
HelP: High-level Primitives For Large-Scale Graph
Processing

Semih Salihoglu
Stanford University

semih@cs.stanford.edu

Jennifer Widom
Stanford University

widom@cs.stanford.edu

ABSTRACT
Large-scale graph processing systems typically expose a small set
of functions, such as the compute() function of Pregel, or the gather(),
apply(), and scatter() functions of PowerGraph. For some com-
putations, these APIs are too low-level, yielding long and com-
plex programs, but with shared coding patterns. Similar issues
with the MapReduce framework have led to widely-used languages
such as Pig Latin and Hive, which introduce higher-level primi-
tives. We take an analogous approach for graph processing: we
propose HelP, a set of high-level primitives that capture commonly
appearing operations in large-scale graph computations. Using our
primitives we have implemented a large suite of algorithms, some
of which we previously implemented with the APIs of existing sys-
tems. Our experience has been that implementing algorithms us-
ing our primitives is more intuitive and much faster than using the
APIs of existing distributed systems. All of our primitives and algo-
rithms are fully implemented as a library on top of the open-source
GraphX system.

1. INTRODUCTION
Processing large-scale graph-structured data is an important task

for many applications across different domains, such as the web [36],
social networks [27], biology [39], and many others. As graphs
grow to sizes that exceed the memory of a single machine, applica-
tions perform their computations on distributed and highly-parallel
shared-nothing systems, such as MapReduce [8] and Hadoop [14],
Hadoop’s iterative extensions [9, 4], or more specialized graph sys-
tems such as Pregel [21] and PowerGraph [12]. At the core of the
APIs of these systems is a small set of functions, such as the map()
and reduce() functions of MapReduce, the compute() function of
Pregel, or the gather(), apply(), and scatter() functions of Power-
Graph.

The benefit of these frameworks is that programmers concen-
trate on implementing a few specific functions, and the framework
automatically scales the computation by executing these functions
in parallel across machines. However, sometimes the functions
are too low-level or restricted for the algorithmic task. For exam-
ple, as observed in references [15, 17, 31], additional code and
workarounds that use global data structures can be required to con-
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
GRADES’14, June 22 - 27 2014, Snowbird, UT, USA
Copyright 2014 ACM 978-1-4503-2982-8/14/06$15.00.
http://dx.doi.org/10.1145/2621934.2621938 .

trol the flow of some algorithms, yielding complex and long pro-
grams. In addition, custom code can be required for some com-
monly appearing operations, such as initializing vertex values or
checking for convergence of computations. For performing large-
scale data analysis tasks on Hadoop [14], there has been an emer-
gence of higher-level languages such as Pig Latin [24] and Hive [35],
which have seen wide adoption in the industry and research com-
munities [10, 35]. These languages express data analysis tasks
with high-level constructs and primitives, such as filters and group-
ing, and compile to the lower-level map() and reduce() functions of
Hadoop. We believe similar higher-level primitives for graph anal-
ysis tasks would be very useful for programming large-scale graph
computations.

In a previous paper [33], we implemented in detail several graph
algorithms on an open-source Pregel clone. In the process, we ob-
served certain patterns emerge from our implementations that we
believed could be abstracted to a useful set of higher-level graph
processing primitives. We implemented an additional suite of algo-
rithms to verify our sense of the most generally useful primitives.
This paper reports on the primitives we identified, called HelP, and
the implementation of many graph algorithms using the primitives.1

For reference, Tables 1 and 2 list our primitives and the algorithms
we have implemented using our primitives, respectively.

This paper is a short version of a longer online technical re-
port [32]. Readers and interested developers wishing for full cover-
age, including the implementation of our primitives on the GraphX
system [37], are referred to that paper.

Our HelP primitives can be grouped broadly into three areas,
according to the operations they perform:

1. Vertex-centric Updates: Update the values of some or all of
the vertices in parallel. An update of a vertex value may use
information from edges incident to the vertex (hereafter “local
edges"), or from the values of other vertices. Updates can happen
in iterations or in a single iteration.

2. Topology Modifications: Modify the topology of the graph by
removing some vertices or edges based on filtering conditions,
or merging multiple vertices together to form new vertices.

3. Global Aggregations: Perform a global aggregation operation
over some or all of the graph (e.g., find the average degree, or
find the vertex furthest from a given one).

All of the primitives in HelP abstract parallel operations that are
suitable for scalable distributed implementations. We have imple-
mented the HelP primitives fully in GraphX [37].

The specific aspects of our work covered in this short paper are

1 primitives and algorithms target synchronous graph processing
engines, e.g., [11, 21, 31]. Identifying high-level primitives for
asynchronous graph systems is an interesting future research direc-
tion [12, 20].

Primitive Description
Filter Removes some vertices or edges from the graph.
Aggregating Neighbor
Values (ANV)

Some vertices aggregate some or all of their neighbor values to update their own values. Appears
both as a one-step computation and as an iterative process. In the iterative version, some or all of the
vertices start propagating a value to their local neighbors, which are aggregated and propagated further
by receiving vertices in the next iteration. The propagations continue until vertex values converge.

Local Update of Vertices
(LUV)

Updates vertex values, possibly using global information or local edges of each vertex. Used mainly
for initializing vertex values.

Update Vertices Using One
Other Vertex (UVUOV)

Updates vertex values by using a value from one other vertex (not necessarily a neighbor). Commonly
used in matching-like algorithms.

Form Supervertices (FS) Merges groups of vertices.
Aggregate Global Value
(AGV)

Computes a single global value over the graph. A commonly used special case is picking a random
vertex from the graph.

Table 1: Primitives.

Name Filter ANV LUV UVUOV FS AGV
PageRank [21] x x
HITS [19] x x x
Single Source Shortest Paths [21] x x
Weakly Connected Components [18] x x
Conductance [2] x x
Semi-clustering [21] x x x
Random Bipartite Matching [21] x x x
Approx. Betweenness Centrality [1] x x x
Diameter Estimation (Double Fringe) [28] x x x
Strongly Connected Components [33] x x x x
Minimum Spanning Forest [33] x x x x
Approx. Maximum Weight Matching [33] x x
Graph Coloring [33] x x x
Maximal Independent Set [33] x x x
K-core [28] x x
Triangle Finding [28]
Clustering Coefficient [28] x
K-truss [28]
Multilevel clustering [23] x x x

Table 2: Algorithms.

as follows:
• In Section 2, we describe three primitives and their variations,

all of which perform vertex-centric updates: (1) updateVer-
tices; (2) aggregateNeighborValues; and (3) updat-
eVertexUsingOneOtherVertex.

• In Section 3, we describe the filter and formSuperver-
tices primitives and their variations, all of which modify the
topology of the graph.

• In Section 4, we describe the aggregateGlobalValue prim-
itive, which performs a global aggregation operation over the
vertices of the graph.

Section 5 briefly covers related work; for more discussion see [32].
Section 6 concludes and proposes future work.

All of the HelP primitives and algorithms described in the pa-
per are implemented on top of GraphX and publicly available [16].
Background on Spark [38] and GraphX [37], as well as the imple-
mentation of our primitives, is covered in [32].

Notably absent from this work is any experimental evaluation.
Evaluating programmer productivity is difficult to do objectively
and convincingly. Lines of code is one possible metric to evaluate
productivity gains of new APIs and languages, however the short-
comings of LOC as a measure have long been observed [30]. For
the algorithms in Table 2, we saw up to 2x code reduction using
our primitives against coding in GraphX without them. We could
also evaluate the performance of algorithms implemented using our
primitives against using other libraries on top of GraphX, or pro-

gramming in GraphX directly. However, all of these approaches,
when programmed carefully, translate to similar GraphX and Spark
calls at the lowest levels, and thus similar expected performance.
Finally, evaluating HelP against other graph processing systems
would yield the same comparison as those systems against GraphX,
as covered in [37].

2. VERTEX-CENTRIC UPDATES
In this section and the following two we present our HelP primi-

tives. For each primitive we first give a high-level description of the
primitive, then we give one or more examples from our algorithms
that use the primitive. For interested readers, our full online tech-
nical report [32] describes the implementations of our primitives in
GraphX. We note that except for global aggregations (Section 4),
all of our primitives return a new graph. In our code snippets, we
omit the assignment of the returned graph to a new variable.

2.1 Local Update of Vertices
One of the most commonly appearing operations in distributed

graph algorithms is to initialize the values of some or all of the
vertices, either at the beginning of an algorithm, or at the start of
each phase of an algorithm. Depending on whether the local edges
of the vertices are used in the updating of vertices, we provide two
primitives for this operation: updateVertices and updateV-
erticesUsingLocalEdges. updateVertices takes two
inputs:

Input Description
dir The direction of the local neighbors whose val-

ues will be aggregated

nbrP A predicate to select which neighbors to
aggregate

vP A predicate to select which vertices to update

aggregated-
ValueF

A function that takes a neighbor vertex value
and returns the relevant part to be aggregated,
possibly the entire neighbor value itself

aggregateF The aggregation function

updateF A function that takes a vertex and an aggregated
value of the neighbors and returns a new value
for the vertex

(a) aggregateNeighborValues.

Input Description
dir The direction of the local neighbors to propa-

gate values to
startVP A predicate to select which vertices to start

propagating from
propagated-
ValueF

A function that takes a vertex value and returns
the relevant part to be propagated

propagate-
AlongEdgeF

A function that takes two inputs: (1) the propa-
gated value of a vertex; and (2) an edge value,
through which the vertex will propagate its
value to a neighbor; and computes the final
propagated value along the edge

aggregateF A function to aggregate propagated values
updateF A function that takes a vertex and an aggregated

value of the propagated values from neighbors
and returns a new value for the vertex

(b) propagateAndAggregate.

Figure 1: Inputs to aggregateNeighborValues and propagateAndAggregate.

• vP: A predicate to select which vertices to update.
• updateF: A function that takes a vertex and returns a new value

for the vertex.
Not surprisingly, the behavior of updateVertices is to update
the values of all vertices for which vP evaluates to true, with the
updated vertex value returned by updateF. Other vertices remain
unchanged. updateVerticesUsingLocalEdges takes an
additional edge direction input dir which specifies whether the
incoming, outgoing, or both types of incident edges are used in
updateF.

2.1.1 Examples of Use
Consider the first step of PageRank [3], which initializes the

value of each vertex to 1.0
|V | . Using updateVertices, we can

express this operations as follows:
g.updateVertices(v→ true, v→ { v.val.pageRank = 1.0/ g.numVertices; v;}

As an example use of updateVerticesUsingLocalEdges,
consider the bipartite matching algorithm from [21]. The vertices
of the input bipartite graph are divided into L and R, for left and
right, respectively. In each iteration of the algorithm, every un-
matched vertex vl in L randomly picks one of its neighbors from
R, say vr , and stores the ID of vr in the pickedNbr field of its
value. We can express this operation using updateVertice-
sUsingLocalEdges as follows:
g.updateVerticesUsingLocalEdges(EdgeDirection.Out, v→ v.isLeft,

(v, edges)→ {v.val.pickedNbr = edges.get(random(edges.size)).dstID})

2.2 Aggregating Neighbor Values
In another common form of vertex-centric update operation, ver-

tices aggregate some or all of their neighbors’ values to update their
own values in parallel. PageRank, HITS, finding shortest paths
from a single source, finding weakly-connected components, or
computing the conductance of a graph, are some of the example al-
gorithms that perform this operation. Aggregating neighbor values
appears in algorithms as a one-step computation, or as an iterative
process that continues until vertex values converge. We provide the
aggregateNeighborValues primitive for the one-step ver-
sion, and propagateAndAggregate for the iterative version.
aggregateNeighborValues: The inputs to aggregateNeigh-
borValues are listed in Table 1a. vP is a predicate that selects
which vertices to update. If v is a vertex whose value should be up-
dated, the input dir and the nbrP predicate determine the neigh-

bors of v whose values should be aggregated in updating the value
of v. Function aggregatedValueF is applied to the values of
these neighbors, the outputs of aggregatedValueF are aggre-
gated using aggregateF, and finally updateF is applied on v
and the output of aggregateF to compute the new value for v.
propagateAndAggregate: In some computations the aggregation
of neighbor values continues in iterations until all vertex values
converge. The common pattern of such computations is the follow-
ing: In the first iteration, one or more vertices propagate a value
to their neighbors. Vertices that receive propagated values aggre-
gate them and update their own values. In the next iteration, all
vertices whose values have changed propagate a new value to their
neighbors. The propagation of values continues in iterations until
all vertex values are stable.

The inputs of propagateAndAggregate are listed in Ta-
ble 1b. Inputs dir, aggregateF, and updateF are the same
as in aggregateNeighborValues. The startVP predicate
selects which vertices propagate values in the first iteration. Sim-
ilar to the aggregatedValueF input to aggregateNeigh-
borValues, propagatedValueF extracts the relevant value
to be propagated from a vertex. In addition, there is a propa-
gateAlongEdgeF function that takes a propagated value val
from a vertex, and an edge through which val will be propagated,
and computes a possibly modified value to be propagated along the
edge.

2.2.1 Examples of Use
As an example use of aggregateNeighborValues, con-

sider executing a fixed number of iterations, 10 say, of the HITS
algorithm [19] for ranking web-pages. In HITS, each vertex has a
hub and an authority value. In one iteration of the algorithm,
vertices first compute the sum of all of their incoming neighbors’
hub values to update their authority values. Then, vertices
aggregate their outgoing neighbors’ authority values to update
their hub values. We can express this computation using aggre-
gateNeighborValues as follows:
for (i = 0; i < 10; ++i) {
// Aggregate in-neighbors’ hub values to update authorities
g.aggregateNeighborValues(
EdgeDirection.In /∗ direction of neighbors ∗/,
nbr→ true /∗ which neighbors to aggregate ∗/,
v→ true /∗ which vertices to update ∗/,
nbrVal→ nbrVal.hub /∗ relevant neighbor value to aggregate ∗/,

AggrFnc.SUM /∗ aggregate neighbors’ hub values by summation ∗/,
(v, aggrHubVal)→ { v.val.authority = aggrHubVal; v; })

// Aggregate out-neighbors’ authorities to update hub values
g.aggregateNeighborValues(

EdgeDirection.Out, nbr→ true, v→ true,
nbrValue→ nbrValue.authority, AggrFnc.SUM,
(v, aggrAuthVal)→ { v.val.hub = aggrAuthVal; v; })}

As an example use of propagateAndAggregate, consider the
weakly-connected components algorithm from [18]. The input is
an undirected graph, and vertices store a wccID value, initialized
to their own IDs. Initially each vertex v propagates its wccID to
all of its neighbors. In iterations, each vertex v updates its wc-
cID to the maximum of its own wccID and the wccID values
propagated by its neighbors, then propagates its wccID further if
it has changed. At convergence, all vertices with the same wccID
value belong to the same connected component. We can express
this computation using propagateAndAggregate as follows:
g.updateVertices(v→ true, v→ { v.val.wccID = v.ID}
g.propagateAndAggregate(

EdgeDirection.Either /∗ direction of neighbors ∗/,
v→ true /∗ which vertices to start propagating from ∗/,
vVal→ vVal.wccID /∗ propagated value ∗/,
/∗ do not change propagated value along each edge ∗/
(propagatedVal, edgeVal)→ propagatedVal,
AggrFnc.MAX /∗ aggregate wccIDs by taking their max ∗/,
(v, aggrWccIDVal)→ {

v.val.wccID = AggrFnc.MAX(v.val.wccID, aggrWccIDVal); v;})

2.3 Update Vertices Using One Other Vertex
In some algorithms, vertices store a pointer to (actually an ID

of) one other vertex, not necessarily a neighbor, in a field of their
vertex value, and either in parallel update their own value using the
value of the vertex they point to, or vice-versa. This operation ap-
pears commonly in matching algorithms, but it also appears in the
minimum spanning tree algorithm from [7, 33] or the clustering al-
gorithm from [23]. If v stores the ID of w in its value, we refer
to v as the pointer vertex and w as the pointed vertex. Depend-
ing on whether the pointer or the pointed vertex is updated, we
provide two primitives for this operation: updateSelfUsin-
gOneOtherVertex and updateOneOtherVertexUsing-
Self. The inputs and behavior of the two primitives are very simi-
lar, so we specify them only for updateSelfUsingOneOtherVer-
tex.

The inputs of updateSelfUsingOneOtherVertex are listed
in Table 3. The behavior of updateSelfUsingOneOtherVer-
tex is to update each vertex v for which vP evaluates to true
in three steps: (1) compute the ID of the vertex w that v points
to by applying otherVertexIDF on v; (2) apply relevant-
PointedVertexValueF to w to extract the relevant value of
w that will be used in updating v; and (3) apply updateF on v
and the output of relevantPointedVertexValueF from the
second step to compute the new value for v. We note that in upda-
teOneOtherVertexUsingSelf, multiple vertices might point
to and update the same vertex. As a result updateOneOtherVer-
texUsingSelf takes an additional input function aggregateF,
which aggregates the relevant pointer vertex values, before apply-
ingupdateF.

2.3.1 Examples of Use
Consider the minimum spanning tree algorithm from [22, 33]. In

each iteration of this algorithm, each vertex v points to its minimum-
weight neighbor, which is stored in a pointedV field. As shown

Input Description
vP A predicate to select which vertices will update

themselves
otherVer-
texIDF

A function that takes the vertex value, say of v, and
returns the ID of the other vertex that v points to

relevant-
PointedVe-
rtexValueF

A function that takes the pointed vertex’s value and
returns the relevant part of it that will be used in
updating the pointer vertex

updateF Takes the vertex v and the relevant value of the ver-
tex that v points to and returns a new value for v

Table 3: Inputs to updateSelfUsingOneOtherVertex.

5 6

4
3

0

8

1

9

7

2

Figure 2: Example of a conjoined-tree.
in [7], the vertices and their picked neighbors form disjoint sub-
graphs called conjoined-trees: two trees joined by a cycle. Figure 2
shows an example conjoined tree. We refer to the vertex with the
smaller ID in the cycle of a conjoined tree T as the root of T, for
example vertex 5 in Figure 2. After picking their neighbors, ver-
tices find the root of the conjoined-tree they are part of iteratively
as follows. In the first iteration, each vertex v discovers whether it
is the root by checking whether v’s pointedV u points back to
v, and whether v’s ID is smaller than u. If both conditions hold,
v is the root and sets its pointsAtRoot field to true. In the
later iterations, each vertex v copies its pointedV u’s point-
edV and pointsAtRoot values to itself until every vertex points
to the root. We can express this computation using updateSel-
fUsingOneOtherVertex as follows (we will describe the ag-
gregateGlobalValue primitive in Section 3):
// discover the root of each conjoined-tree
g.updateSelfUsingOneOtherVertex(
v→ true, /∗ which vertices to update ∗/
v→ v.val.pointedV /∗ ID of the other vertex ∗/,
otherV→ (otherV.val.pointedV, otherV.ID), // relevant pointedV value
// updateF: set pointsAtRoot to true if v is the root
(v, (otherVsPointedV, otherVID)→ {
if (v.ID == otherVsPointedV v.ID < otherVID) {
v.val.pointsAtRoot = true}}; v;))

var numNotPointing = g.aggregateGlobalValue(
v → { (v.val.pointsAtRoot) ? 0 : 1), AggrFnc.SUM)

while (numNotPointing > 0) {
g.updateSelfUsingOneOtherVertex(
v→ !v.val.pointsAtRoot,
v→ v.val.pointedV,
otherV→ (otherv.val.pointedV, otherV.pointsAtRoot),
(v, (otherVsPointedV, otherVPointsAtRoot)→ {

v.val.pointedV = otherVsPointedV;
v.val.pointsAtRoot = otherVPointsAtRoot}}))

numNotPointing = g.aggregateGlobalValue(
v → { (v.val.pointsAtRoot) ? 0 : 1), AggrFnc.SUM)}

3. TOPOLOGY MODIFICATIONS
We propose two primitives that change the topology of the graph:

(1) Filter: removes certain vertices and edges from the graph; and
(2) Forming Supervertices: merges multiple vertices together to
form supervertices. Due to space constraints and the fact that filter-
ing incurs no unusual challenges, we omit describing our three filter
primitives: filterVertices, filterVerticesUsingLo-

Input Description
superver-
texIDF

A function that takes the vertex value, say of v,
and returns the ID of v’s supervertex

mergeVer-
texValuesF

A function that takes a set of vertex values and
returns a single merged value for the supervertex

mergeEdge-
ValuesF

A function that takes a set of edge values for
edges between the same pair of supervertices and
returns a single merged value for the edge

Table 4: Inputs to formSupervertices.

calEdges, and filterEdges. The interested reader is referred
to the full online technical report [32].

3.1 Forming Supervertices
One operation that modifies the topology of the graph is to merge

groups of vertices into supervertices. This operation appears in
Boruvka’s minimum spanning tree algorithm [22] and in some par-
titioning and clustering algorithms, such as the clustering algorithm
from [23]. In these algorithms, after some computation every ver-
tex identifies a supervertex (possibly itself) that it will merge into.
Then:
• All vertices and their values that belong to the same superver-

tex are merged into a single vertex. How the vertex values are
merged is specified by an input function.

• Consider an edge (u,v) and assume that vertices u and v are
merged into supervertices s1 and s2, respectively. If s1 = s2,
then (u,v) is removed from the graph. Otherwise, (u,v) becomes
an edge between s1 and s2. If there are multiple edges between
s1 and s2, then edges are merged. How the edge values are
merged is specified by an input function.

The inputs of formSupervertices are listed in Table 4. As
with all HelP primitives, formSupervertices is also suitable
for parallel implementations. The details of its implementation on
GraphX can be found in [32].

3.1.1 Examples of Use
As an example, consider Boruvka’s minimum spanning tree al-

gorithm, which we discussed in Section 2.3.1. In each iteration,
vertices discover the root of the conjoined-tree they are part of and
store its ID in a pointedV value. The algorithm uses these values
to merge all vertices in each conjoined-tree into a single superver-
tex. For this algorithm, function mergeVertexValuesF sim-
ply returns a new empty vertex value because the algorithm does
not need to merge the values of vertices that form the superver-
tex. However, edges are weighted; function mergeEdgeVal-
uesF takes minimum of the edge values. We can express this
computation using formSupervertices as:
g.formSupervertices(

v→ v.val.pointedV /∗ ID of the supervertex ∗/
vVals→ new EmptyMSTVertexValue(), /∗ mergeVertexF ∗/
eVals→ AggrFnc.MIN(eVals) /∗ mergeEdgeF ∗/)

4. GLOBAL AGGREGATIONS
Many graph algorithms need to compute a global value over the

vertices of the graph, such as counting the number of vertices with a
particular value, or finding the maximum vertex value. Specifically,
each vertex emits a value, and the values are aggregated in some
fashion to produce a single value. These computations can thus be
seen as special MapReduce computations with a single reducer.

We abstract global aggregation in our aggregateGlobal-
Value and aggregateGlobalValueUsingLocalEdges
primitives. aggregateGlobalValue takes two inputs:
• mapF: A function that takes a vertex and produces a value.

• reduceF: A function that takes a pair of values and aggregates
them into a single value.

Notice that function reduceF combines a pair of values, rather
than the set of all emitted values. Function reduceF is first ap-
plied to a pair of mapped values to produce a single value, the func-
tion is then applied to the result value with another mapped value,
and so on until the entire set of mapped values has been processed
to produce the final aggregated value. The order of application
is unpredictable, so for correctness of the aggregation operation,
reduceF should be commutative and associative. Our require-
ment of a pairwise reduceF function is primarily for efficiency
(see [32] for our implementation).

Function aggregateGlobalValueUsingLocalEdges
takes an additional dir input, and in this case mapF additionally
takes the set of edges incident to the vertex in the given direction.

We note that a frequently used special case of a global aggrega-
tion operation is to pick a random vertex from the graph, which we
expose as a separate pickRandomVertex primitive in GraphX.

4.1 Examples of Use
One example use of aggregateGlobalValue is to detect

termination of the root finding phase of the minimum spanning tree
algorithm. Recall from Section 2.3.1 that the algorithm iterates in
this phase until all vertices find their roots. To compute whether
all vertices have found their roots, the algorithm counts the number
of vertices whose pointsAtRoot value is false, using primitive
aggregateGlobalValue as follows:
numNotPointing = g.aggregateGlobalValue(

v → { (!v.val.pointsAtRoot) ? 1 : 0}, AggrFnc.SUM)

Another example is the approximate betweenness-centrality al-
gorithm from [1], which performs a breadth-first search (BFS) from
a source vertex and labels each vertex with its level in the BFS tree.
Then, the algorithm computes the maximum depth of the tree using
primitive aggregateGlobalValue as follows:
maxDepth = g.aggregateGlobalValue(v→ v.val.level, AggrFnc.MAX)

5. RELATED WORK
No other work we know of proposes and implements high-level

primitives for distributed graph computations. We provide a very
brief discussion of related work in this short paper; more extensive
discussion and comparison against our approach is provided in the
full online technical report [32]. In brief, past work divides into
five categories, none of which corresponds directly to our approach
based on a set of high-level graph-specific primitives:
• Vertex-centric APIs [12, 21]: Programmers implement a small

set of functions, such as the compute() function of Pregel, to
specify local messaging and value updating performed by each
vertex. A distributed framework invokes the functions iteratively.

• MapReduce-based APIs [4, 8]: Programmers implement a se-
ries of map() and reduce() functions for each graph opera-
tion, usually performed on relational tables that store the graph.

• Higher-level Data Analysis Languages [24, 35]: Instead of
map() and reduce() functions, programmers use higher-level
data primitives, such as relational joins and grouping, to express
their graph operations.

• Green-Marl [17]: A domain-specific language allows program-
mers to write their algorithms in an imperative fashion as if the
the graph is stored in a single machine, then compiles to different
parallel and distributed backends.

• MPI-based Graph Libraries [5, 13]: Programmers use graph
libraries based on the Message Passing Interface (MPI), a stan-
dard interface for building parallel and distributed message-passing

programs. These libraries can execute on distributed architec-
tures that have an MPI implementation, such as Open MPI [25].

6. CONCLUSIONS AND FUTURE WORK
We presented HelP, a set of high-level graph processing prim-

itives, which we believe abstract the most commonly appearing
operations in distributed graph computations. We described the
implementations of many graph algorithms using our primitives.
We have implemented all of our primitives on the GraphX system
(see [32]). Our experience has been that implementing algorithms
using the HelP primitives is more intuitive and much faster than us-
ing the APIs of existing distributed graph systems. For a discussion
on the limitations of our primitives, interested readers are referred
to our full online technical report [32], where we give examples
of graph algorithms that benefit from using additional “data prim-
itives" such as joins and grouping, either instead of or in addition
to our HelP primitives. These examples are naturally expressed
in an “edge-centric" fashion (rather than “vertex-centric"), such as
triangle-finding, clustering coefficient, or finding k-trusses.

We outline several broad directions for future work.
• Extending Existing High-level Languages: Some of the exist-

ing high-level data analysis languages, such as Pig Latin [24]
and Scalding [34], could be extended first with graph-specific
data structures, and then with our HelP primitives. For example,
in hypothetically extended Pig Latin, an algorithm that first loads
a web graph from raw files and then finds its weakly-connected
components could be expressed by a program like:
vid_links = LOAD ’/raw_links.txt’ AS (fromId, toId)
g = LOAD GRAPH vid_links WITH VERTEX VALUE wccId
g = UPDATE VERTICES wccId = ID
g = PROPAGATE AND AGGREGATE wccId FROM ALL

USING MAX IN g
STORE graph INTO ’graph_wcc_output.txt’.

Primitives that already exist in Pig Latin are in normal font and
additional HelP primitives in bold.

• Primitives for Asynchronous Graph Computations: The HelP
primitives target algorithms suitable for synchronous distributed
engines, such as Pregel [21], Giraph [11], or MapReduce [8]. It
may be possible to similarly identify and implement commonly-
appearing operations as high-level primitives in asynchronous
graph computations, such as Gibbs sampling [6], loopy belief
propagation [26], or collaborative filtering [29], which are suit-
able for executing on asynchronous engines [12, 20].

7. REFERENCES
[1] D. A. Bader, S. Kintali, K. Madduri, and M. Mihail. Approximating

Betweenness Centrality. In WAW, 2007.
[2] B. Bollobas. Modern Graph Theory. Springer, 1998.
[3] S. Brin and L. Page. The Anatomy of Large-Scale Hypertextual Web

Search Engine. In WWW, 1998.
[4] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. HaLoop: Efficient

iterative data processing on large clusters. In VLDB, 2010.
[5] A. Buluç and J. R. Gilbert. The Combinatorial BLAS: Design,

Implementation, and Applications. International Journal of High
Performance Computing Applications, 25(4), 2011.

[6] G. Casella and E. I. George. Explaining the Gibbs Sampler. The
American Statistician, 46(3), 1992.

[7] S. Chung and A. Condon. Parallel Implementation of Boruvka’s
Minimum Spanning Tree Algorithm. In IPPS, 1996.

[8] J. Dean and S. Ghemawat. MapReduce: Simplified data processing
on large clusters. In OSDI, 2004.

[9] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S. Bae, J. Qiu, and
G. Fox. Twister: A Runtime for Iterative MapReduce. In HPDC,
2010.

[10] A. F. Gates, O. Natkovich, S. Chopra, P. Kamath, S. M.
Narayanamurthy, C. Olston, B. Reed, S. Srinivasan, and

U. Srivastava. Building a high-level dataflow system on top of
map-reduce: the pig experience. VLDB, 2(2), 2009.

[11] Apache Incubator Giraph. http://incubator.apache.org/giraph/.
[12] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.

PowerGraph: Distributed Graph-Parallel Computation on Natural
Graphs. In OSDI, 2012.

[13] D. Gregor and A. Lumsdaine. The Parallel BGL: A Generic Library
for Distributed Graph Computations. In POOSC, 2005.

[14] Apache Hadoop. http://hadoop.apache.org/.
[15] P. Haller and H. Miller. Parallelizing Machine Learning-

Functionally: A Framework and Abstractions for Parallel Graph
Processing. In Scala, 2011.

[16] Help Primitives. https://github.com/semihsalihoglu/incubator-
spark/tree/Help_Primitives_1.

[17] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun. Green-marl: a dsl for
easy and efficient graph analysis. In ASPLOS, 2012.

[18] U. Kang, C. E. Tsourakakis, and C. Faloutsos. PEGASUS: A
Peta-Scale Graph Mining System – Implementation and
Observations. In ICDM, 2009.

[19] J. M. Kleinberg. Authoritative Sources in a Hyperlinked
Environment. Journal of the ACM, 46, 1999.

[20] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein. GraphLab: A New Parallel Framework for Machine
Learning. In UAI, 2010.

[21] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: A System for Large-Scale
Graph Processing. In SIGMOD, 2011.

[22] J. Nešetřil, E. Milková, and H. Nešetřilová. "Otakar Borůvka on
Minimum Spanning Tree Problem Translation of Both the 1926
Papers, Comments, History". "Discrete Mathematics ", 233(1–3),
2001.

[23] S. Oliveira and S. C. Seok. Multilevel Approaches for Large-scale
Proteomic Networks. International Journal of Computer
Mathematics, 84(5), 2007.

[24] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig
Latin: A Not-So-Foreign Language for Data Processing. In
SIGMOD, 2008.

[25] Open MPI. http://www.open-mpi.org/.
[26] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of

Plausible Inference. Morgan Kaufmann Publishers Inc., 1988.
[27] O. Phelan, K. McCarthy, and B. Smyth. Using Twitter to

Recommend Real-time Topical News. In RecSys, 2009.
[28] L. Quick, P. Wilkinson, and D. Hardcastle. Using Pregel-like Large

Scale Graph Processing Frameworks for Social Network Analysis. In
ASONAM, 2012.

[29] P. Resnick and H. R. Varian. Recommender Systems.
Communications of the ACM, 40, Mar. 1997.

[30] J. Rosenberg. Some Misconceptions About Lines of Code. In
METRICS, 1997.

[31] S. Salihoglu and J. Widom. GPS: A Graph Processing System. In
SSDBM, 2013.

[32] S. Salihoglu and J. Widom. HelP: High-level Primitives For
Large-Scale Graph Processing. Technical report, Stanford University,
March 2014. http://ilpubs.stanford.edu:8090/1085/.

[33] S. Salihoglu and J. Widom. Optimizing Graph Algorithms on
Pregel-like Systems. In VLDB, 2014.

[34] Scalding Github Repository. https://github.com/twitter/scalding.
[35] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,

H. Liu, P. Wyckoff, and R. Murthy. Hive: A Warehousing Solution
Over a Map-Reduce Framework. VLDB, 2(2), 2009.

[36] S. Vadapalli, S. R. Valluri, and K. Karlapalem. A Simple Yet
Effective Data Clustering Algorithm. In ICDM, 2006.

[37] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica. GraphX: A
Resilient Distributed Graph System on Spark. In GRADES, 2013.

[38] Zaharia, M. and Chowdhury, M. and Franklin, M. J. and Shenker, S.
and Stoica, I. Spark: Cluster Computing with Working Sets. In
HotCloud, 2010.

[39] C. Zhong, D. Miao, and R. Wang. A Graph-theoretical Clustering
Method Based on Two Rounds of Minimum Spanning Trees. Pattern
Recognition, 43(3), 2010.

	Introduction
	Vertex-Centric Updates
	
	Examples of Use

	
	Examples of Use

	
	Examples of Use

	Topology Modifications
	Forming Supervertices
	Examples of Use

	Global Aggregations
	Examples of Use

	Related Work
	Conclusions and Future Work
	References

