmaps. Thus, we distinguish two
different combinations of semijoins in query plans:

(a) The left operand is the key. This is usually the case
when the left argument of the semijoin is a persistent KVP
and the key is indexed:

• k=v in 2, 3, 6, 7, 11 and 12: the semijoin selects the
left keys that exists in at least one of the right collec-
tions of oids. Depending on the cardinalities there are
multiple optimizations, such as iterating over the right
collections to lookup in the left index for the keys, or
a more specific optimization for bitmaps that first ob-
tains the union of all the right collections and then test
the keys only once onto this merged collection.

• k=k in 10: this is a particular case of the previous one,
where the right collections have only a single member.

(b) The left operand is a collection of oids. This is
usually the case when the left argument of the semijoin is
an intermediate result inside the query pipeline:

• v=v in 13 and v=k in 9: this is a particular case of
the first one with a collection of oids instead of sin-
gle keys, but by default there is no index available for
lookups unless the query engine indexes temporary re-
sults on the fly. Thus, one optimization is to perform
intersections between the bitmaps of the left and right
collections of oids. Also, all the right collections can
be merged in a single bitmap to reduce the number of
comparisons.

• v<>v in 5: as before, but now with the set-difference
operation instead of the intersection.

In the query plan we also observe the appearance of semi-
join programs [10], which are sequences of semijoins. Semi-
join programs are interesting because they reduce signifi-
cantly the size of the intermediate results, in contrast to
joins, and allow optimizations based on the swapping of op-
erations. Also, in a distributed architecture, semijoins can
be computed with less intersite data transfer joins.

4.2 Semijoin usage in queries
We analyze quantitatively each algebraic operation that

appears in the subset of queries of SNB. Table 1 reports
the frequency per query. There are two extra columns: one
for the total count of each operation, and another with the
percentage. Values in bold identify the largest value in a
column. In this table, we observe that in five of the six
queries the most frequent operation is the semijoin, and in
Q3 it is close to the most frequent. Furthermore, semijoin
accounts for 28.1% of the total operations, while another
25.3% are scans. We detected that many of those scans are
the input of semijoin programs. This means that more than
50% of the operations are scan and semijoin, and this is the
first hint of potential optimizations in the access methods to
the KVP and in their interactions with semijoins.

Operation Q1 Q2 Q3 Q4 Q5 Q6 Total %

EQUIJOIN 16 6 4 1 1 1 29 11.6%

FOREACH 3 4 1 8 3.2%

GROUP 4 2 1 1 1 9 3.6%

LIMIT 1 1 1 1 1 5 2.0%

PRODUCT 4 3 2 9 3.6%

PROJECT 12 7 5 1 1 1 27 10.8%

RECURSIVE 0 0.0%

SCAN 23 14 7 6 7 6 63 25.3%

SELECT 3 3 4 3 2 2 17 6.8%

SEMIJOIN 30 13 11 7 8 10 79 28.1%

SORT 1 1 1 1 1 5 2.0%

UNION 1 3 1 1 1 7 2.8%

Table 1: Operations

Table 2 counts the semijoins grouped by the join columns.
The first column in the table identifies the columns of the
KVP involved in the semijoin: k for the key, and v for the
value. We observe that more than 90% of the semijoins have
a key as the left operand in the comparison, which is an oid
from a persistent KVP. This is a second hint of optimiza-
tion based on indexed access methods to the Sparksee graph
storage. Also, more than 54% of the semijoins involve col-
lections of values, which can be solved by using intersections
of compressed bitmaps. We noticed that in all joins where
a k appears, this column always contains oids, though our
model assumes no limitation on this.

Semijoin Q1 Q2 Q3 Q4 Q5 Q6 Total %

k-k 23 6 2 4 1 2 38 46.9%

k-v 7 7 8 3 6 5 36 44.5%

v-k 2 2 4 4.9%

v-v 1 1 1 3 3.7%

Table 2: Traversals

Length Q1 Q2 Q3 Q4 Q5 Q6

1 10 6 2 1 1

2 6 3 3 1 1

3 3 2 2 1

4 2

5 2

6 1

7 1

Table 3: Traversal lenghts

Finally, Table 3 contains the lengths of semijoin programs
in each query. We see that, while most of the sequences
of semijoins are short, there exists large semijoin programs
with lengths up to 6 or 7 consecutive semijoins. Also, some
semijoins results are reused in more than one posterior op-
eration creating semijoin trees, as shown previously in Fig-
ure 5. This opens another optimization area based in the

reorganization of semijoin programs by applying the proper-
ties of semijoins. For example, in some cases semijoins can
be swapped in a semijoin program to reduce the number
of comparisons. Other optimizations to be considered are
those presented in [19] for the use of bit-arrays (bitmaps)
in semijoins, or Bloom filters to reduce the number of can-
didate comparisons as proposed in [17].

5. CONCLUSIONS AND FUTURE WORK
In this paper we presented an algebra for resolving graph

operations in Sparksee. The basic construct of the query
plans are semijoin programs that operate on pipelines of
key-value pairs. Although most of the operations are rela-
tional based, the semijoins on collections of oids can take
advantage on the compression capabilities of the Sparksee
bitmap storage. Our next steps are to implement the proto-
type of the query engine with full support of the algebra, and
to test and validate the performance of the proposal. After
that, we will focus on query plan optimization for semijoin
programs combined to our non-relational extensions for the
resolution of complex queries over large graphs.

Acknowledgments

This work was partially supported by the EU FP7 projects
LDBC (FP7-ICT-2011-8-317548) and CoherentPaaS (FP7-
ICT-2013-10-611068). Norbert Mart́ınez thanks Generalitat
de Catalunya for the grant DI-13-069, and David Domı́nguez
thanks Ministry of Science and Innovation of Spain for the
grant Torres Quevedo PTQ-11-04970.

6. REFERENCES
[1] Cypher. http://www.neo4j.org/learn/cypher/.

[2] Gremlin. https://github.com/tinkerpop/gremlin/wiki/.

[3] LDBC SNB. https://github.com/ldbc/ldbc socialnet bm/.

[4] Neo4J. http://www.neo4j.org/.

[5] RDF. http://www.w3.org/RDF/.

[6] Sparksee. http://www.sparsity-technologies.com/.

[7] SPARQL. http://www.w3.org/TR/sparql11-query/.

[8] Titan. http://thinkaurelius.github.io/titan/.

[9] R. Angles et al. The Linked Data Benchmark Council: a Graph
and RDF industry benchmarking effort. In SIGMOD Record
(accepted, unpublished). ACM, 2014.

[10] P. A. Bernstein and D.-M. W. Chiu. Using semi-joins to solve
relational queries. JACM’81, 28(1):25–40, 1981.

[11] H. He and A. K. Singh. Graphs-at-a-time: query language and
access methods for graph databases. In Proc. of the ACM
SIGMOD’08, pages 405–418. ACM, 2008.

[12] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun. Green-marl: a
dsl for easy and efficient graph analysis. In ACM
SIGARCH’12, volume 40, pages 349–362. ACM, 2012.

[13] Y. Low et al. Distributed graphlab: a framework for machine
learning and data mining in the cloud. Proceedings of the
VLDB Endowment, 5(8):716–727, 2012.

[14] G. Malewicz et al. Pregel: a system for large-scale graph
processing. In Proc. of the ACM SIGMOD’10, pages 135–146.
ACM, 2010.

[15] N. Martinez-Bazan et al. Dex: A high-performance graph
database management system. In Proc. of ICDEW’11, pages
124–127, Washington, DC, USA, 2011. IEEE Computer Society.

[16] N. Mart́ınez-Bazan et al. Efficient graph management based on
bitmap indices. In Proc. of IDEAS’12, pages 110–119. ACM,
2012.

[17] J. K. Mullin. Optimal semijoins for distributed database
systems. Software Engineering, IEEE Transactions on,
16(5):558–560, 1990.

[18] S. Sakr, S. Elnikety, and Y. He. G-sparql: a hybrid engine for
querying large attributed graphs. In Proc. of the ACM
CIKM’12, pages 335–344. ACM, 2012.

[19] P. Valduriez and G. Gardarin. Join and semijoin algorithms for
a multiprocessor database machine. ACM Transactions on
Database Systems (TODS), 9(1):133–161, 1984.

