
Sparqling Kleene - Fast Property Paths in RDF-3X

Andrey Gubichev∗
Technische Universität München

Germany
gubichev@in.tum.de

Srikanta J. Bedathur†
IIIT-D, New Delhi

India
bedathur@iiitd.ac.in

Stephan Seufert
Max Planck Institute for Informatics

Germany
sseufert@mpi-inf.mpg.de

ABSTRACT
As Semantic Web efforts continue to gather steam, the RDF en-
gines are faced with graphs with millions of nodes and billions of
edges. While much recent work in addressing the resulting scala-
bility issues in processing queries over these datasets have mainly
considered SPARQL 1.0, the next-generation query language rec-
ommendations have proposed the addition of regular expression re-
stricted navigation queries into SPARQL. We address the problem
of supporting efficient processing of property paths into RDF-3X –
a high-performance RDF engine.

In this paper, we restrict our attention to a restricted definition
of property paths that is not only tractable but also most commonly
used – instead of enumerating all paths that satisfy the given query,
we focus on regular expression based reachability queries. Based
on this, we make the following three major technical contributions:
first, we present a detailed account of integrating the recently pro-
posed highly compact reachability index called FERRARI into the
RDF-3X engine to support property path evaluation; second, we
show how property path queries can be efficiently answered us-
ing multiple instances of this index – one instance for each distinct
label in the graph; and finally, we develop a set of queries over real-
world RDF data that can serve as benchmark set for evaluating the
efficiency of property path queries. Our experimental results over
Yago2, a large RDF-based knowledge base, show that our proposed
approach is highly scalable and flexible.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications

Keywords
Graph-Structured Data, Reachability, RDF

∗supported by the LDBC EU FP7 project
†supported by the DST-MPG Partner group on Large-scale Graph
Mining.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Proceedings of the First International Workshop on Graph Data Manage-
ment Experience and Systems (GRADES 2013), June 23, 2013, New York
City, NY, USA.
Copyright 2013 ACM XXX-XX-XXX-XXXXX-XXXXX ...$15.00.

1. INTRODUCTION
The RDF data format, the common data representation the Se-

mantic Web is a highly expressive graph model that is suited for
the “pay-as-you-go” mode of data growth. In this model, la-
beled nodes are connected through (potentially multiple) labeled,
directed edges representing semantic relationships between them.
This graph model is queried via the SPARQL query language using
graph patterns containing both bounded and unbounded variables.
As both the data and the querying models and workloads are quite
different from those encountered in the traditional RDBMS world,
there is a lot of recent interest in efficient processing of SPARQL
queries over large RDF databases.

Despite the flexible graph representation provided by the RDF
model, the SPARQL 1.0 recommendation supported only graph
pattern matching queries but no navigational queries. For instance,
one could not express a query that can be stated in natural language
as “find all descendants of a physicist who won a Nobel prize and
list the awards they have won”. There was no way one could spec-
ify descendants as a sequence of one or more edges labelled with
the hasChild property which would be required for answering the
above query. In the recent draft recommendation of SPARQL 1.1,
this limitation has been overcome with the addition of property path
queries, which can be seen simply as regular expressions over paths
between two nodes in the RDF graph. The above query pattern can
now be expressed in SPARQL 1.1 as:

SELECT ?descendant, ?prize WHERE {
?x type Physicist.
?x hasChild* ?descendant.
?x hasWonPrize Nobel_Prize.
?descendant hasWonPrize ?prize

}

One may observe the use of the familiar Kleene-star operator to
specify a path consisting of zero or more edges labeled hasChild
emanating from the node bound to the variable ?x, and the terminal
node of the path is bound to the variable ?descendant.

While property paths add graph-navigational power to SPARQL,
their efficient evaluation based on their semantics as defined in the
early drafts of SPARQL 1.1 recommendation was not possible. It
was initially required that all paths that satisfy the specified regu-
lar expression be enumerated and for each path the terminal nodes
involved have to be reported. Based on this, if we consider a valid
path that contains a cycle, it may lead to nonterminating results.
While the recommendation circumvented this obvious problem, ef-
ficient processing of these queries is nevertheless a huge challenge
theoretically as well as practically [2, 3]. Based on these results, the
recommendation has been modified since then, taking the feasible
alternative of enumerating paths using the traditional set semantics
of results – similar to those used in XML/XPath, instead of imprac-

tical bag semantics. The queries with the simplified semantics can
be evaluated easily using a fast path computation technique such as
the join-based shortest path processing [4].

However, in most practical uses of property paths it is sufficient
to answer the reachability version of the query – since the vari-
able bindings are allowed only on the path end points. Reachabil-
ity queries can be answered very efficiently using the recently pro-
posed compact in-memory FERRARI index structure [8]. We use
multiple instances of the FERRARI index – one for each subgraph
induced by an edge label in the graph – and implement a physical
operator to evaluate the reachability variant of property paths using
corresponding index instances.

Since the property paths have been added to the standard very
recently, there is currently no SPARQL benchmark that fully tests
the navigational capabilities of RDF systems. In this paper we
identify the aspects of the system design (primarily the query op-
timizer’s design) that are crucial for efficient support of SPARQL
path queries. Informally, these are the things that systems needs to
get right in order to process complex SPARQL queries over large
RDF graphs. We believe that identifying such points will help for-
mulating a comprehensive benchmark for this new SPARQL stan-
dard.

The rest of the paper is organized as follows. We start with de-
scribing the syntax and semantics of reachability queries in SPARQL
1.1 in Section 2.1 and then briefly overview the system architecture
in Section 2.2. Section 2.3 presents the underlying FERRARI in-
dex structure for reachability queries. In Section 2.4 we describe
our main contribution, the reachability query processing in RDF-
3X, which is based on query optimization and runtime process-
ing techniques for reachability queries. In Section 3 we study the
query optimization problems that have to be reflected in bench-
marks for path queries and give experimental comparison of regular
path query processing in RDF-3X and Virtuoso.

2. PATH QUERY PROCESSING

2.1 Syntax & Semantics
The simpliest SPARQL query with a regular path expression

has the form SELECT ?s ?o WHERE {?s path ?o} and re-
trieves the nodes ?s and ?o connected via the path that matches
a regular expression path (as usual in SPARQL, the names of
variables are started with ?). In this paper we consider regular
expressions over constant predicates with disjunction (denoted by
’|’), path concatenation (’/’) and Kleene star (’*’) (corresponding
to zero or more occurences of a predicate) and its variant ’+’ (one
or more occurences). The expression specifies a sequence of pred-
icates along the path from ?s to ?o in the RDF graph. We call
a triple pattern (?s, path, ?o) with regular path expression a
regular path pattern.

As an example, Query 1 retrieves the entities that can be reached
from Berlin by the path consisting of zero or more predicates
isLocatedIn and then gets the types of these entities. In other
words, it looks up the geographical hierarchy of Berlin (Berlin,
Germany, Europe, Earth) and returns the types of the corresponding
objects (i.e., state, a member of EU, a continent, a planet etc)

SELECT * WHERE {
Berlin isLocatedIn*/type ?type

}

Figure 1: Path Query Example

The early version of the W3C SPARQL standard allowed ask-

ing how many paths between two nodes matching the given regular
expression exist. However, the part of the W3C standard defining
counting property paths was demonstrated to be computationally
intractable. It has been shown [2, 6] that the problem lies in using
bag semantics for path queries, that is, in counting all the differ-
ent paths that can reach a given node via a specified sequence of
predicates. Counting paths leads to returning multiple copies of the
same node if it is reachable by several distinct paths. This results in
a double exponential lower bound on the result set size of a single
query even for very small graphs and simple regular expressions
like predicate*, rendering the original W3C semantics infea-
sible. It is also known [2] that even restricting ourselves to simple
paths (without repeating nodes) does not make counting easier, nei-
ther the acyclicity of the underlying graph.

For these reasons, the current W3C standard suggests (and our
system supports) an intuitive existential semantics that merely checks
if there exists a specified path between two nodes, without counting
the number of such paths. In other words, we treat the regular path
pattern (?s, path, ?o) as a reachability query that returns all
pairs of nodes reachable by the given path. Naturally, ?s and ?o
may appear in other triple patterns as well, thus restricting us to
subjects with specific properties that can reach objects with other
properties (of course, these properties can be expressed with arbi-
trary complex SPARQL subqueries)

2.2 System Architecture
We assume our system is a triple store, i. e. all triples are stored

in one giant table with Subject (S), Predicate (P), and Object (O)
as columns. Additionally, each subject, predicate, and object string
is mapped to an integer id and stored in global dictionary. Some
permutations of S, P and O (say, POS and OPS) are indexed using
separate B+-trees, and merge and hash joins operate directly on
these indexes. In this work, we build upon the RDF-3X system that
indexes all six permutations, similar extensions could be provided
for a triple store applying a less aggressive indexing scheme. Fi-
nally, the query execution plan is picked by a cost-based optimizer.
Again, we extend an existing RDF-3X dynamic programming ap-
proach, but our findings apply to all cost-based query engines.

In order to support the reachability queries in a triple store, we
add the capability to check whether two nodes are connected (this is
done by a special reachability index), as well as describe the query
optimization and selectivity estimation methods for such queries.
Finally, we describe the runtime technique to speed up the plan
execution.

2.3 Physical Operator
The physical operator we employ for answering reachability

queries is based on the recently proposed FERRARI index struc-
ture [8]. In this section, we describe this index structure together
with the necessary graph-theoretical background and briefly review
related.

2.3.1 Graph Reachability
The problem of reachability in graphs, or – more precisely

– quickly processing reachability queries of the form (G, u, v),
where G denotes a directed graph and u, v a pair of vertices, has
been actively studied in recent years. The goal in this setting is
to determine in near-constant time whether the input graph G con-
tains a (directed) path originating in node u and ending in node v.
In terms of computational complexity, the reachability problem is
rather lightweight, in fact, a simple graph traversal operation (BF-
S/DFS) originating from the source vertex u is sufficient to deter-
mine reachability in time O(m+ n). However, in many scenarios,

especially for the case of web-scale graphs, query processing in
sublinear time is desirable.
In some cases, a complete precomputation of the transitive closure
of the graph is feasible. In this setting, for every node v ∈ V a
directed edge is added to each other vertex w ∈ V that is reach-
able from v in the original graph via a path of arbitrary length. By
storing the resulting graph in an ajdacency matrix representation, a
single lookup is sufficient in order to answer a reachability query,
thus enabling query processing in constant time. Given the worst-
case time and space complexity of O(mn) to compute and O(n2)
to store the transitive closure can render this approach infeasible
for many large graphs. Therefore, in order to achieve rapid query
processing on these instances, so-called reachability index struc-
tures have been proposed in the past. In the next section we briefly
review the basic approach of interval labeling for reachability in-
dexing.

2.3.2 Reachability Index Structures
An important observation regarding the reachability relationship

in directed graphs is, that vertices from the same strongly con-
nected component are identical with respect to reachability. In
other words, a pair of mutually reachable vertices can reach exactly
the same set of other nodes in the graph. For this reason, all pro-
posed reachability index structures operate on the acyclic (DAG)
structure obtained after collapsing the maximal strongly compo-
nents into supernodes, commonly referred to as condensed graph.
Then, in order to answer reachability queries on the original graph,
the query nodes are first mapped to their respecitve supernode. If
the supernode (corresponding to a strongly connected component)
is identical, the query can be immediately terminated with a posi-
tive answer. Otherwise, the index is probed to determine the reach-
ability of the respective supernodes in the DAG structure.
The classical work of Agrawal et al. [1] can be regarded as the
first reachability index structure. As a first step, the algorithm de-
termines a spanning tree of the input graph and proceeds with a
depth-first traversal in order to assign numeric postorder identifiers.
More precisely, during the tree traversal every node is assigned an
id in ascending order as soon as all the children of the node have
received their respective id. This postorder identifier for a node
v ∈ V is denoted by π(v) ∈ {1, 2, . . . , n}. What makes postorder
labeling interesting for reachability indexing is, that for each (com-
plete) subtree T [v] of V , rooted at vertex an arbitrary vertex v, the
postorder ids of the nodes contained in the subtree form a contigu-
ous sequence of integers. Therefore, the set of vertices reachable
from a node v in the tree T can be expressed by a single interval

IT (v) =

[
min

w∈T [v]
π(w), π(v)

]
(1)

and a reachability query for the pair of nodes (v, w) on this tree
can be answered in constant by time simply by determining wheter
the postorder id of the target node is contained in the interval of the
source node:

v ∼ w ⇐⇒ π(w) ∈ IT (v), (2)

where v ∼ w denotes that w is reachable from v via a sequence
of directed edges. In order to generalize this approach to gen-
eral DAGs, Agrawal et al. propose to label each vertex v in the
graph with a set of intervals, I(v), since a single interval is only
sufficient to represent reachability in tree structures. Their algo-
rithm works by first computing a spanning tree of the graph and
assigning the tree intervals IT (v) and initializing the interval sets
as I(v) = {IT (v)}. Then, vertices are visited in reverse topo-
logical order and for the currently considered vertex v, the interval

sets assigned to the children are merged into the interval set I(v),
where subsumed intervals are discarded. Afterwards, reachability
queries can be answered by checking whether the postorder id of
the target node is contained in one of the intervals contained in the
set assigned to the source node. The time complexity for query
processing amounts to O(log(n)), assuming that the intervals are
maintained in sorted order in each set.

2.3.3 The FERRARI Index Structure
Since above interval representation can be regarded as a con-

cise representation of the transitive closure of the graph, it shares
the worst-case time complexity of construction and representation
with the basic approach of complete precomputation. Therefore, in
many settings this interval labeling approach can become infeasi-
ble. In order to maintain the benefits of the compact interval repre-
sentation while overcoming the scalability problems of the original
algorithm, the recently proposed FERRARI index structure [8] as-
signs a mixture of exact and approximate intervals to the nodes of
the graph. The main idea of the algorithm is to restrict the total
number of intervals that can be assigned to the nodes (local restric-
tion) or overall to all nodes in the graph (global restriction). This
restriction is generally specified by the user and offers a direct con-
trol over the query processing time vs. index size tradeoff. The
basic principle of the index structure is to cover the intervals that
would be assinged to the nodes with a smaller number of approx-
imate and exact id ranges with the requirement that all reachable
ids are covered and false positives are possible. More precisley,
the algorithm repeatedly merges adjacent interval into one longer,
approximate intervals (that contains as false positive entries the ids
originally located in the gap between intervals). At query process-
ing time, a query can terminated directly with (i) a positive answer
if the target id is contained in an exact interval of the source node
or (ii) a negative answer if the target id is located outside the inter-
vals assigned to the source. If the id falls into an approximate id
range, the FERRARI index structure employs a online search pro-
cedure (DFS with additional heuristics) in order to determine the
actual reachability. In our setting, we employ the FERRARI index
structure in order to precompute the reachability relationships for
the subgraph induced by restricting the edges to a certain (RDF)
property. By adaptively compressing the transitive closure using
exact and approximate intervals the FERRARI index structure can
also provide the set of ids of reachable nodes rather than just pro-
viding a boolean answer for a pair of query nodes. For this purpose,
the algorithm performs a BFS traversal from the source node up to
the point where all the expansion fringe consists of vertices labeled
exclusively with exact intervals.

2.3.4 Indexing RDF datasets
The reachability index described above does not take into ac-

count different predicate labels. Therefore, for every distinct predi-
cate in the RDF dataset, we create a separate index for the subgraph
induced by edges with that predicate label. In order to reduce the
overhead, we only consider predicates that label both incoming and
outgoing edges from the same node, since these are the only pred-
icates that can form paths in the graph. In reality, the YAGO2S
dataset (100 million triples) contains 15 such predicates, the sizes
of the corresponding induced subgraphs vary from few hundred
nodes to 5 million nodes and the total indexing time amounts to
roughly 90 seconds on an off-the-shelf laptop computer. The total
size of all FERRARI indexes amounts to 210 MB, permitting to
maintain them in main memory.

2.4 Query Processing

2.4.1 Query Graph and Logical Operators
The initial step in getting an optimal query plan for the query

is to transform it into a calculus representation (query graph) for
further optimizations. Prior to introducing property paths, each
SPARQL triple pattern would be translated into a node of the query
graph, and edges would be formed by shared variables between
different triple patterns. We now map new regular path triples onto
query graph nodes and edges in the following way. First, if the
regular expression on the path contains a sequence of steps (i. e.,
the path concatenation ’/’ is used), we replace such a triple pat-
tern with a sequence of patterns, introducing temporary variables.
This way, the pattern ?s isLocatedIn*/type ?o expands
into two patterns ?s isLocatedIn* ?tmp . ?tmp type
?o, where the second pattern does not require any path processing.
From now on, we can assume that every regular path expression
simply requires matching a single predicate zero or more times (or
one or more types for the ’+’ operator). Then, every such path
triple pattern is expressing the reachability requirement on its sub-
ject and object, that is, the subject should reach the object via the
given path. Such a requirement is encoded as a special reachability
edge between all the patterns containing subject and object of the
given path reachability triple.

SELECT ?city ?p ?type WHERE {
?city hasName "Berlin".
?city hasPopulation ?p.
?city isLocatedIn+/type ?type.

}

Figure 2: Query for geographical hierarchy and population of
Berlin

For example, the Query 2 will have its second triple pattern
rewritten into

?city isLocatedIn+ ?tmp. ?tmp type ?type

The corresponding query graph, depicted in Figure 3a, therefore
has three nodes. The edge between P1 and P2 expresses the fact
that these two patterns share the variable ?c, while two reachability
edges (depicted with *-label) mean that there should exist a path
between ?c defined in P1 and P2 and ?tmp in P3.

Nodes and edges in the query graph correspond to logical op-
erators in the query plan. As usual, nodes are mapped to scans
over the entire database (or the corresponding index) with selec-
tions induced by literals. Edges are transformed into joins, such

P1 = (?c, hasName,Berlin)

P2 = (?c, hasPopulation, ?p)

P3 = (?tmp, type, ?type)

P1

P2

P3

∗

∗

(a) Triple Patterns and Query Graph

P1 1 P2

P1 1R P3

P2 1R P3

(b) Potential
Joins

P1 P2

P3

R

(c) Join Tree

Figure 3: Translating the query into the join tree

that regular edges become equi-joins and reachability edges turn
into reachability joins. A reachability join 1R (?s, ?o) is concep-
tually a join with the condition ?s reaches ?o as a join predicate
(as opposed to ?s =?o condition in an equi-join). For Query 2, the
two reachability joins and an equi-join are given in Figure 3b. Out
of them, the join tree in Figure 3c is constructed. Note that since
the query graph is a clique, only two of the three potential joins are
used. Indeed, the equi-join between P1 and P2 and the reachabil-
ity join between their result and P3 guarantees that all three join
conditions are satisfied.

There are two special cases of reachability joins:

• Either subject or object in the corresponding reachability triple
pattern is constant (e.g., in triple Berlin locatedIn*
?place). Then the reachability join 1R (?s, ?o) turns into
a reachability selection σR(const, ?o).

• Either subject or object is unbound, i.e. does not occur in any
other triple pattern. In this case 1R becomes a reachability
scan: for a bounded variable it looks up all the reachable
nodes via the specified path.

2.4.2 Query Optimization and Physical Operators
After we interpreted the query graph in terms of table scans, pro-

jections and joins, we can run one of the classical join ordering al-
gorithms to obtain the optimal query plan. In order to enable the
cost-based query optimization, we need to extend the cost model to
account for reachability joins and selections. More specifically, the
optimizer has to estimate the result sizes (cardinalities) of reacha-
bility selections and reachability joins.

To estimate the cardinality of σR(const, ?o) recall that the FER-
RARI index for the const element contains sequence of exact and
approximate reachability intervals corresponding to the set of nodes
reachable from a particular vertex. The intervals are approximate
in the sense that all reachable nodes are covered (i. e., nodes out-
side the intervals are not reachable from const), while some nodes
inside the approximate intervals can yield a false positive answer
to the reachability query. In practice, we could observe that, for
the YAGO2S dataset, the structure of the subgraphs induced by the
individual predicates permits a labeling of exact intervals to all of
the respective nodes with a modest size budget. Thus, it is not
necessary to compress the interval labeling by introducing approx-
imate intervals and therefore the intervals correspond exactly to the
nodes reachable from const. The total size of these intervals there-
fore serves as a fast and accurate approximation for the cardinality
of the σR(const, ?o) operator.

In order to estimate the cardinality of 1R (?s, ?o), we precom-
pute and materialize for every predicate the average number of
nodes contained in the set of intervals of a vertex in the FERRARI
index, i.e. the total size of intervals for all nodes divided by the
number of nodes. This value provides a rough approximation of
the number of nodes reachable from the fixed node ?s. Then, to
estimate the result size of 1R (?s, ?o) we multiply this number by
the cardinality of the subplan yielding the ?s values (that is, by the
expected number of start nodes).

Once the optimal logical plan has been found, the physical op-
erators are constructed. In the pipeline model, the reachability join
operator is implemented similarly to a hash join: in the build part,
the more selective input subplan is executed, and then in the probe
part the output of the second subplan is checked against the build
part and FERRARI index, to find the nodes that are reachable from
any of the nodes in the build part. The reachability scan and reach-
ability filter simply probe the FERRARI index for every incoming
node to filter those that satisfy reachability constraints.

?s

3

?o
1
3
4
6
8

R
(?s, ?o)

sk
ip

ID Intervals

FERRARI for ?s

3 [1,1]

4 [8,8] [9,9]

4
Domain for ?o
min max Bloom

1 9 0110000

(hash: v mod 7)

Figure 4: Sideways Information Passing

2.4.3 Sideways Information Passing for Path Queries
Even after the optimal query plan has beed identified by the sys-

tem, its execution suffers from the fact that individual triple patterns
may be surprisingly unselective, while their combinations (i. e.,
joins) rule out most of the scanned data. In order to deal with these
phenomena, RDF-3X employs the Sideways Information Passing
(SIP) mechanism [7]. The system keeps the information about sig-
nificant gaps occured in scans and merges and about domains of
hash joins. All this information is passed between different index
scans via shared-memory variables.

Unlike merge joins and index scans, our reachability join oper-
ator does not keep the order of the input join variables values, so
we can not identify potential gaps in its output and pass it to the
next operators. However, we can still leverage the SIP mechanism
to speed up the reachability join itself. Recall that the intervals of
the FERRARI index contain all the reachable nodes for all the ?s
values of the left side. By keeping these reachability intervals in
the shared memory for the ?o variable of the right side, we can
notify the right side about the potential gaps in the values of ?o.
Intuitively, during the build time we identify for every ?s value the
nodes that can not be reached from s, thus allowing to skip these
values in the right side subplan execution.

Instead of keeping in the shared memory the intervals them-
selves, we encode these potentially reachable nodes in a Bloom
filter. As the Bloom filter will be probed for absence of certain
ranges of values, we use the range-preserving hash function of the
form h(x) = ax mod m [7]. We also keep the minimum and
maximum values of potentially reachable nodes, since they can also
guide the underlying index scans of the right side to skip some frac-
tions of the data.

The SIP mechanism for the reachability join is illustrated in Fig-
ure 4. Suppose that the inputs to the reachability join are two index
scans, and during the probe time we identify that the left scan yields
the values 3 and 4. Then, by looking up the corresponding inter-
vals in the reachability index, we figure that the potential domain
for ?o variable has values 1, 8, 9. We encode these values in a
Bloom filter, and now during the right scan we know that we can
skip all values from 1 to 8, potentially also skipping several disk
pages between these values.

As a concrete example, consider again Query 2 and its optimal
plan in Figure 3c. The left side (build part) of the reachability
join gets a very selective subplan (effectively, its one tuple lookup),
whereas the right side (probe part) entails a very expensive index
scan that touches a large portion of the database. The SIP mecha-

nism provides the right side the hints to skip the most part of the
scanned data, thus significantly improving the performance: on a
commodity laptop the running time has decreased from 2193 ms to
just 75 ms. We describe the details of our experimental evaluation
in the following Section 3.3.

3. EVALUATION
In this section we discuss the challenges inherent to SPARQL

1.1 path queries that the system needs to cope with in order to
efficiently support complex queries over real-world data. These
potential issues help identify interesting queries for benchmarking
systems. We then compare our RDF-3X with path support against
the open-source Virtuoso RDF store. We start our discussion with
briefly describing the dataset in use and our experimental setup.

3.1 Dataset and Experimental Setup
In our experiments we formulate queries against YAGO2S [5],

a knowledge base harvested from Wikipedia. It contains around
100 million facts about 10 million entities and therefore represents
a prime example of a large real world dataset.

We run the modified RDF-3X system on a dual-core laptop
equipped with 4 GB of main memory using 64-bit Linux (2.6.35
kernel). The Virtuoso system is run on a server with two quad-core
Intel Xeon CPUs (2.93GHz) and with 64GB of main memory using
Redhat Enterprise Linux 5.4.

3.2 Choosing the queries
Here we discuss the technical problems that could prevent the

system from finding the optimal plan for the reachability query in
SPARQL. All these issues are related to the cardinality estimation,
since it is at the core of any cost-based query optimizer. The dis-
cussion here is independent of our actual implementation, and may
serve as a foundation for benchmark proposal. We provide small
query examples to illustrate the issues, and also use these ideas in
our test queries (see Appendix A).

Choosing the right build part.
Since the reachability join operator is quite similar to a hash join,

it is important that the more selective subplan is used during the
build phase. This requires the system to provide accurate cardinal-
ity estimations for both subplans (which in turn may be arbitrarily
complex subqueries). Naturally, a good benchmark query should
allow to influence the cardinality of subplans by proper choice of
parameters, so that depending on the parameter one of the subplans
is much more selective. Query 5 illustrates this idea. If X is set to
be Host_cities_of_the_Summer_Olympic_Games and
Y is yagoGeoEntity (a general type describing any geographi-
cal entity), then clearly the first pattern has to serve as a build part.
On the other hand, X = yagoGeoEntity and Y= Continent
reverse the situation.

SELECT * WHERE {
?entity1 type %X%.
?entity1 linksTo* ?entity2.
?entity2 type %Y%.

}

Figure 5: Build Part Selection

The linksTo property is used in YAGO to represent the links
between Wikipedia pages corresponding to the entities.

Comparing cardinalities of different property paths.
Another situation in which it is important to accurately etimate

cardinalities occurs when a query contains several reachability
triple patterns, and the optimizer needs to order them. The naive
heuristics that the triple pattern with a constant in it is more selec-
tive, does not always work here. Consider Query 6, where the pat-
tern with isMarriedTo* is more selective than the pattern with
isLocatedIn*, since YAGO contains way fewer entities with
the isMarriedTo predicate than entities located in the United
States. The optimal plan would, therefore, start with the reacha-
bility scan on isMarriedTo* joined with the owns triple, and
finally filter the entities situated in the US.

SELECT * WHERE {
?person isMarriedTo* ?spouse.
?spouse owns ?entity.
?entity isLocatedIn* United_States.

}

Figure 6: Two Reachability Triple Patterns

Cardinality of property path vs index scan .
Although the path queries typically touch a significant fraction

of data (as in the previous example), sometimes they can actually
be very selective. This calls for a very accurate cardinality estima-
tion of property path triples. As an example, Query 7 entails the
join between an index scan on the type predicate, and a reacha-
bility scan on the hasAcademicAdvisor predicate. Since very
few triples in YAGO are incident with latter predicate, the reacha-
bility scan has much smaller cardinality than the index scan. The
optimal plan would therefore start building the hash table from the
reachability scan output, and then probe the index scan.

SELECT * WHERE {
?person hasAcademicAdvisor* ?scientist.
?scientist type ?t

Figure 7: Selective Reachability Triple Pattern

3.3 Experimental Evaluation
In this section we briefly report on the experimental comparison

between RDF-3X (with FERRARI) and Virtuoso. The table below
reports the warm cache results of seven queries against YAGO2S.
As we see, our approach outperforms Virtuoso by large margine,
providing the runtime that is 3-5 times faster than the competitor’s.
Virtuoso could not execute the last query, the query execution proc-
cess has reported "out of memory" exception. Note also that the
Virtuoso instance has allocated 20 Gb of main memory, whereas
RDF-3X used less around 1 Gb of main memory for query execu-
tion.

The full text of all queries can be found in Appendix A.

Q1 Q2 Q3 Q4 Q5 Q6
RDF-3x 1 188 1 75 350 253
Virtuoso 8 452 4 418 946 –

Table 1: Running times, ms

4. CONCLUSIONS
Efficient querying and processing of graph structured data re-

mains a challenging problem with manifold application scenarios
in contemporary systems. The RDF data representation with its
schema-less approach has found widespread use, stirred by its ori-
gins in the Semantic Web community. While recent research ad-
dresses a multitude of problems in querying and storing RDF data,
providing more expressive querying mechanisms can be regarded
as one of the most promising directions. To this end, in this pa-
per we have presented the first steps towards extending existing
RDF query processing systems to solve a subset of the newly in-
troduced Property Path standard for SPARQL 1.1. More precisely,
we have integrated the recently proposed graph reachability index,
FERRARI, into the state-of-the-art RDF processor, RDF-3X. Mul-
tiple instances of the reachability index, one for each relevant prop-
erty of the underlying RDF graph are used to efficiently process
the subset of new SPARQL 1.1 Property Path queries that are ar-
guably most relevant in practical use. Our experimental evaluation
over the well-known RDF knowledge base, YAGO2, underpins that
our combination of a reachability index as physical operator to-
gether with the RDF-3X engine improve the previous approaches
for query processing over this kind of queries by a large margin.
Finally we describe the query optimization challenges and propose
a set of benchmark queries that reflect these challenges with the
goal of enabling an insightful comparison of more expressive RDF
processing engines that will be proposed in the future.

References
[1] R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient Manage-

ment of Transitive Relationships in Large Data and Knowledge
Bases. In SIGMOD’89, pages 253–262. ACM, 1989.

[2] M. Arenas, S. Conca, and J. Pérez. Counting beyond a yot-
tabyte, or how sparql 1.1 property paths will prevent adoption
of the standard. In WWW’12, pages 629–638, New York, NY,
USA, 2012. ACM.

[3] M. Arenas, C. Gutierrez, D. P. Miranker, J. Pérez, and J. F.
Sequeda. Querying semantic data on the web? SIGMOD Rec.,
41(4):6–17, Jan. 2013.

[4] A. Gubichev and T. Neumann. Path query processing on very
large rdf graphs. In WebDB, 2011.

[5] J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum.
YAGO2: A Spatially and Temporally Enhanced Knowledge
Base from Wikipedia. Artificial Intelligence, 2013.

[6] K. Losemann and W. Martens. The complexity of evaluating
path expressions in sparql. In PODS’12, pages 101–112, New
York, NY, USA, 2012. ACM.

[7] T. Neumann and G. Weikum. Scalable join processing on very
large rdf graphs. In SIGMOD’09, pages 627–640, New York,
NY, USA, 2009. ACM.

[8] S. Seufert, A. Anand, S. J. Bedathur, and G. Weikum. FER-
RARI: Flexible and Efficient Reachability Range Assignment
for Graph Indexing. In ICDE’2013. IEEE, 2013.

APPENDIX
A. QUERIES

All queries use the following prefix: yago:<http://yago-
knowledge.org/resource/>

Q1 select ?country ?area where { yago:Berlin yago:isLocatedIn*
?country. ?country yago:dealsWith ?area. ?area rdf:type
yago:wikicategory_Member_states_of_NATO }

Q2 select ?city ?b ?area where { ?city rdf:type
yago:wikicategory_Capitals_in_Europe . ?city yago:isLocatedIn*
?b. ?b yago:dealsWith ?area }

Q3 select ?a ?b ?area where { ?a yago:isLocatedIn*
?b. ?b yago:dealsWith ?area. ?a yago:isPreferredMeaningOf
"Berlin"@eng}

Q4 select ?a ?b ?type where { ?a yago:isPreferredMeaningOf
"Berlin"@eng. ?a yago:isLocatedIn* ?b. ?b type ?type. }

Q5 select * where { ?person yago:isMarriedTo* ?spouse.
?spouse yago:owns ?entity. ?entity yago:isLocatedIn*
yago:United_States } limit 100

Q6 select * where { ?airport1 a
yago:wikicategory_Airports_in_the_Netherlands. ?air-
port1 yago:hasLongitude ?long. ?airport1 yago:hasLatitude
?lat. ?airport1 yago:isConnectedTo* ?place. ?place a
yago:wikicategory_Mediterranean_port_cities_and_towns_in_Spain.
?place yago:wasCreatedOnDate ?date. ?place
yago:hasNumberOfPeople ?people. } limit 10

