Time-varying Social Networks in a Graph Database

[A Neo4dj Use Case]

Ciro Cattuto
Data Science Lab
IS| Foundation
Torino, ltaly

Marco Quaggiotto
Data Science Lab
IS| Foundation
Torino, Italy

ABSTRACT

Representing and efficiently querying time-varying social net-
work data is a central challenge that needs to be addressed
in order to support a variety of emerging applications that
leverage high-resolution records of human activities and in-
teractions from mobile devices and wearable sensors. In or-
der to support the needs of specific applications, as well
as general tasks related to data curation, cleaning, linking,
post-processing, and data analysis, data models and data
stores are needed that afford efficient and scalable querying
of the data. In particular, it is important to design solutions
that allow rich queries that simultaneously involve the topol-
ogy of the social network, temporal information on the pres-
ence and interactions of individual nodes, and node meta-
data. Here we introduce a data model for time-varying social
network data that can be represented as a property graph
in the Neo4j graph database. We use time-varying social
network data collected by using wearable sensors and study
the performance of real-world queries, pointing to strengths,
weaknesses and challenges of the proposed approach.

Categories and Subject Descriptors

E.2 [Data]: Data Storage Representations—Ilinked represen-
tations; H.2.1 [Information Systems|: Database Manage-
ment - Logical Design—data models, schema; J.4 [Computer
Applications]: Social and behavioral Sciences—sociology

General Terms
Graph Database, Social Networks, Wearable Sensors

Keywords

social networks, temporal networks, graph databases, neo4j

André Panisson
Data Science Lab
IS| Foundation
Torino, ltaly

Alex Averbuch
Neo Technology
Stockholm, Sweden

1. BACKGROUND

A growing variety of applications produce an increasing quan-
tity of information about the social behaviour of their users.
People leave behind a large amount of digital traces about
their daily activities and applications that take advantage of
these resources have the potential to change the way people
live their lives. Mobile devices and wearable sensors with
various sensing technoare able to collect information about
social interactions between people. In order to preserve the
temporal information of such interactions, collected data can
be represented as time-varying social graphs, where nodes
represent individuals, edges represent interactions between
them, and both the graph structure and the attributes of
nodes and edges change over time. In this model, both nodes
and edges can have rich attributes and are associated to a
temporal structure.

Data formats for exchanging time-dependent graphs are avail-
able, see for instance the GEXF format [1]. Efficiently min-

ing large time-varying graphs, however, requires a database

and a representation that can support complex topologi-

cal queries, temporal queries, multi-scale temporal indexing

and aggregation, and more. A growing research commu-

nity working on temporal networks [11] may benefit from

sound and efficient techniques to represent, store and query

dynamic graphs.

2. SOCIAL NETWORKS FROM WEARABLE
SENSORS

In the following we use time-resolved behavioral social net-
works measured by the SocioPatterns collaboration' [10] by
using wearable proximity sensors. The SocioPatterns col-
laboration aims at building a high-resolution atlas of hu-
man contact in a variety of indoor social environments, to
be used for research on human mobility, computational epi-
demiology, opportunistic networks, and related domains.

Participants in the use cases are asked to wear badges equip-
ped with active Radio Frequency Identification (RFID) de-
vices (Figure 1(a)) that are programmed to sense and report
close-range proximity relations between devices. The wear-

"http://www.sociopatterns.org

able devices engage in bi-directional radio communication,
and the exchange of low-power radio packets is used as a
proxy for the face-to-face proximity of participants, as il-
lustrated in Figure 1(b). The spatial range for proximity
detection can be tuned from several meters down to face-to-
face proximity by varying the radio power of the proximity-
sensing packets. At the highest spatial resolution, the ex-
change of radio packets is only possible when two persons
are at close range (~ 1-1.5m) and facing each other, since
the human body acts as a RF shield at the carrier frequency
used for communication. The operating parameters of the
devices were chosen so that face-to-face proximity relations
can be assessed with a probability in excess of 99 % over an
interval of 20 seconds, which is a fine enough temporal scale
to resolve human mobility and proximity relations at social
gatherings. The sensed proximity relations (or contacts) be-

(a) (b)

Figure 1: (a) Wearable proximity sensor used by the
SocioPatterns collaboration to mine close-range and
face-to-face proximity in a variety of real-world set-
tings. (b) Proximity sensing strategy. The wearable
sensors engage in bidirectional ultra-low power radio
communication (1). Packet exchange is only possi-
ble when two sensors are sufficiently close in space.
At the lowest power used to sense proximity, packet
exchange is only possible when the individuals wear-
ing them are at close range (1-1.5m) and face each
other (bottom panels). The sensed proximity rela-
tions are periodically relayed at higher power (2) to
a centralized data collection system.

tween individuals are received by RFID readers installed in
the environments and relayed to a centralized data collection
system for post-processing, storage and subsequent analysis.
Once a contact has been detected, it is considered ongoing
as long as the involved devices continue to exchange at least
one radio packet for every successive interval of 20 seconds.
Conversely, a contact is considered terminated if an interval
of 20 seconds elapses with no packet exchange.

The proximity-sensing platform described above was deployed
in several different settings, yielding data on time-resolved
human proximity in conferences, hospitals, schools and mu-
seums. The specific dataset we use for the present study was
collected at the 20" ACM Hypertext 2009 conference [12],
from June 29th to July 1st 2009, and is available to the

public [3]. Participants were invited to provide online social
network data linked to their wearable sensor and were of-
fered a service, Live Social Semantics [8], that allowed them
to browse their social neighborhood, their encounters at the
conference, and discover shared contacts and interests by
mining the sensed social graph as well as the linked online
social networks and user metadata.

The data we use provides, for each pair of participants, the
detailed sequence of their contacts, with beginning and end-
ing times. These data can be represented as time-varying
proximity networks, obtained by temporally aggregating the
raw data stream from the proximity sensors over temporal
frames of a given duration, here chosen as At = 20s. For
each consecutive time interval (frame) of duration At we
build a proximity graph where nodes represent individuals,
and edges represent proximity relations between individuals
that were recorded during the corresponding frame. Within
a frame, an interaction is considered active from the begin-
ning of the frame to the end of the frame. In this represen-
tation, interactions and actors appear or disappear at frame
boundaries only.

3. TECHNICAL CHALLENGES

Representing and efficiently querying time-varying social net-
work data is a problem that needs to be tackled in order to
support a variety of important tasks, including data cura-
tion, cleaning, linking, batch post-processing, and analysis.
Solving this problem requires several challenges to be over-
come. In particular, those related to data modeling and to
data storage and retrieval.

3.1 Modeling Time-Varying Networks
Whereas simple representations based on (time-varying) ad-
jacency matrices or adjacency lists allow to build specialized
data processing pipelines, they have numerous limitations.
They lack the flexibility required to harmonize the previ-
ously mentioned tasks, face scalability issues with large data-
sets, and provide constrained semantics for querying and
exposing data to services and applications (e.g., for visual-
ization). To this end, it is crucial to design models for time-
varying social network data that can be efficiently deployed
in databases, and to allow rich queries involving combina-
tions of social network topology, temporal information, and
metadata.

3.2 Storage & Retrieval of Large Networks
Querying network/graph data in a performant manner is
difficult, even more so when the graph dataset is large and
persistent. This difficulty stems from specific characteristics
of graph data and graph access patterns:

e The topology of real-world graphs is heterogeneous.
Graph datasets from systems such as social networks,
online and offline infrastructural networks, records of
human-driven activity and a host of natural phenom-
ena exhibit fat-tailed statistics for node connectivity [13].
This results in the inevitable high heterogeneity of
node connectivity, and the “dense node” problem, where
a small fraction of nodes have connections to a large
fraction of other nodes. Dense nodes are not only ex-
pensive to process when encountered, their high con-

nectivity also means they are encountered with great
frequency.

In our data there are two main sources of heterogene-
ity: the first is the topological heterogeneity of the
social networks we measure, the second is the tempo-
ral heterogeneity in activity due to the bursty nature
of human dynamics [9, 15, 16]. These heterogeneities
are reflected in the properties of the dynamic social
graphs we want to model in Neo4j.

e Graph problems are data driven, that is, computa-
tion is largely dictated by graph topology. As most
graphs are very heterogeneous, it is difficult to know
the computation structure of graph algorithm in ad-
vance. Consequently, optimizing the execution of graph
algorithms is a non-trivial problem.

e Due to their heterogeneity, graph access patterns typ-
ically have poor spatial memory locality. This results
in large amounts of random memory access.

e Graph algorithms exhibit high data access to compu-
tation ratio - the runtime of most graph algorithms is
dominated by memory access.

The SocioPatterns use case requires a graph storage and re-
trieval technology that supports: a rich graph data model,
reliable storage of large graphs, and efficient execution of
complex queries on large heterogeneous graphs. The Neo4j [6]
graph database fulfills these requirements, and was therefore
chosen for this work.

In general, graph databases are very well suited to this
use case, but Neodj was deemed particularly fitting due to
the following reasons: support for the property graph data
model [14]; persistent, transactional storage of very large
graphs; support for deep graph analytics via efficient many-
hop traversals; and support for the Cypher [4] declarative
graph query language.

4. DATA MODEL

We assume that the social network is measured over adjacent
discrete intervals of time, henceforth referred to as frames.
A frame is the finest unit of temporal aggregation used and
is associated with a time interval defined by start time and
end time. A frame allows to retrieve the status of the social
network during the corresponding time interval, it is thus
associated with a social graph at a given point in time.

The nodes of such social graphs represent individuals and
edges represent, for instance, the proximity relations of in-
dividuals during the time interval of the frame. Though
the model presented here considers edges as undirected and
weighted, it generalizes to directed weighted edges and to
multi-relational networks.

4.1 Time-Varying Social Network

The following is a data model for time-varying social net-
works, used to represent the SocioPatterns data in the Neo4j
graph database.

Modeling a specific domain as a graph often requires a more
complex model than the obvious choice of representing do-
main objects as nodes and the relationships between them

as edges. In general, it is necessary to define: a domain
graph schema, which models domain level entities and the
relationships between them; a data graph schema, the un-
derlying graph data model; and a translation between these
two abstractions.

This can be a complex task, all the more when the domain
works with dynamically mutating, time-dependent graphs.
Representing such graphs requires that domain-level enti-
ties can be associated with specific time intervals, and that
the model supports execution of temporal queries. Rela-
tionships between entities and the time intervals with which
they associate are first modeled at the domain graph level.
Therefore, any single domain level entity is likely to be rep-
resented by multiple nodes and edges in the underlying data
graph - nodes and edges in the application domain are rep-
resented by subgraphs in the underlying property graph.

In our application individuals of the social graph are rep-
resented by their wearable sensor. To avoid ambiguity and
stay close to the language of our application, the following
introduces all terms used to represent entities in the time-
varying social graph:

A time-dependent graph as a whole is accessed as a
RUN node, corresponding to a time-resolved record of
social network evolution. A RUN node is connected to
the reference node by means of a HAS_RUN relation.

e RUN nodes have RUN_FRAME relations to all the FRAME
nodes. They also have a RUN_FRAME_FIRST relation to

the first frame of the graph history, and a RUN_FRAME_LAST

to the last one.

e Each FRAME node points to the successive frame by
means of a FRAME_NEXT relation.

e FEach FRAME node points to the status of the social
graph during the corresponding time interval: it has
FRAME_ACTOR relations to ACTOR nodes (representing in-
dividuals wearing sensors) and FRAME_INTERACTION re-
lations to INTERACTION nodes (representing a proxim-
ity /contact relation). Timestamps and interval meta-
data are represented as attributes of the FRAME node.

e An INTERACTION node has two INTERACTION_ACTOR re-
lations to the ACTOR nodes that the interaction con-
nects to one another.

e Time-dependent attributes for an edge of the social
graph (for example, time-dependent edge weights?) are
represented as attributes of the FRAME_INTERACTION re-
lations that associate that interaction with the corre-
sponding frame(s).

e Similarly, time-dependent attributes of an ACTOR node
in the social graph are represented as attributes of the
FRAME_ACTOR relations that associate that node with
the corresponding FRAME.

2Edge weights were calculated in different ways. Often
simply as the number of frames in which an interaction is
present, sometimes in more complex ways.

e All ACTOR and INTERACTION nodes are connected to the
main RUN node with RUN_ACTOR and RUN_INTERACTION
relations.

[RUN_FRAME_FIRST]

frames (timeline)

RUN_ACTOR

actors

5
3
8
2
5
5
2
g
g
»

Figure 2: Time-varying Social Network Data Model

4.2 Temporal indexing

Although graph evolution can be tracked by walking from
one frame to the next, efficient random access to the frame
timeline can be better supported by suitably indexing the
time-stamped sequence of FRAME nodes. This can be achieved
in different ways, such as using binary trees (as in the Neo4;j
Timeline class [2]), or attaching to the FRAME nodes tempo-
ral attributes that can be indexed, or mirroring the natural
temporal hierarchy of the data (year/month/day/hour/...)
with hierarchical temporal relations between nodes.

Here we choose the latter technique, as it preserves the nat-
ural units of temporal aggregation in our data (days, hours,
etc.). The temporal indexing structure we use® (shown in
Figure 4.2) is similar to the multilevel indexing structure
proposed in the Cypher cookbook [5].

e We build a tree that explicitly represents the temporal
hierarchy of the dataset. The nodes of the tree are
TIMELINE nodes. The top-level node, which is the entry
point for the temporal index, is reachable from the RUN
node through a HAS_TIMELINE relation.

e Nodes at each level of the tree have NEXT_LEVEL rela-
tions to nodes at the level below.

e The nodes at each level of the tree represent differ-
ent scales of temporal aggregation, according to the
time units that are most appropriate for the dataset
at hand. For simplicity, the tree in Figure 4.2 has only
day and hour levels, but in may be extended to have a
deeper hierarchy, such as years, months, days, hours,
minutes, and so on.

e At each level, time attributes are associated with the
NEXT_LEVEL relations

3The selected multilevel index can co-exist with other in-
dexing structures, its use does not prevent us from using
different, additional indexes in future

e The nodes at the bottom level of the tree correspond
to the finest scale of temporal aggregation (hours, in
figure) and are connected to the indexed FRAME nodes
via TIMELINE_INSTANCE relations. The timestamp of
each FRAME node is replicated as a relation attribute of
the corresponding TIMELINE_INSTANCE relation.

e HAS RUN| ° HAS TIMELINE]
ST
i
days / / /
,'l / ! /I \
INE> i N 1]

ol ¢
hours | |
E|

Figure 3: TimeLine Temporal Index

5. QUERYING TIME-VARYING NETWORKS

The SocioPatterns collaboration datasets provide realistic
use cases, with topological and temporal hetereogeneities
that would be expected in a real time-varying network. We
provide a testing scenario using the empirical dynamic social
network [3] measured at the ACM Hypertext 2009 confer-
ence by the SocioPatterns collaboration. The network of
proximity relations among the conference attendees was re-
corded every 20 seconds for approximately three days. In
this dataset, nodes are individuals and edges represent face-
to-face proximity relations of individuals.

The test dataset is available as a dynamic GEXF document,
and to simplify testing with the proposed data structures, a
simple Python script was developed to load the GEXF doc-
ument into a Neo4j store, via its REST interface. It contains
data for total duration of slightly more than three days and is
relatively small: 113 persons (ACTOR nodes), 2163 proximity
relations (INTERACTION nodes), 13956 frames of 20 seconds
each (FRAME nodes). Production datasets are typically much
larger than this, involving 100-1,000 persons, 50,000-100,000
proximity relations, and 70,000-100,000 frames.

5.1 Test Queries

In the following a number of sample queries are provided,
which executed against a ACM Hypertext 2009 conference
dataset. The reported timings for each query are obtained
by executing 30 runs of the same query. Table 1 shows the
median time, the first 5% quantile and the last 95% quantile
of the execution timings.

Q1. Get all time frames of run “HT2009”, recorded between
9:00-13:00 of July 1st 2009, ordered by timestamp

START root = node(root_node_id)

MATCH root-[:HAS_RUN]->run-[:HAS_TIMELINE]->t1,
t1-[y:NEXT_LEVEL]->() - [m:NEXT_LEVEL] ->month,
month-[d:NEXT_LEVEL]->[h:NEXT_LEVEL]->hour,
hour-[:TIMELINE_INSTANCE] ->frame

WHERE run.name="HT2009" and y.year=2009 and m.month=7
and d.day=1 and h.hour>=9 and h.hour<13

RETURN frame ORDER BY frame.timestamp

Q2. Get the names of all persons present in a given frame

START frame = node(some_frame_id)
MATCH frame-[:FRAME_ACTOR]-actor
RETURN actor.name}

03. Get the weighted proximity graph during a given frame,
filtering out the weak contacts

START frame=node (some_frame_id)

MATCH frame-[r:FRAME_INTERACTION]-int
WHERE r.weight > 20

RETURN int.actorl, int.actor2, r.weight

O4. Get a list of all persons, and for each person get the
number of frames in which they were present

START run = node(some_run_id)
MATCH run-[:RUN_ACTOR]->actor<-[r:FRAME_ACTOR]-()
RETURN actor.name, count(r)

05. Get the names of all persons that were present in more
than 1000 frames, ranked by time of presence

START run = node(some_run_id)

MATCH run-[:RUN_ACTOR]->actor<-[r:FRAME_ACTOR]-()
WITH actor.name as name, COUNT(r) as freq

WHERE freq > 1000

RETURN name, freq ORDER BY freq DESC

Q6. List all distinct days on which an actor was present

START actor = node(some_actor_id)

MATCH ()-[d:NEXT_LEVEL]->()-[:NEXT_LEVEL]->timeline,
timeline-[:TIMELINE_INSTANCE]-()-[:FRAME_ACTOR]-actor

RETURN DISTINCT(d.day)

Q7. Return the names of all persons that were in the prox-
imity of a given user, sorted alphabetically

START actorl = node(some_actor_id)

MATCH actor1<-[:INTERACTION_ACTOR]-interaction,
interaction-[:INTERACTION_ACTOR]->actor2

RETURN actor2.name ORDER BY actor2.name

08. Return the names of all persons that were in proximity
of a given user on the first day of the experiment (June 29)

START actorl = node(some_actor_id)

MATCH actori<-[:INTERACTION_ACTOR]-int,
int-[:INTERACTION_ACTOR]->actor2

WITH int, actor2

MATCH ()-[d:NEXT_LEVEL]->()-[:NEXT_LEVEL]->t1,
t1-[:TIMELINE_INSTANCE]-()-[:FRAME_INTERACTION]-int

WHERE d.day = 29

RETURN DISTINCT (actor2.name)

Query | Median | 5% - 95% quantiles
Q1 83ms 72ms - 89ms
Q2 2ms 1ms - 4ms

Q3 2ms 1ms - 2ms

Q4 2313ms
Q5 2315ms

2265ms - 2362ms
2253ms - 2354ms

Q6 71lms 70ms - 75ms
Q7 4ms 3ms - Sms

Q8 45ms 44ms - 61ms
Q9 18ms 10ms - 27ms
Q10 32ms 32ms - 47ms

Table 1: For each query described, we show the me-
dian value, the first 5% quantile and the last 95%
quantile of the execution timings, collected by exe-
cuting 30 runs of the query.

Q9. Find all the common neighbors of any two users

START actorl = node(actori_id), actor2 = node(actor2_id)

MATCH actori<-[:INTERACTION_ACTOR]-interaction,
interaction-[:INTERACTION_ACTOR]->actor

WITH COLLECT(actor) as neighsl, actor2

MATCH actor2<-[:INTERACTION_ACTOR]-interaction,
interaction-[:INTERACTION_ACTOR]->actor

WHERE actor IN neighsi

RETURN actor

Q10. Compute the degree of all persons in the contact graph

START run = node(some_run_id)
MATCH run-[:RUN_ACTOR]-actor-[r:INTERACTION_ACTOR]-()
RETURN actor.name, COUNT(r) ORDER BY COUNT(r) DESC

6. CONCLUDING REMARKS

Our goal is to start discussion about best practices for mod-
eling time-dependent graphs in graph databases. We encour-
age critique of our models, further testing using our data
and/or code [7], and general suggestions related to the do-
main. The following is a summary of our observations, open
questions, and avenues for future work.

6.1 Performance

Overall, the combination of our chosen data models (Sec-
tion 4) and Neo4j proved to perform well when querying
the sample dataset, performing exploratory data analysis,
and research-oriented data mining. The simple experiment
results reported are in no way a performance benchmark,
nor do they reflect the general performance of Neo4j. How-
ever, they were valuable when tuning the performance of
our application in its target domain, and have proved use-
ful for identifying key performance bottlenecks - these are
discussed below.

Most performance issues encountered were rooted in the
same general cause: densely connected nodes. As high-
lighted in Section 3.2, the difficulty of processing graphs that
contain densely connected nodes is known, by academia and
industry at large, and by Neo Technology in particular. Neo
Technology are aware of the requirement to process such
graphs and have informed us they are working on improve-
ments to Neo4j that directly address these issues.

Pre-computing Expensive Operations

There is great value in being able to run queries concurrently
with data ingestion. One advantage graph databases provide
is making this possible in the majority of cases. However,
certain scenarios make it difficult to do so in a computation-
ally efficient manner. As a remedy to improve performance,
expensive or frequent operations can be pre-computed dur-
ing a post-processing step (between data ingestion and query
phases), in effect enriching the data model. For example, to
solve performance issues that were encountered when ex-
ecuting QUERY 4 and QUERY 5 (Section 5.1), we mod-
eled the number of FRAMES an ACTOR is connected to as a
property of the ACTOR node - decorating the node with ad-
ditional metadata. This alleviated the dense node-related
performance bottleneck, and greatly improved performance.

Identifying Densely Connected Nodes

It was found that QUERY 6 (Section 5.1) scaled poorly with
the size and density of the dataset. When testing with a 10-
day dataset covering 200 ACTORS, we observed each FRAME
typically had more than 20,000 relations, and at this stage
execution time grew to the point that made it impractical
to execute the query interactively.

To understand the problem consider a real-world example,
a museum with 1000 daily visitors (ACTORS). Assume each
FRAME represents a day, and people (ACTORS) change con-
tinuously, but the venue always operates at capacity. The
time interval of a FRAME associates with a high number of
ACTORS and INTERACTIONS. With 1000 ACTORS, there can
in theory be up to 500,000 INTERACTIONS (a clique), and
in practice between 20,000-50,000. This would result in
FRAMES with 1000 FRAME_ACTOR relationships and 20,000-
50,000 FRAME_INTERACTION relationships. FRAME entities be-
come densely connected nodes and queries encountering FRAME
entities will likely exhibit poor performance. Though the
performance of Neo4j will improve in these situations, we
may need to revise our model in the interim, perhaps us-
ing additional indexing structures. This is particularly nec-
essary given our plan to scale up to tens of thousands of
ACTORS and tens of millions of INTERACTIONS.

6.2 Open Questions
Strongly-typed Relationships

In structures such as our temporal index (see Section 4.2
and Figure 4.2), is it best to connect nodes in the tree us-
ing “strongly-typed” relationships (for more details, see Path
Tree [5]), or as more general relationships qualified by an
attribute, i.e., should the temporal (e.g., day, month, year)
information be encoded in the relationship type itself, or in
properties of the relationship entity. As the strongly-typed
solution eliminates the need for property lookups on those
relationships it is likely measurably faster than the more
general approach. To further illustrate the concept, see the
two (equivalent) queries below:

Using strongly-typed relationships:

START run = node(some_run_id)

MATCH run-[:HAS_TIMELINE]->t1,
t1-[:2009°1->0)-[:‘71->0-[:1°1->0-[:“9’]->hour,
hour-[:TIMELINE_INSTANCE]->frame

RETURN frame

Using relationship properties:

START run = node(some_run_id)

MATCH run-[:HAS_TIMELINE]->t1,
t1-[y:NEXT_LEVEL]->() - [m:NEXT_LEVEL] ->month,
month-[d:NEXT_LEVEL]->() - [h:NEXT_LEVEL] ->hour,
hour-[:TIMELINE_INSTANCE]->frame

WHERE y.year=2009 and m.month=7 and d.day=1 and h.hour=9

RETURN frame

Removing Unnecessary Entities
The many RUN_FRAME and RUN_INTERACTION relations may be un-
necessary if INTERACTION and FRAME entities can efficiently in-

dexed and retrieved. The large amount of RUN_FRAME and RUN_INTERACTION

relations negatively impact query performance - they transform
RUN entities into densely connected nodes.

Dynamic Frames

If INTERACTIONS had START_TIMELINE_INSTANCE and
END_TIMELINE_INSTANCE relationships, it may feasible to remove
the FRAME concept entirely. Dynamic frames could be inferred
during a post-processing phase, or interactively at query time,
making the model more flexible. However, it is unlikely this would
achieve a significant reduction in the number of relationships, as
the number of START/STOP relations would likely be on the same
order of magnitude as the number of FRAMES. This is due to many
of the INTERACTIONS flickering on/off from FRAME to FRAME. More-
over, the FRAME concept is a simple abstraction, allowing efficient
retrieval of all the ACTORS/INTERACTIONS that are relevant at a
given time. It is an open question as to whether the more general
approach could be implemented with comparable efficiency.

7. REFERENCES

(1] GEXF (Graph Exchange XML Format).
http://gexf .net/format/, 2007.

(2] Neodj - Collections Library.
https://github.com/neodj/graph-collections, 2007.
SocioPatterns - Hypertext 2009 Dynamic Contact Network.
http://www.sociopatterns.org/datasets/
hypertext-2009-dynamic-contact-network/, 2009.

[4] Cypher Graph Query Language. http://docs.neo4j.org/

chunked/stable/cypher-query-lang.html, 2010.

(5] Neo4j - Data Modeling. http://docs.neo4j.org/chunked/
stable/data-modeling-examples.html, 2010.

(6] Neo4j Graph Database. http://www.neo4j.org/, 2010.

[7] Time-dependent Graphs in Neo4;j.
https://github.com/ccattuto/neo4j-dynagraph/wiki/
Representing-time-dependent-graphs-in-Neo4j, 2012.

[8] H. Alani, M. Szomszor, C. Cattuto, W. Van den Broeck,
G. Correndo, and A. Barrat. Live social semantics. The
Semantic Web-ISWC 2009, pages 698—714, 2009.

[9] A.-L. Barabasi. The origin of bursts and heavy tails in
human dynamics. Nature, 435(7039):207-211, 2005.

[10] C. Cattuto, W. Van den Broeck, A. Barrat, V. Colizza,
J.-F. Pinton, and A. Vespignani. Dynamics of
person-to-person interactions from distributed rfid sensor
networks. PLoS ONE, 5(7):e11596, 07 2010.

[11] P. Holme and J. Saraméki. Temporal networks. Physics
Reports, 2012.

[12] L. Isella, J. Stehlé, A. Barrat, C. Cattuto, J.-F. Pinton, and
W. V. D. Broeck. What’s in a crowd? analysis of
face-to-face behavioral networks. Journal of Theoretical
Biology, 271:166—-180, 2011.

[13] M. E. Newman. Power laws, Pareto distributions and Zipf’s
law. Contemporary physics, 46(5):323-351, 2005.

[14] M. A. Rodriguez and P. Neubauer. Constructions from dots
and lines. Bulletin of the American Society for Information
Science and Technology, 36(6):35-41, 2010.

[15] A. Vazquez. Exact results for the Barabdsi model of human
dynamics. Physical review letters, 95(24):248701, 2005.

[16] A. Vdazquez, J. G. Oliveira, Z. Dezst, K.-I. Goh, I. Kondor,
and A.-L. Barabdsi. Modeling bursts and heavy tails in
human dynamics. Physical Review E, 73(3):036127, 2006.

3

