
Benchmarking database systems for social network
applications

Renzo Angles
Department of Computer

Science, Universidad de Talca
Department of Computer
Science, VU University

Amsterdam
rangles@utalca.cl

Arnau Prat-Pérez
DAMA-UPC

Universitat Politècnica de
Catalunya

aprat@ac.upc.edu

David Dominguez-Sal
Sparsity Technologies

david@sparsity-
technologies.com

Josep-LLuis Larriba-Pey
DAMA-UPC

Universitat Politècnica de
Catalunya

larri@ac.upc.edu

ABSTRACT

Graphs have become an indispensable tool for the analysis
of linked data. As with any data representation, the need
for using database management systems appears when they
grow in size and complexity. Associated to those needs,
benchmarks appear to assess the performance of such sys-
tems in specific scenarios, representative of real use cases.

In this paper we propose a microbenchmark based on so-
cial networks. This includes a data generator that synthet-
ically creates social graphs, and a set of low level atomic
queries that model parts of the behavior of social network
users. In order to understand how different data manage-
ment paradigms are stressed, we execute the benchmark over
five different database systems representing graph (Dex and
Neo4j), RDF (RDF-3X) and relational (Virtuoso and Post-
greSQL) data management. We conclude that reachability
queries are those that put all the database systems into more
difficulties, justifying themselves, and making them good
candidates for more complex benchmarks.

1. INTRODUCTION
During the last years, there has been a huge increase in the

number of applications that query and manipulate graphs.
Data from social networks, protein-to-protein networks and
the Web, just to cite a few, benefit from being modeled as a
graph. Due to the increase in size and complexity of these
data sources, it has been essential to have database systems
which can handle large graph datasets efficiently.

Although traditional relational database systems can rep-
resent a graph as a set of tables, they neither offer a natural

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Proceedings of the First International Workshop on Graph Data Manage-
ment Experience and Systems (GRADES 2013), June 23, 2013, New York,
NY, USA.
Copyright 2013 ACM 978-1-4503-2188-4 ...$15.00.

interface nor efficient operations. Graph queries, such as
finding a path, require complex SQL expressions and pro-
duce execution plans with a large number of join operations
that can be computationally expensive [3].

Both graph and RDF databases offer more natural graph
interfaces than SQL. Graph databases provide the program-
mer with operations such as getting the neighbors of a node.
These systems, such as Dex and Neo4j, offer efficient APIs
for these operations and graph oriented query languages
(e.g., Cypher). On the other hand, RDF databases store
graphs as collections of statements subject-predicate-object
called RDF triples. SPARQL is the standard query lan-
guage for RDF databases, which is based on graph pattern
expressions.

Although there are no standard performance benchmarks
to assess quantitatively the efficiency of database systems on
social network datasets, there are initiatives, like LDBC1,
that work on the design of industry oriented benchmarks.
Form the academic point of view, studies on the design
framework for graph data base benchmarks including social
networks have been performed in the recent years, describ-
ing the types of queries that the use cases may require, and
showing that the social network use case is the richest in
variety [6]. LinkBench [2], is a recent example of a social
network benchmark based on Facebook. In some cases, the
load time of the graph is measured [2, 5] and queries based
on multi-hop traversals [2, 5] or on the complete traversal of
a graph [10] have been used as the paradigm to measure the
performance of memory intensive operations. In all those
cases, the authors focus on graph topology queries on sim-
ple graph schemas, missing some of the characteristics of a
specific application such as social networks.

Here we focus on the social network use case, benefiting
from its richness to propose a simple microbenchmark that
contains very common operations in such networks. The
queries of the benchmark represent typical social network
usages, such as getting the friends of a friend, looking for
similar like pages or finding shortest paths between persons.

1Linked Data Benchmark Council is sponsored by the Eu-
ropean Community under ICT-FP7 http://www.ldbc.eu

This benchmark can be used not only for assessing the per-
formance of a graph implementation, but also to build more
complex environments. For example, the proposed queries
can be combined to build logs of interaction of the users.
The queries proposed here are envisioned as the basic prim-
itives from which one could construct more complex graph
oriented queries such as page rank, influence or recommen-
dation queries. The benchmark proposes an easy to extend
framework that can be implemented by any database sys-
tem. We also describe the basic social network schema that
can be populated with social network-like data, which mim-
ics real-world data distributions found in social networks,
such as Facebook. This generation procedure creates both
the graph and the query set instances as a data stream,
which can be used to build large graphs without large mem-
ory requirements.

In this paper, we analyze the proposed queries in or-
der to understand the complexity of social network appli-
cations. We execute the microbenchmark on five databases
(Dex, Neo4j, RDF-3X, Virtuoso and PostgreSQL) and com-
pare the impact of the queries on those systems. We con-
clude that graph reachability queries are the most challeng-
ing query family in terms of time complexity. We observe
that relational databases have performance struggles to com-
pute long paths for such queries and graph and RDF data-
bases show better performance.

The rest of the paper is structured as follows. In Section
2, we present the microbenchmark by describing the data
schema, the data generation process, the queries, the gener-
ation of test data, and the performance metrics. In Section
3 we describe the experimental setup. In Section 4 we show
and discuss the results. Finally, in Section 5 we present some
conclusions.

2. MICROBENCHMARK DESCRIPTION
This section presents the microbenchmark including the

graph data schema, the data generation method, the query
set, test data selection, and the performance metrics.

2.1 Graph data schema
Our data model defines two types of entities as shown in

Figure 1: person and webpage. Persons are linked to other
persons by a “friend” undirected relationship, and are linked
to webpages by a “like”directed relationship. The attributes
of a person are the pid (person identifier), the name, and two
optional fields, the age and the location. A webpage has
attributes wpid (webpage identifier), URL, and optionally
a creation date. Note that an instance of this schema is
an attributed bipartite graph with directed and undirected
edges with two types of nodes and edges.

2.2 Graph data generation.
Stream edge data generator. We have developed a

general-purpose graph data generator based on the Recur-
sive Matrix (R-Mat) model [5]. The basic idea behind R-
Mat is a recursive procedure to add edges in the adjacency
matrix of the graph (starting from an empty matrix), un-
til a given number of edges have been added. The recursive
procedure subdivides the adjacency matrix of the graph into
four partitions (named a, b, c, d) where the selection of one
partition follows a probability ρx (e.g., ρa = 0.55, ρb = 0.15,
ρc = 0.1 and ρd = 0.2), and adds an edge at the end of the
recursion (i.e. when a 1× 1 matrix has been reached).

Person Webpagelike

friend

pid

name

age (optional)

location (optional)

wpid

url

date

Figure 1: The data schema of the microbenchmark
graph.

We propose a strategy which is based on simulating the
R-Mat recursion process. We store the distribution of edges
in an array, and construct the graph using such distribu-
tion. The advantage of this approach is that it allows the
sequential generation of nodes and edges in a streamed fash-
ion, which increases the scalability of the generation process.
The explanation is given as follows.

Assume that G denotes the graph to be generated, N

the number of nodes, and E the number of edges. First,
we construct an array D of length N , such that the value
of D[i] defines the number of edges (degree) of node i, for
1 ≤ i ≤ N .

Second, we simulate the R-Mat recursive procedure E =
N logN times2, but we do not materialize the edge. At the
end of each recursion we increment the value of both D[s]
and D[t] when an edge (s, t) is added. If G is directed, the
value of D[t] is not incremented. After the second step, D
contains the distribution of degrees for all the nodes in G.

Third, the edges of G are materialized by traversing D.
For each node i, we generate a sequence of D[i] edges of the
form (i, j) such that j > i and D[j] > 0. If G is directed,
then the latter condition does not apply. For each generated
edge, we decrease the value ofD[i] by one. IfG is undirected,
we also decrease the value of D[j]. Note that this procedure
avoids generating repeated edges while the original R-Mat
algorithm did not avoid such case.

Since the basic R-Mat algorithm produces bumpy his-
tograms, we smooth them by updating the ρ probabilities
at each step of the recursion, as suggested in [5]. The prob-
ability ρx at stage i of the recursion is defined as ρix =
abs(ρi−1

x + (0.25 − ρ0x) / log
2
N). Following this procedure,

the probability in the last recursion step of the algorithm is
ρx = 0.25. Note that each probability ρx is updated log

2
N

times according to the height of the recursion tree.

Social data generation. The generation of social net-
work data is based on the use of information published by
current social network applications, for example the Face-
book Annual Report of year 2012 [7]. Therefore, we try
to produce synthetic data having characteristics present in
real-life social networks.

The number of users in Facebook is significantly larger
than the number of webpages. To simulate this, we set 80%
of the nodes as persons and 20% as webpages. The identi-
fier of a person node (i.e., the attribute pid) is an integer
value in the range [1, N × 0.8], where N is the number of

2Studies on the evolution of real networks, and in particular
social networks, have shown that the number of edges grows
super-linearly in the number of nodes N and below N2 [8].

Q Description Type

1 Get all the persons having a name N Select
2 Get all the persons who like a given

webpage W
Adjacency

3 Get the webpages that person P likes Adjacency
4 Get the name of the person with a

given PID
Select

5 Get the friends of the friends of a given
person P

Reachability

6 Get the webpages liked by the friends
of a given person P

Reachability

7 Get persons that like a webpage which
a person P likes

Reachability

8 Is there a connection (path) between
persons P1 and P2?

Reachability

9 Get the shortest path between persons
P1 and P2

Reachability

10 Get the common friends between per-
sons P1 and P2

Pattern
matching

11 Get the common webpages that per-
sons P1 and P2 like

Pattern
matching

12 Get the number of friends of a person P Summarization

Table 1: The queries of the microbenchmark with
their description and classification.

nodes in the graph. The names of persons and locations
are selected randomly from dictionaries including 5494 first
names, 88799 last names, and 656 locations. Hence, the
probability of having duplicated pairs of these two attributes
depends on the size of the graph and the distributions used.
The occurrence of attributes age and location follows prob-
abilities 0.6 and 0.3 respectively. The age of a person is
a random integer between 10 and 73. The identifier of a
node webpage (i.e., the attribute wpid) is an integer in the
range [(N × 0.8) + 1, N]. The attribute URL follows the
pattern http://www.site.org/webpageID.html where ID is
the wpid of the webpage. The probability of including a ran-
dom creation date for a webpage is 0.6.

Resembling the data generator of the benchmark for the
Facebook social graph [2], we use the general-purpose method
for graph generation to obtain power-law distributions for
the edges corresponding to relationships friend and like.

2.3 Queries
We perform a selection of domain specific queries for the

microbenchmark. Our approach is based on the user in-
teraction with Facebook to identify atomic actions that are
mapped to the queries of the benchmark. Such interaction
includes an analysis of the data displayed in the user profile
page, the user wall page, and the profile page of a user’s
friend.

A microbenchmark is used to evaluate the individual per-
formance of atomic operations (such as joins and aggrega-
tions in relational databases), rather than more complex
queries [4]. In the context of graphs we find several micro-
queries which can be considered atomic and we group them
into adjacency, reachability, pattern matching and summa-
rization queries [1]. Also, we add select queries that are
relevant in the context of social networks.

Based on an analysis of the user interaction with a social
network platform, we defined the query mix shown in Ta-
ble 1. Query Q1 represents a selection given an attribute
value. Queries Q2 and Q3 can be used to test the efficiency
when obtaining the adjacent nodes of an edge. They are

useful to compare the performance for querying incoming
and outgoing edges. Queries Q5, Q6 and Q7 are reachabil-
ity queries oriented to evaluate the support of a simple path
expression with fixed path length. Although the length of
the paths is fixed, the direction of the edges can influence
the performance of a system. Moreover, the evaluation of
adjacency queries is strongly influenced by the intermediate
results (i.e., the degree of the nodes).

The support for recursive queries is the objective of queries
Q8 and Q9. Query Q8 is simpler than query Q9 because
the former requests a connectivity test and Q9 searches the
shortest path. However, in our experiments we did not de-
tect that any of the systems under test performed such opti-
mization. Note that recursive queries are well-know difficult-
to-solve examples for database systems implementing join
operations [10].

Queries Q10 and Q11 are common graph pattern matching
queries. Note that a simple graph pattern (Q11) can be
converted into a complex one (e.g., the cyclic pattern of
Q10) just by changing the direction of the edges. Finally,
query Q12 is an example of a common aggregate operation
that most database systems support.

Note that these essential queries can be composed and/or
grouped in order to describe more complex queries. Addi-
tionally, the order of the queries can be controlled to con-
struct a query mix that reflects the workflow of a user in-
teracting with a social network platform. Such composite
operations are out of the scope of the present article.

2.4 Test data generation
In addition to the social network data file, the generator

produces an XML file containing test data, that is data to
be used in the creation of query instances. For example, if
the benchmark issues 10,000 instances of Q1, then the data
file contains a list of 10,000 names.

The test data is grouped as follows: IDs of people (used
for queries Q3, Q4, Q5, Q6, Q7, Q12); names of people (used
for query Q1); IDs of webpages (used for query Q2); pairs
of IDs <person,person> such that these two people are con-
nected by a “friend” relationship (used for query Q10); pairs
of IDs <person,webpage> such that there is a relationship
“like” between the person and the webpage; and pairs of IDs
<person,person> such that there is a path between them
(used for queries Q8 and Q9).

The selection of test data runs in parallel to the graph data
generation process. Hence, the data is generated as a stream
of query instances. For all queries but Q8-Q9, the selection
is based on dividing the data space in equally spaced slices
of the stream, taking a sample at the beginning of each slice.
Considering that the data space is the set of nodes ordered
by degree, this method ensures that we obtain test nodes of
several degrees.

In the case of Q8-Q9, the process selects as many nodes as
query instances are needed, which are “seeds for the paths”,
before reading the stream. Then, the process will connect to
the stream of edges and will simulate random walks starting
from the seeds. Each edge will extend a path if any of the
nodes is the end of a seeded path, otherwise the edge is
ignored. In Appendix B we show the distribution of such
paths.

2.5 Performance metrics and Indexes
As an academic benchmark, we only consider execution

times, and not price per transaction or transactions per unit
of time. In this paper, we measure the response time as a
metric.

Data loading Time. The time required to load the data
from the source file. This metric includes any time spent by
the system to build index structures and statistical data.

Query execution time. This is the central performance
metric of the benchmark. It refers to the time spent by a
database system to execute a single query. The execution
time of a query Q is given by the average time of executing
several instances of Q.

Data indexes. Since the benchmark can be implemented
in several environments, it allows indexes for any of the data
attributes and relations. We do not limit the type of indexes
created as long as their construction time is accounted dur-
ing the graph load time.

3. EXPERIMENTAL SETUP
The database systems selected cover graph, RDF and re-

lational databases. The graph databases chosen are Dex
(v4.7) [6] and Neo4j (v1.8.2 Community). As a representa-
tive of RDF stores, we chose RDF-3X [9]. We chose Post-
greSQL (v9.1) and Virtuoso (7.0) as representatives of rela-
tional databases. The first is a row based database, while
the second is a column store with extensions for expressing
graph-like queries in SQL.

The benchmark was implemented for all the tested sys-
tems on Java 1.6. The test-drivers for Dex and Neo4j were
implemented by using their respective Java APIs, hence the
database is embedded into the application. We have two dif-
ferent implementations for Neo4j, named NeoAPI and Neo-
Cypher. In NeoAPI, the queries were implemented by using
the query functions of the API. In NeoCypher, the queries
were expressed in the Cypher query language. RDF-3X,
Virtuoso and PostgreSQL were evaluated as system services
through the corresponding Java drivers. The query lan-
guages SQL and SPARQL were used in relational and RDF
databases respectively. In the case of Virtuoso, we use the
TRANSITIVE extension to implement graph traversals by
means of transitive queries. We use prepared statements
in NeoCypher, Virtuoso and PostgreSQL (i.e., each query
was precompiled and parameterized to save the overhead of
compilation).

The social graph schema was modeled in relational data-
bases with the following tables: Person(id, name, age, lo-
cation), Webpage(id, url, creation), Friend(pid1, pid2) and
Like(pid, wpid). We created indexes for primary keys and
attributes, according to the query requirements of the bench-
mark. For RDF, we generate URIs for nodes and create RDF
triples for attributes and edges. Note that we measure the
systems with the default configuration provided by the ven-
dor, which means that they might achieve better results if
consciously tuned.

We have tested the systems against graphs ranging from
1K nodes to 10M nodes. The datasets used in this paper
are described in Appendix A. All systems were able to load
the graphs at a speed of 50k-100k objects per second after
using bulk loading for RDF-3X, PostgreSQL and Virtuoso,
and API loaders for Dex and Neo4j. In this paper, we will
not focus on the load time of the systems.

Due to space restrictions, in this paper we show the results
for six out of the twelve queries. The detailed results will

also be available online in the website of the authors3. We
have chosen Q1, Q3, Q6, Q9, Q11 and Q12 as representatives
of each of the query types described in Section 2. For each
query, we run 10K query instances and we report the average
execution time of three consecutive runs. In order to obtain
measures similar to those of a working server, the benchmark
executes a hot warm-up run with the same query instances
and parameters as the main three runs just before them.

To run the benchmark, we have used a computer with
the following characteristics: Intel Xeon E5530 CPU at 2.4
Ghz, 32GB of Registered ECC DDR3 memory at 1066 Mhz,
a 1Tb hard drive with an ext3 file system. The operating
system was a Linux Debian with 2.6.32-5-amd64 kernel.

4. EXPERIMENTAL RESULTS
Figure 2 shows the results obtained by the different sys-

tems on the selected queries. Broadly speaking, better per-
formance results are obtained on graph databases compared
with relational or RDF technology. Among the test im-
plementations, Dex and Neo4j executed the queries in the
shortest time and show similar scalability profiles, though
Dex is the fastest overall. Furthermore, the introduction of
a graph query language in the benchmark is not a prohibitive
cost. In general, the results of Neo4j when using the Cypher
query language are slower than the API counterpart, but
the scalability is similar to the native implementation.

According to the results presented in Figure 2, the queries
that stress more all the database systems are Q6 and Q9
which address reachability. While all the systems scale well
independently of the graph size for non-reachability queries,
the execution time for Q6 and Q9 increases significantly with
the number of objects in the graph.

One interesting aspect to consider is how the execution
times of the query instances vary with respect to the char-
acteristics of the parameters of the query. For instance, we
have analyzed the impact of the degree of the source node
in query Q6 (i.e., the number of friends of the source node
person). Figure 3 shows the execution times for the different
instances of Q6, for the graph with 10M of nodes, for each
of the systems. Based on the degree of the source node, we
have classified the instances in three groups: degree between
1 and 10; between 11 and 100; and between 101 and 1000
(the degree distribution of the source nodes used in query
Q6 is shown in Appendix B). We observe that the execution
time of the instances is dependent on the degree of the node
for all the tested systems.

In the case of Q9, which is the shortest path query, we see
that graph databases obtain the best results. This shows
that Dex and Neo4j exploit their graph-oriented structures,
plus a good implementation of the breath-first search algo-
rithm (as described in the documentation of the systems and
confirmed by the developers). On the other side, we see that
RDF-3X, Virtuoso and PostgreSQL have severe scalability
problems, showing that relational and RDF databases are
less specialized for path-traversal oriented graph queries.

In order to better understand the behavior of the differ-
ent systems when computing query Q9, the average cost per
path length taken by each database system is shown in Fig-
ure 4, and the path length distributions of the shortest-path
queries for different graph sizes is shown in Figure 5. Fig-
ure 4 shows that all the database systems follow a similar

3http://ing.utalca.cl/~rangles/gdbench

trend: the larger the graph and the longer the path to com-
pute, the larger is the time needed to execute the query. The
query workload for Q9 is dominated by short paths (i.e., one
and two hops, as seen in Figure 5). This masks the dete-
riorating performance of PostgreSQL and RDF-3X for long
paths, as shown in Figure 2 and Figure 4.

Looking at PostgreSQL, we see a large variability for the
largest graphs in Q9 as shown in Figure 2. PostgreSQL is
very sensitive to the length of the paths in the query in-
stance set. When these paths are up to three hops long,
the system scales well. However, with paths of size four or
more, the time needed for the computation increases signif-
icantly. The explanation for this behavior is a consequence
of the implementation of the shortest-path in SQL. Graph
traversal queries in SQL imply the generation of query plans
with recursive joins. The reported implementation (which
was the fastest in PostgreSQL) is a sequence of six SQL
queries, each one asking for a path of a given length, from
one to six. An alternative implementation is the usage of the
WITH RECURSIVE operator that facilitates the traversal
of hierarchies. However, the current implementation com-
putes all the paths and does not stop once a path is found.
Since many instances of Q9 contain short paths, the former
implementation is more efficient.

Although Virtuoso is not as efficient as graph databases, it
exhibits better scalability compared to PostgreSQL, thanks
to the use of transitive subqueries implemented by means of
the TRANSITIVE operator. Although this operator is not
really optimized for memory efficiency (issue confirmed by
the developers of Virtuoso), it allows to stop the evaluation
when the first solution is found. This feature can explain
the best behavior in comparison with PostgreSQL. In Ap-
pendix C we discuss results of evaluating PostgreSQL and
Virtuoso using stored procedures.

RDF-3X shows a very good performance as long as the
paths are just one hop long. However, for paths longer than
one, its performance decreases significantly as long as the
size of the database increases, standing between Virtuoso
and PostgreSQL in terms of performance. An important
issue with the evaluation of RDF databases is the cost of
translating between external (URIs) and internal identifiers.
In the simpler queries, the execution time can be strongly
influenced by such translation.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed and described a micro-

benchmark for database systems based on social networks.
The benchmark proposes and implements a graph generator
to synthetically generate graphs with social network char-
acteristics like Facebook, and a set of atomic queries that
mimic the typical usages in social network applications.

The query set includes several types of queries that are
common in social networks: selection, adjacency, reachabil-
ity, pattern matching and summarization queries as part of
more complex queries or actions by the user. All database
systems tested in the paper were able to complete the queries
in a reasonable time with the exception of the reachability
queries, which were found to be the most stressful queries for
all the systems. The relational database systems were not
able to compute those queries in a reasonable time when the
number of hops for the traversal was larger than 4. Over-
all, graph databases benefit from the benchmark for all the
query types.

In the near future, we will propose a new benchmark based
on the queries of this work. This new benchmark will stress
the concurrent user sessions that social networks have to
process. One such new query will be a composite of several
smaller queries that will interact to form a user session like
those exercised in a real world environment. Moreover, we
expect to include update operations as part of the workload.

6. ACKNOWLEDGEMENTS
The members of DAMA-UPC thank the Ministry of Sci-

ence and Innovation of Spain and Generalitat de Catalunya,
for grant numbers TIN2009-14560-C03-03 and GRC-1187 re-
spectively, and IBM CAS Canada Research for their strate-
gic research grant. David Dominguez-Sal thanks the Min-
istry of Science and Innovation of Spain for the grant Tor-
res Quevedo PTQ-11-04970. The members of UPC and
VUA would like to thank the European Community’s Sev-
enth Framework Programme FP7/2007- 2013 for funding the
LDBC project. Renzo Angles is funded by Fondecyt Chile
grant 11100364. Finally, the authors would like to thank
Orri Erling for his guiding on implementing the Virtuoso
test drivers and stored procedures.

7. REFERENCES
[1] R. Angles. A comparison of current graph database

models. In ICDEW, pages 171–177, 2012.

[2] T. G. Armstrong, V. Ponnekanti, D. Borthakur, and
M. Callaghan. Linkench: a database benchmark based
on the facebook social graph. In ACM SIGMOD, 2013
(To appear).

[3] J. Biskup and H. Stiefeling. Transitive closure
algorithms for very large databases. In Workshop on

Graph Theoretical Concepts in Computer Science,
1988.

[4] H. Boral and D. J. DeWitt. A methodology for
database system performance evaluation. SIGMOD

Record, 14(2):176–185, 1984.

[5] D. Chakrabarti, Y. Zhan, and C.s Faloutsos. R-mat:
A recursive model for graph mining. In ICDM, 2004.

[6] D. Dominguez-Sal, P. Urbón-Bayes, A. Giménez-Vañó,
S. Gómez-Villamor, N. Mart́ınez-Bazan, and
J. Larriba-Pey. Survey of graph database performance
on the hpc scalable graph analysis benchmark. In
IWGD, pages 37–48, 2010.

[7] Facebook. Annual report 2012 (10k). 1 Feb. 2013.

[8] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph
evolution: Densification and shrinking diameters.
TKDD, 1(1):2, 2007.

[9] T. Neumann and G. Weikum. The rdf-3x engine for
scalable management of rdf data. VLDB Journal,
19(1):91–113, 2010.

[10] Mihalis Yannakakis. Graph-Theoretic Methods in
Database Theory. In PODS, pages 230–242. ACM
Press, 1990.

Q1 Q3 Q6

Q9 Q11 Q12

Figure 2: Time in microseconds for queries Q1, Q3, Q6, Q9, Q11 and Q12 for graphs varying from 1,000 to
10M nodes.

Dex NeoAPI

1−10 11−100 101−1000

1
0

2
0

5
0

2
0

0
5

0
0

2
0

0
0

Degree

T
im

e
 (

u
s
)

1−10 11−100 101−1000

1
e

+
0

2
1

e
+

0
4

1
e

+
0

6

Degree

T
im

e
 (

u
s
)

NeoCypher RDF-3X

1−10 11−100 101−1000

1
e

+
0

2
1

e
+

0
3

1
e

+
0

4
1

e
+

0
5

1
e

+
0

6

Degree

T
im

e
 (

u
s
)

1−10 11−100 101−1000

1
0

0
0

2
0

0
0

5
0

0
0

1
0

0
0

0

Degree

T
im

e
 (

u
s
)

Virtuoso PostgreSQL

1−10 11−100 101−1000

5
0

2
0

0
1

0
0

0
5

0
0

0
2

0
0

0
0

Degree

T
im

e
 (

u
s
)

1−10 11−100 101−10001
e

+
0

2
5

e
+

0
2

5
e

+
0

3
5

e
+

0
4

Degree

T
im

e
 (

u
s
)

Figure 3: Time in microseconds for Q6 for different
systems grouped by the degrees of the input nodes
for the 10M graph.

Dex NeoAPI

NeoCypher RDF-3X

Virtuoso PostgreSQL

Figure 4: Time in microseconds for computing the
shortest path algorithm used in Q9. The plots show
different path lengths (from 1 to 5) in the plot lines
and graph sizes in the horizontal axis.

APPENDIX

A. DATASETS
Table 2 shows characteristics of the graphs generated for

the tests, as well as the size in megabytes for each one.

Nodes Edges Dex Neo4j PSQL Virt. RDF-3X
1K 7K 4M 1M 44M 33M 2M

10K 92K 8M 8M 96M 39M 7M
100K 1.2M 66M 82M 447M 177M 67M
1M 14M 706 942M 4.2G 915M 706M

10M 161M 7.7G 11.5G 38G 8.6G 8.2G

Table 2: Datasets used in the evaluation of the
benchmark.

B. PATH LENGTHS AND DEGREE DISTRI-

BUTION FOR QUERIES
Figure 5 shows the distributions of the length of the paths,

for different graph sizes, used in the evaluation of shortest-
path queries (query Q9). We see that the distribution of the
paths generated is similar for different graph sizes, and that
query instances looking for short paths are more common
than those looking for long paths. This simulates that it is
more likely to search people who are friends or friends-of-a-
friend, than random people.

Figure 6 shows the distribution of the degrees of the nodes
used in the query instances of query Q6, for the graph of 10M
nodes. We see that there are more query instances querying
from nodes with low degree than with large degree, which is
expected since the degree of the nodes of the graphs follow
a power law distribution.

C. STORED PROCEDURES
For the tests described in the above sections, PostgreSQL

and Virtuoso are installed as services to which the bench-
mark connects and sends the query, as opposed to Dex and
Neo4j, where the databases are embedded into the executable.
This means that the queries’ parameters have to be sent to
the engine. This places PostgreSQL and Virtuoso in a dis-
advantageous situation, specially for those simpler queries,
where the cost to connect to the database, send the query,
and get the results can be high with respect to the cost of
actually performing the query. In order to determine the
impact of this overhead and to see how this affects the scal-
ability of both systems for the different queries, we have
implemented them as stored procedures for both relational
databases. In this case, the parameters of the queries are
stored in a table, from which the stored procedure reads
the data, executes the query, and stores the result in the
database. Although this execution model does not exactly
fit with that proposed by the benchmark (i.e. an environ-
ment where the users execute different queries during their
session, so we can not have the queries pre stored in the
database), this allows us to remove any overhead incurred
by the benchmark and focus purely on the cost of the query.
Figure 7 shows the results obtained by executing the queries
using stored procedures. We see that, for the simpler queries
(i.e. Q1, Q3, Q6, Q11 and Q12), both systems have seen a
notable improvement in their average execution time, spe-
cially Virtuoso, which obtains results comparable to those

Figure 5: Path distribution, by length and graph
size, used in shortest-path queries (Q9).

Degree

F
re

q
u
e
n
c
y

0 200 400 600 800

0
1

0
0

0
2

0
0

0
3

0
0

0

Figure 6: The degree frequency histogram of the
nodes used in query Q6, for the 10M graph.

obtained by the graph databases. However, in the case of
Q9, the times obtained are similar to those obtained by the
benchmark. This confirms the results that relational data-
bases can obtain excellent results as far as the queries do
not involve traversing the graph further than two hops.

Q1 Q3

Q6 Q9

Q11 Q12

Figure 7: Time in microseconds for queries Q1, Q3,
Q6, Q9, Q11 and Q12 for graphs varying from 1,000
to 10M nodes for Virtuoso and PostgreSQL using
stored procedures.

