
SynopSys: Large Graph Analytics in the
SAP HANA Database Through Summarization

Michael Rudolf1 Marcus Paradies1 Christof Bornhövd2 Wolfgang Lehner3

1SAP AG 2SAP Labs, LLC 3Database Technology Group
Walldorf, Germany Palo Alto, CA 94304, USA TU Dresden, Germany

michael.rudolf01@sap.com christof.bornhoevd@sap.com wolfgang.lehner@tu-dresden.de

ABSTRACT
Graph-structured data is ubiquitous and with the advent of social
networking platforms has recently seen a significant increase in
popularity amongst researchers. However, also many business appli-
cations deal with this kind of data and can therefore benefit greatly
from graph processing functionality offered directly by the underly-
ing database. This paper summarizes the current state of graph data
processing capabilities in the SAP HANA database and describes our
efforts to enable large graph analytics in the context of our research
project SynopSys. With powerful graph pattern matching support at
the core, we envision OLAP-like evaluation functionality exposed to
the user in the form of easy-to-apply graph summarization templates.
By combining them, the user is able to produce concise summaries
of large graph-structured datasets. We also point out open questions
and challenges that we plan to tackle in the future developments on
our way towards large graph analytics.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Storage and Retrieval—
information search and retrieval

General Terms
Algorithms, Design, Performance

Keywords
Graph matching, graph transformation, graph summarization, SAP
HANA database system

1. INTRODUCTION
With the incessantly growing number of participants in social net-
works and their constant production of interlinked content, the last
few years have seen a massive rise in the amount and complexity
of graph-structured data. As new technologies were needed for
efficiently managing and processing this kind of information in this
new order of magnitude, more and more researchers have turned

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Proceedings of the First International Workshop on Graph Data Manage-
ment, Experiences and Systems (GRADES 2013) June 23, 2013, New York,
NY, USA
Copyright 2013 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

1
black

64 GB
“Apple iPad

MC707LL/A”

2
black

32 GB
“Apple

iPhone 5”

3white
16 GB

“Apple
iPhone 4”

4

“Cell Phones
& Accessories”

5 “Phones”

6

“Computers &
Accessories”

7“Tablets”
8

“Freddy”

9
“Carl”

10 “Mike”

11 “Steve”

part ofpart of

in
in

in

rates 5/5

rates 3/5

rates 4/5

rates 5/5

Figure 1: Example data expressed in the property graph data
model. Edge attributes are typeset in italics; vertex types are
indicated through different colors.

their attention to this subject and fostered the NoSQL and BigData
movements. However, traditional business applications often also
have to deal with graphs, for example in supply network manage-
ment and traceability, transportation and logistics, as well as for the
classic bill of materials. It is therefore safe to say that graph data
is ubiquitous in all kinds of business applications and has a long
history.

Graphs come in many different flavors. In its most basic form a
graph G is made up of a set of vertices V and a relation E ⊆V ×V
representing the edges between them (sometimes also noted as V (G)
and E(G), respectively). Depending on the use case, this definition
is being extended or altered accordingly (e.g., for undirected graphs
or hypergraphs). In the remainder of this paper we will focus on the
property graph model [10], because it is very general but neverthe-
less flexible enough to support many use cases. Also, other graph
models can easily be mapped to the property graph model.

A property graph is a directed vertex-labeled and edge-labeled
graph, meaning that both vertices and edges can have attributes each
consisting of a key and a value. Figure 1 shows an example of a
property graph for products, categories, users, and ratings, which
could serve as the underlying data for a recommendation engine.
Sometimes it can be helpful to have a dedicated attribute designate
the semantic type of the vertex or edge. However, this semantic type
does not imply any structural constraints, i.e., two vertices of the
same type can have different attributes. In Figure 1 the type attribute

R
el

at
io

na
lS

ta
ck

A
ctive

Inform
ation

Store

RPC

SQL
Compiler

WIPE
Compiler

SQL
Runtime

WIPE
Runtime

Relational
Abstraction

Layer

ODBC/JDBC

Graph
Function
Library

Graph Abstraction Layer

Column Store Operators

Core Column Store Primitives

Figure 2: Integration of the graph processing functionality
within the SAP HANA database [11].

of vertices is not made explicit, rather it is indicated through the
different colors for the sake of simplicity.
Making sense of large amounts of graph-structured data is a chal-
lenging task. Business applications need to extract meaningful
information from large graphs in reasonable time for decision mak-
ers to rely upon. Therefore, in addition to providing the classic
OLAP functionality, graph summaries should be produced in such
a way that they help uncover knowledge embodied in the graph
topology.

In this paper we describe the existing and upcoming graph pro-
cessing functionality within the SAP HANA database system. The fol-
lowing section shortly introduces SAP HANA and gives an overview
of the available graph processing support. In Section 3 we analyze
related work in the field of graph summarization. Section 4 presents
large graph analytics by means of pattern matching and templates
as our main contribution. This is followed by Section 5, which illus-
trates the main challenges in graph pattern matching for us to tackle
in the context of our research project SynopSys. Finally, Section 6
concludes the paper with a sketch of future work.

2. GRAPH PROCESSING IN THE
SAP HANA DATABASE

Situated at the core of the SAP HANA Appliance product, the SAP
HANA database is an in-memory relational database system that was
designed for supporting complex analytical business processes as
well as for handling high transactional workloads [6]. Exploiting
the recent hardware developments, it leverages large amounts of
main memory and multi-core CPUs to provide high-performance
storage and processing capabilities for a tremendously heteroge-
neous spectrum of business applications [12]. To that end, the SAP
HANA database federates a hybrid relational engine supporting both
row- and column-oriented physical representations with engines for
text search and graph processing.

The graph data processing capabilities have only recently been
added to the SAP HANA database and are tightly integrated into the
in-memory column store engine, as is shown in Figure 2. They rely
on universal tables for storing vertices and edges, with each attribute
being mapped to a table column. Exploiting the characteristics of

the columnar data layout, the operations for adding and removing
vertex and edge attributes show good performance, because they
do not imply any physical reorganizations. By offering graph pro-
cessing functionality directly within the database core instead of
creating a new layer on top of it, we can leverage the infrastructure
and efficiently integrate it with the relational engine. Thus, the
established relational data processing toolkit is extended with graph
processing functionality in a way, such that data can be queried and
manipulated in the same place without having to convert it into a
different format. With this powerful foundation we envision the
creation of completely novel types of business applications; but
also existing business applications dealing with graph-structured
information can benefit tremendously from these new capabilities.

As part of the ongoing Active Information Store project [2], sup-
port for the declarative domain-specific graph query and manipu-
lation language WIPE was implemented. In addition to the basic
operations for creating, updating, and deleting vertices and edges,
it allows the combination of BI-like aggregation operations with
efficient path traversals. The latter are carried out with the help of
a dedicated database execution plan operator. WIPE permits multi-
ple complex operations to be combined within a single statement,
thereby reducing the need for several roundtrips between the appli-
cation and the database system. Similar to other domain-specific
languages of the SAP HANA database, statements are executed within
a transaction context, so that the system guarantees atomicity, con-
sistency, durability, and the required level of isolation.

In addition to that, a graph abstraction layer with an object-
oriented programming interface has been introduced, which enables
the implementation of custom graph algorithms for example within
a stored procedure [11]. A set of parameterizable implementations
of frequently-used algorithms will be provided in the form of a
Graph Function Library for application developers to choose from.

3. RELATED WORK
In order to understand and use the information encoded in large
graphs it is crucial to be able to summarize them and by that, to
extract small pieces of information that are meaningful within a
particular context of use. The problem of finding good graph sum-
maries is also related to the fields of graph visualization and graph
compression [9].

In a 2008 paper a group from the Universities of Illinois at Urbana-
Champaign and Chicago presented their approach for extending
online analytical processing (OLAP) to graphs [3]. Together with
the IBM T.J. Watson Research Center they contribute the basic def-
initions of dimensions and map the well-known OLAP operations
roll-up, drill-down, and slice/dice to them. They assume snapshots
of a graph changing over time and consider the associated attributes
the informational dimensions. In contrast, the topological dimen-
sions are those coming from the attributes of vertices and edges
in each such snapshot. In their paper they also present a theoreti-
cal foundation for computing aggregated graphs, which form the
measures in OLAP terminology, and show how partial materializa-
tion techniques can help reduce memory consumption. However,
their approach is not accompanied by any processing or evaluation
specification, concepts, or architecture.

In a different paper from the University of Illinois at Urbana-
Champaign this time in collaboration with Microsoft and Google, a
novel data warehousing model called Graph Cube [15] is introduced.
Based on a restricted graph model (e.g., no attributes on edges)
introduced as multidimensional network (with the dimensions being
the vertex attributes), they define the notion of an aggregate network
(called cuboid). A graph cube constitutes then the set of all possible
aggregations of the original network. The authors foresee two kinds

2 black32 GB
“Apple iPhone 5”

-1
US

-2
DE

rates 4.5 rates 4.1

Figure 3: Summary graph showing the average product rating
of all US-american and German users. Negative identifiers in-
dicate newly created vertices.

of OLAP operations: cuboid and crossboid queries. The former
simply returns the aggregate network of the desired cuboid from
the graph cube, while the latter can be seen as somewhat similar
to a join operation between multiple different cuboids. As for the
specification and evaluation of such queries, the authors do not
propose any mechanism and again focus on partial materialization
techniques.

Researchers from the University of Michigan and the Nokia
Research Center have proposed the SNAP operation for grouping
vertices based on user-selected attributes and pairwise relation-
ships [13]. The resulting vertex groups are homogenous with respect
to the selected attributes and their relationships. This means that if
two groups are connected via an edge, each vertex of one group is
connected to some vertices of the other, whereas if the groups are
not connected, no vertex of one group is connected to any vertex
of the other. In practice this behavior turns out to be quite limiting,
because it can result in a large number of groups. Therefore, they
propose the k-SNAP operation as an extension, where the homogene-
ity constraint for group relationships is relaxed and the user can
specify the number of groups in the graph summaries. Changing
this number then has the same effect as the OLAP operations drill-
down and roll-up. They prove that the computation of the k-SNAP
operation is NP-complete and propose heuristics to approximate it.
Although the two proposed operations are designed to work with
different edge types, additional edge attributes are not supported.

In a follow-up paper by a group from the University of Wisconsin-
Madison and the IBM Almaden Research Center [14], the previous
approach is improved in two ways: first, the homogeneity require-
ment for vertex attributes is relaxed by permitting the user to specify
the number of partitions for numerical attributes. Second, for help-
ing users specifying a sensible number of groups for the k-SNAP
operation, an interestingness measure for graph summaries is de-
fined. It is based on different aspects the authors describe as diversity,
coverage, and conciseness of a summary.

Other approaches to graph summarization are mostly statistical in
nature. They compute sets of figures (e.g., degree distributions, hop-
plots, and clustering coefficients), which describe the characteristics
of the graph. The approaches presented above are different: they
can produce aggregated views on the graph data in various, user-
controlled resolutions by means of OLAP-like operations. Although
much more flexible, in our opinion these approaches are still too
rigid in some ways. For example, ideally a user should be able to
query the property graph in Figure 1 for the average rating of a
specific product differentiated by US-american and German users,
and the system should return the summary graph shown in Figure 3
as the result. Furthermore, neither of the approaches proposes a
method for specifying or evaluating arbitrary graph summarization
recipes.

?

?nationality
2

black32 GB

“Apple
iPhone 5”

?nationality

++
?rating

AVG(?rating)

Kleene Select
(Match All)

Select New vertices and edges

Figure 4: Graph summarization rule for deriving the summary
graph shown in Figure 3.

4. GRAPH ANALYTICS THROUGH SUM-
MARIZATION

We propose an approach to graph summarization that is related to
the transformation of graphs using graph grammars: with the help of
graph patterns a user can identify the items of interest and produce
a summary of them.

4.1 Pattern Matching as the Foundation
Pattern matching in graphs has a broad range of applications. In ad-
dition to the well-known use cases in the fields of pattern recognition
and artifical intelligence, there are also many business applications
that can benefit from such functionality. For instance, fraud detec-
tion systems try to find re-occurring patterns in insured events or
money withdrawals that could indicate criminal activity. Another ex-
ample are purchase recommendation engines, which can use graph
patterns to capture the context information for a specific customer
and match other purchase orders that are related in some way and
might be of interest to that customer.

For a graph pattern matching technology serving as the foundation
of large graph analytics we see the following requirements:

• Match Modes: With increasing data volumes it makes sense
to differentiate between two match modes: match-all and
match-any. As the names suggest, the former returns all oc-
currences of the pattern in the graph, while the latter returns
only the one found first and stops the matching process. This
distinction permits the user to indicate that only the existence
of a match is of relevance and thereby helps saving computa-
tion resources.

• Versatility: For a general graph pattern matching function-
ality to be of sufficient practical use, a certain versatility is
inevitable. This is especially true with regard to the supported
predicate types. In practice, only offering value-based equal-
ity comparisons might quickly turn out to be a limiting factor;
relational comparisons, regular expressions, and negation (i.e.,
testing for the non-existence of some property) is also needed.

• Regular Path Expressions: In some cases the basic building
blocks for graph patterns (i.e., vertices, edges, and attributes)
are not expressive enough, for example whenever a pattern
should reflect that two vertices have to be connected via an
arbitrary number of hops (i.e., there is a path connecting the
two vertices). This can be achieved with the help of regular
path expressions [5], which permit the specification of regular
expressions for such paths.

In order to actually construct graph summaries, a user has to specify
an action to be executed once a graph pattern matches. Both the
graph pattern and the actions constitute a summarization rule. Fig-
ure 4 shows such a summarization rule for deriving the summary
graph depicted in Figure 3 and illustrates the required functionality

beyond pattern matching. Operations for adding vertices, edges, and
attributes are indicated in green color. We extend the concept of
match modes to also apply to a single vertex instead of the whole
pattern. By marking at most one vertex with a star symbol ?, we
express that for each match of the rest of the pattern all matches of
that vertex will be grouped to form a single result. In the absence
of the star symbol, the default match mode match-any is used. By
prepending an attribute name with a question mark, we define a
variable of that name and bind it to all the values in such a group. Fi-
nally, for deriving meaningful information from the grouped values,
we require a set of aggregation functions to apply to such variables.

4.2 Summarization Templates
Summarization rules are a powerful tool and can quickly become
quite complex. To reduce the hurdles for user adoption we propose
to break down the summarization functionality into several simpler
templates, which are described in the following. They have to be
instantiated by specifying arguments for their parameters and can
then be combined by applying them sequentially.

To distinguish the templates from ordinary summarization rules,
we introduce a slightly different notation: Template parameters are
enclosed in angle brackets 〈 and 〉 and printed in blue color if they
constitute a part of the graph pattern. New vertices, edges, and
attributes are printed in green color.

Collecting Attribute Values
For summarizing information in graphs it is required to collect the
attribute values of a set of vertices or edges. The summarization
templates shown in Figure 5 can do exactly that. Since multiple
vertices or edges can have the same attribute values, using a set
for collecting them would result in the undesired elemination of
duplicates. On the other hand, a list would require an ordering of
vertices or edges. Therefore, we use multisets for holding attribute
values, indicated by the delimiter symbols {| and |}.

The template on the left-hand side of Figure 5a expects the vertex
predicates vp1 and vp2, the edge predicate ep, the source vertex
attribute name as, and the target vertex attribute name at . Note that
the edge direction is part of the edge predicate and indicated in the
figure using half arrowheads pointing in both directions. The match
mode of the source vertex is match-all, meaning that for a fixed
matching vertex determined by vp2 all vertices satisfying vp1 that
are connected to the former via an edge satisfying ep contribute their
attribute values to the new multiset attribute.

?

〈as〉

〈vp1〉 〈vp2〉

at = {|as|}

〈ep〉
?

?capacity

5
“Phones”

capacities

in

(a) Vertex attributes

?

〈vp1〉 〈vp2〉

at = {|as|}〈as〉
〈ep〉

?

nationality=DE
2

ratings

“Apple
iPhone 5”

?rating

(b) Edge attributes

Figure 5: Summarization templates and example instantiations
for collecting attribute values.

〈at = agg(as)〉〈vp〉
〈as〉

5 capacity=AVG“Phones”

?capacities

(a) Vertex attribute

〈vp1〉 〈vp2〉

〈as〉 〈ep〉
〈at = agg(as)〉

2
“Apple

iPhone 5”
US

?ratings

rating=AVG

(b) Edge attribute

Figure 6: Summarization templates for aggregating attribute
values.

The right-hand side of Figure 5a shows an exemplary instantiation of
the template to illustrate its use. It collects all (storage) capacities of
products in the category “Phones” into a new multiset attribute that is
attached to the vertex representing the category. The different vertex
colors are used to represent vertex types consistent with Figure 1 and
make up the vertex predicates vp1 and vp2. The latter furthermore
filters vertices based on the identifier “5”. The edge predicate ep
is the edge type in, the name of the source vertex attribute as is
capacity (prepended with a question mark to differentiate it from a
predicate and convey the notion of a variable), and finally the name
of the target vertex attribute is capacities.

The approach for collecting edge attribute values is similar: the
template depicted in the left-hand side of Figure 5b only expects
as to be the name of an edge attribute instead of a vertex attribute.
Then, not the matching source vertices but the edges connecting
them to a matching target vertex contribute their attribute values to
the new multiset attribute.

The example on the right-hand side of Figure 5b collects all
ratings of a specific product given by German users into a new
multiset attribute attached to that product vertex. vp1 is composed
of the vertex type and a filter for nationality attribute; vp2 checks the
vertex identifier in addition to the type. The template instantiation
does not specify an argument for the edge predicate parameter ep, so
that all edges will match the pattern. The source edge attribute name
as is rating and the name of the target vertex attribute is ratings.

Scalar Aggregation
When collecting attribute values into multisets, it is desirable to
compute aggregate values, such as sums or averages. This can be
done with the help of one of the two summarization templates shown
in Figure 6.

For aggregating a multiset of vertex attribute values, the following
things have to be specified for the template depicted on the left-hand
side of Figure 6a: the vertex predicate vp, the name of the source
vertex attribute as, the name of the target vertex attribute at , and the
aggregation function agg. For every matched vertex, the application
of a template instance will yield a new vertex attribute.

The exemplary instantiation on the right-hand side of Figure 6a
computes the average (storage) capacity of all products in the cate-
gory “Phones” (see also Figure 5a). The vertex predicate vp consists
of the vertex type (expressed through the color) and identifier “5”.
The name of the source vertex attribute as is capacities; it has to
designate a multiset that is then passed to the aggregation function
agg – in the example this is the AVG function. The name of the
target vertex attribute at is specified as capacity and can be used
to access the computed average value after the application of the
summarization rule.

?

〈as〉

〈vp〉

at = {|as|}
++

〈va1, . . . , vam〉

〈ea1, . . . , ean〉
?

?capacity

“Apple*”

capacities

++

“Apple
Products”

(a) Collapse vertices

?

〈vas〉
〈vp1〉

〈vp2〉
vat = {|vas|}
++
〈va1, . . . , vam〉

〈ep〉 〈eas〉

〈ea1, . . . , ean〉
eat = {|eas|}

?

nationality=US

2
“Apple

iPhone 5”

++
US

?rating

ratings

(b) Collapse edges

Figure 7: Summarization templates and example instantiations
for collapsing vertices and edges.

The template on the left-hand side of Figure 6b can be used for
aggregating a multiset of edge attribute values in a similar way. It
expects the vertex predicates vp1 and vp2 and the edge predicate ep;
as and at denote the names of edge attributes.

The application of this summarization template results in a new
attribute for every matched edge. This is illustrated by the example
on the right-hand side of Figure 6b, which computes the average
rating of a specific product for a user group.

Collapsing Vertices and Edges
The most complex summarization templates are the ones for col-
lapsing vertices and edges shown in Figure 7. Their main purpose is
to introduce new vertices that represent a group of related vertices
or edges.

When collapsing vertices with the help of the template depicted
on the left-hand side of Figure 7a, the user can specify the vertex
predice vp, the source vertex attribute name as, the target vertex
attribute name at , and additional attributes va1, . . . , vam and ea1,
. . . , ean for the vertices and edges to be created.

Similar to the summarization templates for collecting attribute
values, the match mode of the source vertex is match-all. That
means that for all vertices satisfying vp a new vertex representing
them will be created with the attributes va1, . . . , vam and connected
to them via new edges with the attributes ea1, . . . , ean. Furthermore,
the values of the source vertex attribute vas will be collected into a
new multiset attribute vat of the new vertex.

The right-hand side of Figure 7a shows an example for collaps-
ing all Apple products into a single vertex while at the same time

collecting their (storage) capacities into a new multiset attribute.
The vertex predicate vp is a regular expression, the source vertex
attribute name as is capacity, and the target vertex attribute name is
capacities. While no additional edge attributes ea1, . . . , ean have
been specified, a single additional vertex attribute with the value
“Apple Products” will be created.

The template for collapsing edges is shown in the upper part of
Figure 7b. Its parameters are the vertex predicates vp1 and vp2,
the names of the source vertex attribute vas and the target vertex
attribute vat , the edge predicate ep, the edge direction, the names of
the source edge attribute eas and the target edge attribute eat , and
additional attributes va1, . . . , vam and ea1, . . . , ean for the vertices
and edges to be created.

The match mode of the source vertex is again match-all. Thus,
for each vertex v satisfying vp2 a new vertex will be created with
the attributes va1, . . . , vam and connected to it via a new edge e with
the attributes ea1, . . . , ean. Then all vertices satisfying vp1 that are
connected to v via an edge satisfying ep will be matched and an
edge to the newly created vertex will be added. Finally, the values of
the source vertex attribute vas will be collected into a new multiset
attribute vat of the new vertex v and the values of the source edge
attribute eas will similarly be gathered into a new multiset attribute
eat of the new edge e.

The lower part of Figure 7b illustrates the template with an ex-
ample that will collapse all US-american users and their rating of
a specific product into a new vertex. The vertex predicate vp1 is
composed of one filter for the vertex type and another one for the
nationality; vp2 checks the vertex identifier and type. Since the
template instantiation does not specify an argument for the edge
predicate parameter ep, all edges will match the pattern. The name
of the source edge attribute eas is rating; all values in a match will be
collected in the new multiset edge attribute eat named ratings. The
new nationality attribute with the value “US” is the only additional
vertex attribute; no additional edge attributes ea1, . . . , ean have been
specified and the names of the source and target vertex attributes
vas and vat have been omitted as well.

5. CHALLENGES IN GRAPH PATTERN
MATCHING

The foundation of the template-based graph summarization approach
for large graph analytics presented in the previous section is a pow-
erful graph pattern matching mechanism. The problem of finding
occurrences of a pattern within a larger graph has already been
investigated for decades [4]. However, only very few commercial
products actually offer a solution to it. In this section we formulate
the challenges that we need to tackle in order to provide an effective
and efficient matching technology.

Fuzzy Matching
Business applications having to process large amounts of data are
often confronted with erroneous information (e.g., information that
contains spelling mistakes or is outright false). As a consequence,
strict pattern matching will in many cases not return satisfactory
results. However, when extended with the notion of fuzziness, match-
ing algorithms can be made lenient towards the problems outlined
above and also return valuable results that only match the given
pattern to some degree.

There are several approaches to achieve this, the most obvious
ones stemming from the area of fuzzy text search, where the met-
ric used to rank inexact matches is based on some edit distance
defined on graphs [7]. Still, for some use cases computing such
an edit distance with a fixed algorithm might be insufficient and a

more fine-grained mechanism may be required: the most flexible
approach would certainly permit users to specify weights indicating
which vertices, edges, or attributes in the pattern are more important
than others and which might even be mandatory for a match to be
considered valid.

Pattern Representation
A question open for debate is the representation of patterns. For
example, a dedicated domain-specific languange based on regu-
lar path expressions [5] could be used. In general, a declarative
approach (i.e., specifying what to match) is preferrable over a pro-
cedural encoding of how to perform the matching (possibly against
a system-provided programming interface), because it can be better
optimized.

The example instantiations of the templates presented in the pre-
vious section are specified as property graphs themselves. On the
right-hand side of Figure 7a a pattern for matching certain prod-
ucts by name uses a regular expression. However, the data model
usually only permits a limited set of types for attribute values (e.g.,
integers, floating point numbers, and strings) and does not support
designating vertex or edge attribute with special semantics. Still, for
a matching algorithm to differentiate between the various predicate
types (e.g., relational comparisons, regular expressions, and nega-
tion), this would be required. One possible solution could be to rely
on a convention for the type and structure of attribute values as is
done in the Metaweb Query Language of Freebase [1].

Leveraging Existing Functionality
By implementing support for graph matching as part of the graph
abstraction layer directly within the SAP HANA database, we can ben-
efit from the efficiency of the in-memory column store operations.
For example, wherever possible we should try to map the different
predicate types to similar functionality in the relational engine or
the text engine. Another case for re-using existing functionality are
regular path expressions. They could be implemented with the help
of the traversal operator that is part of the graph abstraction layer in
the SAP HANA database.

Exploiting Parallelism
The widespread availability of multi-core CPUs and the parallel ex-
ecution support of the SAP HANA database provide the foundation
for fast data processing. By carefully choosing easily parallelizable
graph matching algorithms [8] we can exploit this concurrency po-
tential and craft an efficient solution for large graph analytics. In
addition, this approach also scales in the case of very large graphs
that are partitioned and distributed over a number of database in-
stances.

6. CONCLUSION AND OUTLOOK
In this paper we have given an overview of the current state of the
technology of graph data processing in the SAP HANA database. We
have sketched use cases to illustrate the need for pattern matching
in graphs and described the challenges and open questions we face.
En route to enabling large graph analytics within the SAP HANA
database as part of our research project SynopSys, we have outlined
how this technique can form the basis of graph summarization
functionality. Finally, we have presented the basic operations needed
for effectively summarizing large graphs, captured in the form of
summarization templates to be instantiated and applied by the user.

In the future we would like to investigate whether and how the
summarization functionality can be extended to support arbitrary
general-purpose graph transformations and how those can be effi-
ciently implemented in the context of the SAP HANA database.

7. ACKNOWLEDGEMENTS
We would like to thank Hannes Voigt for opening new perspectives
in many inspiring discussions and for his feedback on earlier ver-
sions of this paper. We also express our gratitude to our fellow Ph.D.
students in Walldorf for their encouragement and support.

8. REFERENCES
[1] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor.

Freebase: a collaboratively created graph database for
structuring human knowledge. In Proc. ACM SIGMOD, pages
1247–1250, New York, NY, USA, 2008. ACM.

[2] C. Bornhövd, R. Kubis, W. Lehner, H. Voigt, and H. Werner.
Flexible Information Management, Exploration, and Analysis
in SAP HANA. In Proc. International Conference on Data
Technologies and Applications, pages 15–28. SciTePress,
2012.

[3] C. Chen, X. Yan, F. Zhu, J. Han, and P. S. Yu. Graph OLAP:
Towards Online Analytical Processing on Graphs. In Proc. 8th

International Conference on Data Mining, pages 103–112,
Pisa, Italy, Dec. 2008. IEEE.

[4] D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty Years
of Graph Matching in Pattern Recognition. International
Journal of Pattern Recognition and Artificial Intelligence,
18(3):265–298, 2004.

[5] W. Fan, J. Li, S. Ma, N. Tang, and Y. Wu. Adding Regular
Expressions to Graph Reachability and Pattern Queries. In
Proc. 27th ICDE, pages 39–50, Hannover, Germany, Apr.
2011. IEEE.

[6] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and
W. Lehner. SAP HANA Database: Data Management for
Modern Business Applications. SIGMOD Rec., 40(4):45–51,
Jan. 2012.

[7] X. Gao, B. Xiao, D. Tao, and X. Li. A survey of graph edit
distance. Pattern Anal. Appl., 13(1):113–129, Jan. 2010.

[8] M. Karpinski and W. Rytter. Fast Parallel Algorithms for
Graph Matching Problems. Oxford Lecture Series in
Mathematics and its Applications. Oxford University Press,
May 1998.

[9] S. Navlakha, R. Rastogi, and N. Shrivastava. Graph
summarization with bounded error. In Proc. ACM SIGMOD,
pages 419–432, New York, NY, USA, 2008. ACM.

[10] M. A. Rodriguez and P. Neubauer. Constructions from Dots
and Lines. Bull. American Society for Information Science
and Technology, 36(6):35–41, 2010.

[11] M. Rudolf, M. Paradies, C. Bornhövd, and W. Lehner. The
Graph Story of the SAP HANA Database. In BTW, LNI,
pages 403–420. GI, 2013.

[12] V. Sikka, F. Färber, W. Lehner, S. K. Cha, T. Peh, and
C. Bornhövd. Efficient Transaction Processing in SAP HANA
Database: The End of a Column Store Myth. In Proc. ACM
SIGMOD, pages 731–742, New York, NY, USA, 2012. ACM.

[13] Y. Tian, R. A. Hankins, and J. M. Patel. Efficient Aggregation
for Graph Summarization Categories and Subject Descriptors.
In Proc. ACM SIGMOD, pages 567–580, Vancouver, BC,
Canada, 2008. ACM.

[14] N. Zhang, Y. Tian, and J. M. Patel. Discovery-Driven Graph
Summarization. In Proc. 26th ICDE, pages 880–891, Long
Beach, CA, USA, 2010. IEEE.

[15] P. Zhao, X. Li, D. Xin, and J. Han. Graph Cube: On
Warehousing and OLAP Multidimensional Networks. In Proc.
ACM SIGMOD, pages 853–864, Athens, Greece, 2011. ACM.

	Introduction
	Graph Processing in the SAP HANA Database
	Related Work
	Graph Analytics Through Summarization
	Pattern Matching as the Foundation
	Summarization Templates

	Challenges in Graph Pattern Matching
	Conclusion and Outlook
	Acknowledgements
	References

