
PGX.ISO: Parallel and Efficient In-Memory Engine for
Subgraph Isomorphism

Raghavan Raman
Oracle Labs

raghavan.raman@oracle.com

Oskar van Rest
Oracle Labs

oskar.van.rest@oracle.com

Sungpack Hong
Oracle Labs

sungpack.hong@oracle.com

Zhe Wu
Oracle

alan.wu@oracle.com

Hassan Chafi
Oracle Labs

hassan.chafi@oracle.com

Jay Banerjee
Oracle

jayanta.banerjee@oracle.com

ABSTRACT

Subgraph isomorphism, or finding matching patterns in a
graph, is a classic graph problem that has many practical use
cases. There are even commercialized solutions for this prob-
lem such as RDF databases with their support for SPARQL
queries. In this paper, we present an efficient, parallel in-
memory solution to this problem. Our solution exploits effi-
cient data representations as well as algorithmic extensions,
both tailored for parallel, in-memory processing. Moreover,
when processing RDF data, we reduce the problem size by
converting certain nodes and edges into properties. We also
propose a new graph query language where such a conver-
sion can be encoded. Our evaluation shows that our solution
can achieve significant performance boost over an existing
secondary storage based RDF database.

1. INTRODUCTION
With the recent growing interest on graph databases, it

has become more important to have a fast solution to the
classic problem of subgraph isomorphism, or finding match-
ing patterns in a large graph. Theoretically, the problem
of subgraph isomorphism involves finding all subgraphs of
graph D that are isomorphic to another graph Q. The graph
D (the data graph) is typically huge while the graph Q (the
query graph) is typically small. The term isomorphic in the
above definition says that there is a one-to-one mapping be-
tween the nodes and edges of the two graphs. Note that
when the nodes (edges) of the graph Q have certain prop-
erties, the matching nodes (edges) in graph D must have
the same-valued properties. Although the general problem
of subgraph isomorphism is NP-Hard, the actual instances
of this problem are much more tractable in practical con-
texts, because nodes and edges are associated with unique
identifiers and/or a set of properties in popular graph data
models.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
GRADES’14, June 22 - 27 2014, Snowbird, UT, USA
Copyright 2014 ACM 978-1-4503-2982-8/14/06 ...$15.00.
http://dx.doi.org/10.1145/2621934.2621939

Consequently, many solutions have been proposed for this
problem, including commercialized ones. First, there are
graph databases [9, 3] which adopt the classic RDF graph
data model [16] and SPARQL, a query language for RDF
data [17]; when a SPARQL query is submitted, the RDF
database finds all matching subgraphs and graph elements
of the query, by solving the subgraph isomorphism prob-
lem. Similar pattern-matching operations are also supported
by graph databases [10] that adopt the more recent Prop-
erty Graph (PG) data model [1]. Noticeably, these graph
databases are all disk-oriented so that they can process even
large graphs. Second, there are also in-memory solutions for
this problem [5, 8, 12, 11]. However, most of them are single-
threaded and/or do not seem to handle large-sized graphs
very well on SMP systems.

In this work, we describe a new parallel and efficient
in-memory solution to the subgraph isomorphism problem.
Unlike existing in-memory solutions [5, 12, 11], our sys-
tem is designed to handle very large graphs (i.e. billions
of edges). Specifically, we exploit efficient in-memory data
representations both for graph and partial solutions. Our
solution captures the inherent large degree of parallelism of
the problem and exploits contemporary big multi-processor
machines. We also modified the conventional backtracking
algorithm [8], for the sake of fast, parallel, in-memory pro-
cessing.

Our solution is applicable to both RDF model and PG
model. When our solution is applied to RDF model, how-
ever, we convert some of RDF nodes and edges into proper-
ties, and thereby reducing the problem size. We introduce a
new graph matching query language, GMQL, which can be
used to query both RDF graphs and PG graphs. Our query
processor has preliminary support for automated conversion
from SPARQL to GMQL.

We evaluate our solution with LUBM [4], a standard
benchmark for RDF and SPARQL. When compared to an
existing disk-oriented RDF database, our solution achieves
orders of magnitude performance improvement. The exper-
iments also show that our solution scales well on large SMP
systems.

The main contributions of this paper are as follows:

• A parallel and efficient in-memory solution to the prob-
lem of subgraph isomorphism that can be used for RDF
data model as well as PG data model.

• Evaluation of our solution on a standard RDF bench-
mark, LUBM, including a comparison with an existing
RDF database.

• The design of GMQL, an intuitive high-level graph
query language for PG model, and its conversion from
SPARQL.

The rest of the paper is organized as follows. Section 2
describes the background and the framework we use to build
our solution and also discusses related work. Section 3
presents our in-memory solution to subgraph isomorphism.
Section 4 evaluates our solution on LUBM benchmark. Sec-
tion 5 presents our query language, GMQL, and Section 6
concludes.

2. BACKGROUND
We now describe the framework we use for our parallel in-

memory solution to the problem of subgraph isomorphism.
Parallel Graph analytiX (PGX) is a framework that sup-

ports in-memory graph analysis. It includes parallel and effi-
cient implementations of various graph algorithms. Some of
these algorithms are part of the runtime of the Green-Marl
Domain Specific Language [6]. Additionally, PGX also in-
cludes libraries to efficiently execute graph algorithms. For
example, PGX includes an efficient implementation of the
priority heap data structure which can be used by the Green-
Marl compiler to implement a heap used in an algorithm like
Dijkstra’s shortest path.
PGX contains abstractions for nodes, edges, and proper-

ties in graphs. The nodes and edges of a graph are stored in
the Compressed Sparse Row (CSR) format, which consists
of two contiguous arrays. For every node in the graph, the
first array stores the starting index to the list of edges in
the second array. The second array stores the ids of the des-
tination nodes of the outgoing edges for every node in the
graph ordered by the nodes in the first array. The properties
on nodes and edges are stored as separate arrays, one per
property. PGX supports a variety of data types to be used
as properties, including, primitive types, string, string-set,
and datetime.
PGX.ISO is the graph pattern matching component in the

PGX framework. Our solution to the problem of subgraph
isomorphism is implemented as part of PGX.ISO.

2.1 Related Work
We now discuss some existing work in the area of subgraph

isomorphism. One of the earliest solution to the problem of
subgraph isomorphism was provided by Ullman [14]. The so-
lution is based on a backtracking search algorithm that also
prunes candidate nodes when their degree is less than the
degree of the node being matched. A number of algorithms
have been proposed to improve the Ullman algorithm. These
mostly involve a better mechanism to prune candidate nodes
as early as possible, identifying a good order of query nodes
for matching, etc.
VF2 [11] is an algorithm for subgraph isomorphism that

introduces new pruning rules to improve the performance of
the Ullman algorithm. While two of these rules check the
consistency of the current partial solution, there are three
other rules that prune the search tree by looking ahead up to
2 steps in the search. One of these pruning rules is to elimi-
nate candidate nodes that are not connected to the already
matched nodes in the data graph.

QuickSI [12] identifies a good sequence of query graph
nodes to match by using the node frequency information
that is pre-computed from the data graph. The algorithm
also proposes a technique to verify the consistency of partial
solutions by building a feature-based index. A comparison of
some of these techniques that improve the Ullman algorithm
can be found in [8].

Turbo ISO [5] is one of the most recent work on subgraph
isomorphism that shows the importance of using different
matching orders for different regions of the data graph. They
illustrate a novel method to identify the matching order for
a given region in the data graph by performing a depth-first
search from the starting node in the region.

Finally, Sun et al. [13] present an approach to subgraph
matching for huge graphs with billion nodes. They focus on
a distributed setting, whereas our focus in this work is on a
shared-memory system.

3. IN-MEMORY SOLUTION
Existing solutions to the problem of subgraph isomor-

phism use a variant of the basic backtracking algorithm
along with some filtering techniques to prune partial solu-
tions as early as possible during matching. A generic version
of the backtracking algorithm used by most of the solutions
to subgraph isomorphism can be found in [8]. These earlier
approaches report performance by searching for the first k

embeddings (k is mostly set to 1000) of the query graph in
the data graph. On the other hand, in the case of SPARQL
queries, we need to find all possible embeddings of the query
graph in the data graph.

As a first step to our solution, we implemented the back-
tracking subgraph search algorithm along with pruning and
evaluated it on the LUBM benchmark. Our observations
from that experiment are listed below:

• While it is quite easy to parallelize the backtrack-
ing subgraph search algorithm, load balancing across
many threads becomes very difficult in such an imple-
mentation. This affects the scalability of the solution
on large SMPs.

• Pruning partial solutions is not always useful. If the
pruning does not remove any partial solutions, as in
some LUBM benchmarks, then pruning is just doing
extra work without any gains.

• Ordering of nodes for matching is very important to
obtain the best possible performance.

• Data structure to store partial solutions has a signifi-
cant impact on the performance.

The above factors play a significant role in achieving good
performance, especially in cases where the data graph is
large. While the issue of selecting the right order of nodes
has been addressed in the literature [5], the other issues like
parallelization and data structure to store partial solutions
have not been addressed so far. We focus on building a so-
lution to subgraph isomorphism that overcomes the above
problems.

We now present our parallel in-memory solution to sub-
graph isomorphism. First, we discuss the ordering of query
nodes in our solution, followed by the strategy we use for
matching. Then, we present our parallelization methodol-
ogy and the data structure we use to represent partial solu-

tions. Finally, we describe the edge-first matching approach
and its benefits.

3.1 Ordering of Query Nodes
The order in which query nodes are matched affects the

matching performance to a significant extent. The state
of the art solution to subgraph isomorphism [5] shows that
different regions of the data graph require different ordering
of query nodes.
In our solution, we use a fixed order of query nodes for

matching. Also, our orderings are chosen such that, at every
step (except the first node), we pick a node that has at least
one already matched neighbor. This strategy helps in reduc-
ing the search space as explained in Section 3.2. We plan
to explore dynamic ordering and automatically choosing the
right order in future. Our evaluation in Section 4 compares
the performance of different orders for the LUBM query 2,
which clearly shows that a fixed order is quite good for the
LUBM benchmark.

3.2 Matching Strategy
Every query node that we match has at least one neighbor

that has already been matched (except for the first node).
Let us first consider the case where the node-to-be-matched
has exactly one already matched neighbor. Matching such a
node involves iterating over all the neighbors of the matches
of its neighbor that has already been matched. For exam-
ple, matching a node B whose neighbor A has already been
matched involves iterating over the neighbors of the matches
of A and looking for matches with B. This strategy reduces
the search space for B because matching B requires searching
only the neighbors of the matches of A as against searching
the entire data graph in case none of B’s neighbors have
been matched.
Let us now consider the case where the node-to-be-

matched has more than one already matched neighbor. In
this case, matching this node involves finding the nodes that
are common among the neighbors of the matches of all its
neighbors that have already been matched. The node-to-
be-matched in this case is referred to as a join node. For
example, matching a node C whose neighbors A and B have
already been matched involves finding the nodes that are
common among the neighbors of the matches of A and B.
PGX includes a fast and efficient method to find such com-
mon neighbors. We use this common neighbor implementa-
tion in PGX to match join nodes. The details of the common
neighbor implementation in PGX are beyond the scope of
this paper.
Note that a “neighbor” in this case could mean either an

outgoing neighbor or an incoming neighbor depending on
the direction of the corresponding query graph edge.

3.3 Parallelization
The backtracking search algorithm for subgraph isomor-

phism is a depth-first approach since it explores a partial so-
lution until completion before moving on to the next partial
solution. The load imbalance in the parallel version of this
algorithm is primarily due to the differences in the amount
of work in different parts of the search tree.
Our solution solves this problem by performing the match-

ing in a breadth-first manner. First, we find all the nodes
in the data graph that match the first node in the query
graph. Then, we match the second node in the query graph

!"# !$# !%# !&# !'# !(#)#

!"# !$# !*# !%# !&# !+# !'# !(# !,#)#

-./0#123456!7#

%#!89/:#

;<327/#%=#

-./0#123456!7#

'#!89/:#

;<327/#'=#

>20?2@#

<8@A?8!#"#

>20?2@#

<8@A?8!#%#

>20?2@#

<8@A?8!#"#

>20?2@#

<8@A?8!#%#

Figure 1: Partial Solution Representation

for all the partial solutions obtained in the first stage and
so on. We continue matching one query node at every stage
for all the partial solutions obtained in the previous stage,
in a breadth-first manner.

We parallelize the breadth-first matching as follows: In
the first stage, all the nodes in the data graph are distributed
uniformly among all the threads. In every subsequent stage,
all the partial solutions obtained in the previous stage are
distributed uniformly among all the threads. At every stage,
the threads store the partial solutions they generate in a
thread-local storage. At the end of every stage, after all the
threads complete their matching, we copy the thread-local
partial solutions into a single global storage. This copy is
done in parallel by all the threads after performing a prefix-
sum operation to compute their positions in the global stor-
age. Since every thread begins with the same number of
partial solutions at every stage in matching, there is a bet-
ter balance in the amount of work among all the threads.
Note that there may still be some load imbalance among
the threads. But, in practice, we noticed that this approach
results in an efficient parallel solution that scales well on
large SMPs.

3.4 Partial Solution Representation
Most existing subgraph matching algorithms store a pair

of nodes (u, v), for every query node u, in their partial
solutions, where v is the data node that matches u. The pair
is necessary because, in general, the algorithm can match the
query nodes in any order. Since we fix the matching order
of query nodes in our solution, we omit the query nodes
and store only the data nodes in the partial solution. The
position of the data node in the partial solution specifies the
query node that it matches to. This representation reduces
the memory usage of partial solutions by half and is very
important for our solution since we expect to have millions
of partial solutions for some queries.

We noticed that storing every partial solution as a sepa-
rate data structure, say an array, resulted in the creation of
a large number of such very small data structures due to a
very high number of partial solutions, thereby resulting in
poor performance. In order to avoid this problem, we store
all partial solutions “inlined” in one big array. This array is
compact, i.e., it reserves space to store only the nodes that
have been matched so far. For example, if there are k partial
solutions at the end of the second stage, the array is just big
enough to store k ∗ 2 elements. The inlined representation
in a single array also provides more spatial locality while
iterating over the partial solutions.

Figure 1 shows an example of how our partial solution
representation changes from stage 2 (after matching 2 query
nodes) to stage 3 (after matching 3 query nodes). After

Table 1: Statistics of graphs generated from LUBM

LUBM 8K LUBM 25K
Nodes 173 million 542 million
Edges 658 million 2.05 billion

stage 2, every group of two nodes in the array constitutes a
partial solution and after stage 3, every group of three nodes
in the array constitutes a partial solution.

3.5 Edge-First Matching
At every stage in our solution (starting from the second

stage), the matching step involves looking for a node that is
connected to given data node x and matches a given query
node q. This involves iterating over all the edges from x and
the corresponding neighbors of x looking for matches with
the corresponding edge and neighbor in the query graph.
This matching can be done in two different ways:

• First match the neighbor of x with the query node and
then match the edge from x with the query edge. This
is called the node-first approach.

• First match the edge from x with the query edge and
then match the neighbor of x with the query node.
This is called the edge-first approach.

Recall from Section 2 the CSR representation used in
PGX to store nodes and edges. In such a representation,
iterating over the edges from a given node accesses consecu-
tive elements of the arrays corresponding to edge properties,
whereas iterating over the neighbors of a given node will re-
sult in random accesses to the arrays corresponding to node
properties. With the edge-first approach, since we can avoid
matching neighbors in case the edge matching fails, there
will be lesser random accesses as compared to the node-first
approach.

4. PERFORMANCE EVALUATION
We evaluate our solution on a x86 system and a SPARC

system. The x86 system we use is a 2x8 core Intel Xeon
E5-2660 machine with 256 GB memory where each core is
2-way hyper-threaded running at 2.2GHz. The machine has
4 250 GB SSDs and runs 64-bit Linux version 2.6.32. The
SPARC system we use is a SPARC T5-8 server (8x16-cores)
with 4 TB memory where each core is 8-way multithreaded
running at 3.6 GHz. The server has 6 1 TB SSDs and runs
Solaris 11.
We use the LUBM datasets 8K and 25K to evaluate our

solution. The number of nodes and edges in our graphs
generated from these datasets are shown in Table 1. Note
that the number of triples in these datasets are higher than
the number of nodes and edges. This is because we convert
some of these triples into properties on nodes. Specifically,
we convert triples with “rdf:type” as predicate into a node-

type property. Also, other triples like those corresponding
to name, title, email, telephone, etc., are converted to node
properties. While evaluating an LUBM query in PGX.ISO,
we load only those properties that are required for the par-
ticular query from the Oracle database.
First, we compare the performance of our solution,

PGX.ISO, with Oracle’s SQL based solution for SPARQL
on LUBM 8K dataset for all LUBM queries. Table 2 shows
the execution times of SQL (using parallel execution of SQL

Table 2: Performance comparison between Oracle-
SQL and PGX.ISO on LUBM 8K running on x86

LUBM Query # Solutions Execution Time (s)
SQL PGX.ISO

Query 1 4 0 0
Query 2 2528 21.26 0.1
Query 3 6 0 0
Query 4 34 0 0
Query 5 719 0.02 0
Query 6 83557706 23.56 0.14
Query 7 67 0.01 0
Query 8 7790 0.23 0
Query 9 2178420 58 0.58
Query 10 4 0 0
Query 11 224 0.01 0
Query 12 15 0.14 0
Query 13 37118 1.15 0.03
Query 14 63400587 21.09 0.1

!"!#$

!"#$

#$

#!$

#!!$

%&$ %'$ %($ %#)$

!
"#

$
%&
'(
%

)*+,%-.%/0%1-2%

*+,"-./$.01$

!"#$

#$

#!$

#!!$

#!!!$

%&$ %'$ %($ %#)$

!
"#

$
%&
'(
%

)*+,%34.%/0%1-2%

*+,"-./$.01$

!"!#$

!"#$

#$

#!$

#!!$

%&$ %'$ %($ %#)$

!
"#

$
%&
'(
%

)*+,%-.%/0%56789%

*+,"-./$.01$

!"#$

#$

#!$

#!!$

#!!!$

%&$ %'$ %($ %#)$

!
"#

$
%&
'(
%

)*+,%34.%/0%56789%

*+,"-./$.01$

Figure 2: Comparing PGX.ISO and Oracle-SQL

statements) and PGX.ISO on LUBM 8K for all LUBM
queries running on our x86 system. Note that the least reso-
lution of time measured in SQL is 0.01 seconds. Hence, any
time less than 0.01 seconds is shown as 0 in Table 2. The Or-
acle SQL queries were tuned and run in parallel to achieve
the best possible performance. These execution times are
for queries that count the number of solutions for both SQL
and PGX.ISO.

The execution times of SQL in Table 2 show that the
LUBM queries can be divided into two groups. The first
group is the four queries, 2, 6, 9, and 14, that take a reason-
able amount of time in SQL. For these queries, PGX.ISO is
more than 100x faster than SQL. The second group is all
the remaining queries that take 1 second or less to complete
in SQL. These queries have a common feature that one of
the nodes in the query graph has a unique “id” and hence it
matches with exactly one node in the data graph. An index
on the “id” of the nodes can be used to directly look up the
matching node in the data graph. This is the reason the
SQL completes very quickly for the queries in the second
group. Note that PGX.ISO also uses an index and hence
completes very fast for these queries. For this reason, the
analysis that follows will be on the queries in the first group.

!"

!#$"

%"

%#$"

&"

&#$"

'"

'#$"

("

(#$"

!)%)&" !)&)%" %)!)&" %)&)!" &)!)%" &)%)!"

!
"#

$
%&
'(
%

)*+$*'%

,-./%012%34$*5%6%78%90:%

*+,-"./012" 3,4-"./012"

Figure 3: PGX.ISO Performance with node-first and
edge-first approaches on different query node orders
for LUBM Query 2 on LUBM 8K dataset

Figure 2 shows the comparison of PGX.ISO and SQL exe-
cution times on LUBM 8K and 25K datasets running on our
x86 and SPARC systems for the four LUBM queries, 2, 6, 9
and 14. Note that the y-axis on those graphs show time in
log scale. It is evident from these graphs that PGX.ISO per-
formance is at least a couple of orders of magnitude better
than SQL for these four queries on x86 and SPARC.
We now show the effect of different matching orders for

nodes in the queries. Figure 3 shows PGX.ISO’s execu-
tion time for different node orders in query 2 on LUBM 8K
dataset running on the x86 system. There are three nodes in
query 2 and hence there are six possible orderings as shown
in Figure 3. For each order, there are two bars in Figure 3.
Let us ignore the different bars within each order for the mo-
ment. This graph shows that the performance of subgraph
matching varies hugely with the query node matching order.
By changing the matching order alone, we could improve the
performance by up to 10x according to this graph. In prac-
tice, we have observed that choosing the correct matching
order could result in bigger performance improvements in
some cases.
Figure 3 also shows the performance of PGX.ISO’s sub-

graph matching when using the “node-first” approach and
the “edge-first” approach. Each order in Figure 3 includes
two bars, the first bar corresponds to when “node-first”
matching was performed and the second bar corresponds
to when “edge-first” matching was performed. It is evident
from this graph that, for all the orders (except 2,0,1), the
edge-first approach performs better than the node-first ap-
proach. This is because in the node-first approach, matching
the nodes (neighbors) first involve accessing non-contiguous
locations of an array as explained in Section 3, whereas in
the edge-first approach, matching the edges first involve ac-
cessing contiguous locations.
We now evaluate the scalability of our solution on x86

and SPARC systems. Figure 4 shows PGX.ISO’s scaling for
query 2 on LUBM 8K and 25K running on x86 and SPARC
systems. Our solution scales linearly until 16 threads on
x86 and SPARC for both 8K and 25K datasets. In the case
of x86, there is a dip in the scaling from 16 to 32 threads.
This is because, with 32 threads, we go beyond the number
of cores in the x86 machine and rely on hyper-threading to
provide the scaling. On SPARC, there is a dip in scaling
from 16 to 128 threads because the threads go out of socket
when they are more than 16. The performance difference

!"!#$

!"#$

#$

#!$

#$ %$ &$ '$ #($)%$ (&$ #%'$

!
"#

$
%&
'(
%

!)*$+,'%

-./0%123%45$6789:%!"#$%

*'($ +,-./$

!"#$

#$

#!$

#$ %$ &$ '$ #($)%$ (&$ #%'$

!
"#

$
%&
'(
%

!)*$+,'%

-./0%;<23%45$6789:%!"#$%

*'($ +,-./$

Figure 4: PGX.ISO Scalability on x86 and SPARC

between x86 and SPARC on LUBM 25K is because we were
able to use the additional memory available on our SPARC
system to build extra indexes to improve performance. The
details regarding the indexes are beyond the scope of this
paper.

5. GMQL: GRAPH-MATCHING QUERY

LANGUAGE
GMQL is a declarative language designed to specify graph

pattern-matching queries. It is influenced by SPARQL and
Neo4J’s Cypher and provides first-class constructs for nodes,
edges and properties. While SPARQL is meant for querying
RDF models, GMQL, like Cypher, is meant for querying PG
models. Like Neo4J, we provide support for conversion from
RDF models to PG models, allowing RDF data to be queried
using our language as well. However, in contrast to Cypher,
we additionally provide preliminary support for automated
conversion from SPARQL to GMQL to allow both languages
to be used in combination with our parallel and efficient in-
memory engine.

5.1 Textual and Graphical Syntax
GMQL provides first-class constructs for nodes, edges and

properties and provides meaningful built-in calls for PG
graphs. An example of such a built-in call is ‘inDegree()’,
which can be used, for example, to constrain the in-degree
of a node (e.g. X.inDegree()> 3).

GMQL has a textual and a graphical syntax as shown
in Figure 5. This query finds all combinations of gradu-
ate students, their universities and the departments from
which they obtained their degrees. The textual syntax has
an IN clause defining the name of the data graph D and
a MATCH clause defining the subgraph Q in the form of a
set of paths consisting of nodes and edges. A graph pattern
is formed by using the same node in multiple paths (e.g.
nodes X and Y in the example). Edges may have a type
or a variable. In the example, all edges have a type, but a
variable is needed in case additional constraints need to be
defined on an edge (e.g. X −[e1]−> Z, e1.type = ub

:memberOf, e1.numericProp1 < 12). The query also
has a SELECT clause, defining what data should be returned
and how it should be formatted. Tabular and JSON format
is supported.

Figure 5 furthermore shows GMQL’s graphical syntax.
Graphically, a graph Q takes the form of an actual graph
with constraints placed next to the nodes and edges to which
they belong. Cross-constraints that involve multiple nodes
and edges (e.g. X.age < Y.age) are placed in a separate
table to avoid having to visualize them multiple times.

SELECT ?X ?Y ?Z
WHERE {
?X rdf:type ub:GraduateStudent .
?Y rdf:type ub:University .
?Z rdf:type ub:Department .
?X ub:memberOf ?Z .‘
?Z ub:subOrganizationOf ?Y .
?X ub:undergraduateDegreeFrom ?Y
}

IN lubm50
MATCH

X −[ub:memberOf]−> Z −[ub:subOrganizationOf]−> Y,
X −[ub:undergraduateDegreeFrom]−> Y,
X.type = ub:GraduateStudent,
Y.type = ub:University,
Z.type = ub:Department
SELECT AS TABLE X, Y, Z

Figure 5: LUBM query 2 in SPARQL (top), textual
GMQL (center) and graphical GMQL (bottom)

5.2 Conversion from SPARQL to GMQL
We provide automated conversion from SPARQL to

GMQL to be able to efficiently process SPARQL queries
using our in-memory and parallel solution. Besides being
able to process SPARQL queries efficiently, the conversion
also provides a way for existing SPARQL users to easily get
started with GMQL by being able to see how their SPARQL
queries translate to GMQL. Just like for GMQL, we provide
full-featured IDE support for SPARQL. However, although
we provide full parsing support for SPARQL 1.1 [17], our
conversion currently only supports a subset of SPARQL. We
therefore apply a hybrid approach when processing SPARQL
queries: we first try to convert such a query to GMQL and
process it using our in-memory and parallel solution, but
we fall back to processing SPARQL queries using Oracle’s
SQL-based solution in case conversion fails.

5.3 Implementation
We provide a (textual) SPARQL editor and textual and

graphical GMQL editors that we created using the Spoofax
Language Workbench [7]. The editors are capable of syn-
chronizing in real-time [15] by means of transformations
defined in Spoofax’s transformation language Stratego [2].
Synchronization from SPARQL to GMQL is unidirectional
while synchronization between textual and graphical GMQL
editors is bidirectional. Queries are translated into C++
programs, which we compile and execute at runtime. Our
IDE provides support for presenting query results in graph-
ical and tabular form.

6. CONCLUSIONS
In this paper, we presented a parallel and efficient in-

memory solution to the problem of subgraph isomorphism
that can be used to implement SPARQL queries on RDF
data. This solution is implemented as part of the graph pat-

tern matching component, PGX.ISO, in the graph analysis
framework, PGX. We evaluated our solution on the LUBM
benchmark, which is a standard benchmark for RDF and
showed that our solution handles graphs with billions of
edges quite efficiently. We also showed that our in-memory
solution performs about two orders of magnitude better than
disk based solutions to RDF. In addition, we presented an
intuitive query language, GMQL, that can be used to per-
form graph matching queries at a high level.

7. REFERENCES
[1] Property graph model. https://github.com/

tinkerpop/blueprints/wiki/Property-Graph-Model.
[Online; accessed 5/19/2014].

[2] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and
E. Visser. Stratego/XT 0.17. A language and toolset
for program transformation. Science of Computer

Programming, 2008.

[3] O. Erling and I. Mikhailov. In Conference on Social

Semantic Web, 2007.

[4] Y. Guo, Z. Pan, and J. Heflin. Lubm: A benchmark
for owl knowledge base systems. Semantic Web

Journal, 2005.

[5] W.-S. Han, J. Lee, and J.-H. Lee. Turboiso: Towards
ultrafast and robust subgraph isomorphism search in
large graph databases. SIGMOD, 2013.

[6] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun.
Green-Marl: a DSL for easy and efficient graph
analysis. In ASPLOS, 2012.

[7] L. C. L. Kats and E. Visser. The Spoofax language
workbench: rules for declarative specification of
languages and IDEs. In OOPSLA, 2010.

[8] J. Lee, W.-S. Han, R. Kasperovics, and J.-H. Lee. An
in-depth comparison of subgraph isomorphism
algorithms in graph databases. PVLDB, 2013.

[9] C. Murray. Oracle spatial and graph - rdf semantic
graph developer’s guide. http://docs.oracle.com/
cd/E16655_01/appdev.121/e17895.pdf, 2014.
[Online; accessed 5/19/2014].

[10] Neo4j. Neo4j, the world’s leading graph database.
http://www.neo4j.org/, 2013.

[11] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento.
A (sub)graph isomorphism algorithm for matching
large graphs. IEEE Trans. Pattern Anal. Mach.

Intell., 2004.

[12] H. Shang, Y. Zhang, X. Lin, and J. X. Yu. Taming
verification hardness: An efficient algorithm for testing
subgraph isomorphism. Proc. VLDB Endow., 2008.

[13] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li.
Efficient subgraph matching on billion node graphs.
Proc. VLDB Endow., 2012.

[14] J. R. Ullmann. An algorithm for subgraph
isomorphism. J. ACM, 1976.

[15] O. van Rest, G. Wachsmuth, J. R. H. Steel, J. G. Süß,
and E. Visser. Robust real-time synchronization
between textual and graphical editors. In ICMT, 2013.

[16] W3C. RDF Primer.
http://www.w3.org/TR/rdf-primer/, 2004. [Online;
accessed 5/19/2014].

[17] W3C. SPARQL 1.1 Query Language.
http://www.w3.org/TR/sparql11-query/, Mar. 2013.
[Online; accessed 5/19/2014].

