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ABSTRACT
Bisimulation is a basic graph reduction operation, which
plays a key role in a wide range of graph analytical applica-
tions. While there are many algorithms dedicated to com-
puting bisimulation results, to our knowledge, little work
has been done to analyze the results themselves. Since data
properties such as skew can greatly influence the perfor-
mances of data-intensive tasks, the lack of such insight leads
to inefficient algorithm and system design.

In this paper we take a close look into various aspects
of bisimulation results on big graphs, from both real-world
scenarios and synthetic graph generators, with graph size
varying from 1 million to 1 billion edges. We make the fol-
lowing observations: (1) A certain degree of regularity ex-
ists in real-world graphs’ bisimulation results. Specifically,
power-law distributions appear in many of the results’ prop-
erties. (2) Synthetic graphs fail to fulfill one or more of
these regularities that are revealed in the real-world graphs.
(3) By examining a growing social network graph (Flickr-
Grow), we see that the corresponding bisimulation partition
relation graph grows as well, but the growth is stable with
respect to the original graph.

1. INTRODUCTION
Graphs have long been a fundamental data model in math-

ematics and computer science. Recently, with the prolif-
eration of available graph data and the pressing need for
graph analytics, massive graph management problems have
been receiving increasing attention from the data manage-
ment, semantic web and many other research communities.
Graphs of interest, such as social networks [30], internet
graphs [10] and linked open data [15], are on the order of mil-
lions or even billions of nodes and edges. To enable efficient
analytics on such huge graphs, often one of the first tasks
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to perform is to adopt some graph reduction technique to
shrink the size of the graphs, while still maintaining certain
characteristics (e.g., topological structure).

Graph bisimulation partitioning (and its many variants)
is such a reduction operation. Intuitively, bisimulation par-
titioning groups nodes together as disjoint sets based on the
local topology of each node. These partition “blocks” and
the relationships between them form an abstracted graph
where the graph size is reduced but the structural informa-
tion (e.g., path information) is preserved. With the help of
such abstracted graph, many queries can be answered or fil-
tered out without probing the real graph, therefore the graph
management system’s performance is greatly enhanced.

Bisimulation is a ubiquitous notion across many fields
[27]. In the context of graph reduction, graph bisimulation
finds its applications in various data management problems,
such as constructing structural indexes for XML and RDF
databases [13, 23, 25], graph compression [7, 12], and sub-
graph matching [11].

Inspired by numerous real-world applications, including
those in data management, algorithms for computing bisim-
ulation reductions have been studied for decades. Algo-
rithms targeting various constraints and computational mod-
els, such as main-memory algorithms [1], I/O efficient al-
gorithms [16, 22] and distributed solutions [6, 21], have
been developed to efficiently compute bisimulation parti-
tions of massive graphs. For example, the state-of-the-art
MapReduce-based algorithm [21] can compute a“k-localized”
variant of bisimulation, discussed below, on a social graph
with 1.4 billion edges in a few hours, for k = 10.

Despite all of the aforementioned efforts, little work has
been carried out to take a deep look into the bisimulation re-
sult itself, which is essential for applications (e.g., indexing,
query optimization, compression, load balancing) to take
into consideration. Indeed, it is well known that graph prop-
erties, or data properties in general, such as skewness (e.g.,
power-law distribution [8]) can hugely influence the perfor-
mance of data-intensive processing. This applies to both
single-machine algorithms (e.g., caching effects [9]) and dis-
tributed algorithms (e.g., [3, 18]). Therefore, characteristics
of the input data must be examined and reflected at the
stage of algorithm design.

Motivated by these observations, in this paper we analyze
the localized k-bisimulation partitioning results of many real
and synthetic big graphs. We focus on a localized variant of



bisimulation due to its practical applicability in data man-
agement solutions (e.g., [13, 19]). We compare the graph
properties of the abstracted bisimulation graph (defined as
k-BPR graph in Def. 2) both with each other and with the
original underlying graph. We also analyze a dynamic social
network graph (Flickr-Grow), examining the behavior of the
k-BPR graph as the original graph grows.

We make the followings observations:
• Regularities exist in the bisimulation results of real-

world graphs. Power-law distributions hold for parti-
tion block size distribution, signature length distribu-
tion, degree distributions for the k-BPR graph. The
k-BPR graphs are usually denser than their original
graphs.
• In the context of bisimulation results, the synthetic

graph generators that we examined fail to fulfill one or
more of the regularities that are observed in real-world
graphs.
• For the dynamic social network that we examined, its
k-BPR graph also grows, but the growth is stable (re-
lated by a constant factor) with respect to the original
graph.

To the best of our knowledge, we are the first to make these
observations.

The rest of the paper is organized as follows. In Section
2 we introduce the basic definitions and notions we will use
in the paper, as well as the experiment setup. In Section 3,
we examine the bisimulation properties of static graphs. In
Section 4, we further investigate on the behaviors of a grow-
ing social graph. We conclude in Section 5 with a discussion
of future directions for research.

2. PRELIMINARIES AND EXPERIMENT
SETUP

For a directed node- and edge-labeled graph G = 〈N,E,
λN , λE〉, where N is a finite set of nodes, E ⊆ N × N is a
set of edges, λN is a function from N to a set of node labels
LN , and λE is a function from E to a set of edge labels LE ,
we define k-bisimilar equivalence relation on N :

Definition 1. Let G = 〈N,E, λN , λE〉 be a graph and
k ≥ 0. Nodes u, v ∈ N are called k-bisimilar (denoted as
u ≈k v), iff the following holds:

1. λN (u) = λN (v),
2. if k > 0, then for any edge (u, u′) ∈ E, there exists an

edge (v, v′) ∈ E, such that u′ ≈k−1 v′ and λE(u, u′) =
λE(v, v′), and

3. if k > 0, then for any edge (v, v′) ∈ E, there exists an
edge (u, u′) ∈ E, such that v′ ≈k−1 u′ and λE(v, v′) =
λE(u, u′).

Then we define the k-bisimulation partition relation graph
from the ≈k relation.

Definition 2. Let G = 〈N,E, λN , λE〉 be a graph and
k ≥ 0. The k-bisimulation partition relation graph for
G (denoted as k-BPR graph) is the directed graph Gk =
〈Nk, Ek〉, such that
• Nk consists of the equivalence classes of ≈k, i.e., if for

node v ∈ N , we let [v]≈k = {u ∈ N | v ≈k u}, then
Nk = {[v]≈k | v ∈ N}.
• Ek ⊆ Nk×Nk, and (X,Y ) ∈ Ek iff ∃x ∈ X, y ∈ Y s.t.

(x, y) ∈ E.

Since both G and Gk are directed graphs, we define for
each node in G and Gk the in-degree (out-degree) as the
number of incoming (outgoing) edges of that node.

Example. Consider a simple directed graph in Figure 1,
where edges indicate the “following” relationship in a social
network. Nodes {1, 2, 3, 6} are labeled with “public” (filled
with black), while {4, 5, 7, 8} are labeled with “celebrity”
(filled with white). Under 1-bisimulation, we have that these
nodes are partitioned into P1 = {1, 6}, P2 = {2, 3}, P3 =
{4, 7} and P4 = {5, 8}. As a result, the 1-BPR graph has
edge set {P1→ P1, P2→ P2, P2↔ P1→ P3→ P4}. We
see that the graph size is greatly reduced, while the 1-step
node reachability information is maintained. For example, if
we want to query the descendent nodes of node 8, since node
8 belongs to P4, we directly know that there is no outgoing
edge from P4 (and therefore from node 8). Hence, there is
no need to probe the original graph, and an empty set is
immediately returned.
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Figure 1: An example so-
cial network (“following”
relation), different colors
group nodes to different
1-bisimulation partition
blocks

We refer the readers to
Luo et al. [22] for a more
detailed discussion of lo-
calized bisimulation. In
the sequel, we consider
k-BPR graphs with self-
loops on nodes, though the
difference is not significant.
Also when we plot dis-
tributions for some graph
properties, we use cumu-
lative distribution function
(CDF) [2]. Intuitively,
CDF describes for some
value x, the percentage
of occurrences of samples

with a value less than or equal to x.

Experiment setup. In this paper we use a state-of-the-art
external memory algorithm [22] to compute the localized
bisimulation result for all graphs. This algorithm enables
us to process huge graphs with up to billions of edges. All
experiments are executed on a cluster machine (Intel Xeon
2.27 GHz processor, 12GB main memory, Fedora 14 64-bit
Linux). We compute to k = 10 since this is big enough
to show all properties of interest from the k-bisimulation
results.

Graph datasets. The graph datasets we use in this paper
are collected from a wide range of applications. In Table
1 we show some simple statistics of the datasets. Figure 2
presents the in-degree and out-degree distributions for the
real graphs and synthetic graphs respectively. We see all the
real graphs and some synthetic graphs (i.e. BSBM, SP2B,
Power) show a certain power-law distribution. For Flickr-
Grow we plot the grown graph.

3. STATIC PROPERTIES OF k-BPR GRAPHS
In this section we examine the properties of the static

graphs (we treat the grown Flickr-Grow as a static graph in
this section). Specifically, we are interested in the compar-
ison of basic structural properties of the k-BPR graph Gk



100 101 102 103 104 105 106

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

x (in-degree)

cu
m

u
la

ti
v
e

%
o
f

n
o
d

es
w

it
h
≥

x Jamendo

LinkedMDB

DBLP

WikiLinks

DBPedia

Twitter

Flickr-Grow

(a) in-degree distribution for real graphs
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(b) in-degree distribution for synthetic graphs
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(c) out-degree distribution for real graphs
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Figure 2: In-degree and out-degree distributions for graphs

Table 1: Description and statistics of the graph datasets

Data Name Description |N | |E| |E|
|N|

Jamendo
(E)

A repository of music
metadata in RDF for-
mat [26]

0.49M 1.05M 2.16

LinkedMDB
(E)

A repository of movie
metadata in RDF for-
mat [14]

2.33M 6.15M 2.64

DBLP (E) An RDF format
DBLP dump1

23M 50.2M 2.18

WikiLinks
(NO)

A page-to-page
linking graph of
Wikipedia2

5.71M 130.16M 22.79

DBPedia
(E)

An early RDF dump
of DBPedia3

38.62M 115.3M 2.99

Twitter
(NO)

A following relation-
ship graph of Twit-
ter [20]

41.65M 1468.37M 35.25

SP2B (E) A RDF data generator
for arbitrarily large
DBLP-like data [29]

280.91M 500M 1.78

BSBM (E) A RDF data gener-
ator for e-commerce
use case [5]

8.89M 34.87M 3.92

Random
(E)

Random graph gener-
ated by GTgraph [4]

10M 200M 20

Power (E) Power-law distribu-
tion graph generated
by GTgraph [4]

8.39M 200M 23.85

Flickr-Grow
(NO)

A following rela-
tionship graph of
Flickr [24]

1.5M to
2.3M

17.7M to
33.1M

11.68 to
14.39

* E, N and NO indicate the graph is labeled on edge, node or
neither, resp.

and its original graph G.

3.1 Comparison of Gk and G
In Figure 3a and 3b we show |Nk|

|N| and |Ek|
|E| for k ∈ {1, . . . , 10}

for all graphs, where |X| denotes the size of set X. The fig-
ures indicate the reduction (compression) rate we can get.
In general, we see that localized bisimulation reduction pro-
vides good compression on the original graphs, with reduc-
tion rate between 10−4 and 10−1, and the rate becomes sta-
ble around k = 5. We also see that, compared with the
real graphs, the partition results from synthetic datasets
{BSBM, Power, Random} are either too coarse or too re-
fined. However, this also happens for the real graphs with-
out labels (i.e., WikiLinks, Twitter, Flickr-Grow).

In Figure 3c, we plot the average degree of the partition
graph for each dataset for k ∈ {1, . . . , 10}. Comparing with
the original graph degree in Table 1, we see that the parti-
tion block graphs usually have higher degrees, and, at the
beginning of the computation, the average degree tends to
drop. In the case of graphs without labels, the degrees first
rise until k is 4 or 5 and then drop.

Overall, for the purpose of compression or structural in-
dexing, we observe that choosing k = 5 is usually sufficient.
A larger k value would lead to a too refined partitioning.
k-BPR graphs are usually denser than their original graphs.

1http://thedatahub.org/dataset/l3s-dblp
2http://haselgrove.id.au/wikipedia.htm
3http://www.cs.vu.nl/~pmika/swc/btc.html
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Figure 3: Comparison of k-BPR graph to its original graph

3.2 Power-law distribution in Gk

In Section 2, we see that many of the original graphs follow
a power-law distribution in their structure. We are curious
about whether this is also true for their k-BPR graphs. The
investigation can be found in Figure 4.

Figure 4a and 4b show the distribution of partition block
size for each graph. Here note that for the Random dataset,
each node belongs to its own partition.

Luo et al. [22] define a notion of signature for each node,
which is essentially an encoding of the bisimulation equiv-
alence class of the node. The length of a node’s signature
gives us insight into the complexity of the local topology of
the node. Figure 4c and 4d show the distribution of signa-
ture lengths.

It would be interesting to further study some graph prop-
erties of the k-BPR graphs. In Figure 4e, 4f, 4g and 4h, we
plot the in-degree and out-degree of the k-BPR graphs for
real graphs and synthetic graphs, respectively.

In general, we observe that all examined properties show
certain power-law distribution nature for real graphs. This
gives us some insights when we want to build applications of
k-BPR graphs. Furthermore, we note that not a single syn-
thetic dataset fulfils all power-law distribution graph prop-
erties as shown in real data. From the bisimulation partition
perspective, the most real synthetic graph is SP2B, which
still, lacks of the power-law distribution on signature length.
This indicates that benchmark graph generators still need to
be improved in this direction to reflect the structure of real
graphs.

4. DYNAMIC PROPERTIES OF k-BPR GRAPHS
While Section 3 studies the properties for static graphs

and their k-BPR graphs, in this section we want to look into
growing graphs. Note that for our growing graph (Flickr-
Grow), the findings in Section 3 still hold.

It is easy to design synthetic graphs such that their cor-
responding k-BPR graph either shrinks or grows, as the
original graph grows. For real-world social graphs, how-
ever, we are interested to know (Q1) is the k-BPR graph
growing when the original graph grows?; and, (Q2) is the
k-BPR graph growing faster than the original graph? We
use the Flickr-Grow graph for this investigation. The origi-
nal Flickr-Grow graph includes a time stamp for each edge.

We separate the edge set into 14 subsets based on the time
stamp, grouping edges together for every 10 days. In this
way, we can examine graph growth in a coarse granularity.

218

219

220

221 |N |
|Nk|

1 5 10 14

224

224.5

225

Time stamp

|E|
|Ek|

Figure 5: k-BPR graph growth trend in |N |, |E|, |Nk| and |Ek|

To answer Q1, we plot in Figure 5 the trend of |N | and |E|
of G, |Nk| and |Ek| of Gk with time, where k = 5. Other
k values show the same behavior as well. Essentially, we
examine the k-BPR graph growth in terms of nodes and
edges. We see that during the whole period, |Nk| increased
by 1.5× and |Ek| by 2×, while the original graph grows with
the same ratios.

|N |

|N
k
|

|E|

|E
k
|

Figure 6: k-BPR graph growth trend in |Nk| w.r.t. |N | and |Ek|
to |E|, all axes are in linear scale

To answer Q2, we plot Figure 6, showing the growth of
|Nk| (y-axis) w.r.t. |N | (x-axis) and |Ek| to |E|. We see
that there is clearly a constant factor between |Nk| and |N |
(|Ek| and |E|). So we conclude that (1) the k-BPR graph
grows with the original graph, but (2) the growth is stable
with respect to the original graph.
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5. CONCLUSION AND DISCUSSION
In this paper, we have examined many aspects of the local-

ized bisimulation partitioning results for massive real-world
and synthetic graphs. Extensive experiments have shown
basic regularities in the k-BPR graphs for both static and
dynamic real graphs, while the synthetic graphs fail to mimic
real graphs in this respect. To our knowledge, we are the
first to make these observations.

Observations in this paper not only provide insight into
other applications, as suggested above, but also provide di-
rections for future research. First, other interesting mea-
surements on the k-BPR graphs can be performed; features
such as diameter and clustering coefficient may show dif-
ferent properties when compared with the original graphs.
Second, it would be interesting to analyze the different be-
haviors of labeled and unlabeled graphs (as in Sec. 3), and
determining the causes. Third, as we have seen through-
out the paper, synthetic graph generators fail to deliver
power-law distribution bisimulation results as observed in
real graphs. Studying ways to solve this problem on ex-
isting graph generation models or with new models is an
important research direction. Last but not least, similar re-
search could be carried out on other related reductions, such
as simulation partition graphs [17].
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