
Partial View Selection for Evolving Social Graphs

Georgia Koloniari
Technology Management Department

University of Macedonia
Thessaloniki, Greece

gkoloniari@uom.gr

Evaggelia Pitoura
Computer Science Department

University of Ioannina
Ioannina, Greece

pitoura@cs.uoi.gr

ABSTRACT
In this paper, we deal with the problem of historical query
evaluation over evolving social graphs. Historical queries are
queries about the social graph in the past. The straightfor-
ward way of executing such a query is by first reconstructing
the whole social graph at the given time instance or interval,
and then, evaluating the query on the reconstructed graph.
Since social graphs are large, the cost of a complete graph
snapshot reconstruction would dominate the cost of histor-
ical query execution. Given that many queries are user-
centric, i.e., node-centric queries that require access only
of a targeted subgraph, we propose deploying partial view
instead of full snapshot construction and define conditions
that determine when a partial view can be used to evaluate
a query. We also propose using a cache of partial views to
further reduce the query evaluation cost, and show how par-
tial views can be extended to new views with reduced cost.
Finally, we present a greedy solution for the static view se-
lection problem and study its performance experimentally.

1. INTRODUCTION
The study of graph structures depicting real-world net-

works such as social networks, citation and hyperlink net-
works as well as biology, traffic and computer networks has
received much attention recently. Our focus is particularly
on social graphs, characterized by large scale and dynamic
behavior, as the corresponding social networks include mil-
lions of users and change through time constantly.

Recently proposed approaches [6, 7, 11] for query evalua-
tion in this setting mainly deal with the problems induced
by the large scale of such graphs but ignore the temporal as-
pect. Our goal is to deal with both aspects of social graphs
by supporting the evaluation of historical queries. That is,
queries that require information about the state of the graph
in the past, such as queries about the popularity (e.g., num-
ber of friends) of a user at some specific time in the past or
about how this popularity changed over time.

One way to support information about the evolving social
graph is by maintaining a log file recording update opera-
tions through time similarly to [16]. Any past instance of the
graph can be retrieved by combining parts of the log file and
the current graph. Based on this idea, the few approaches

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Proceedings of the First International Workshop on Graph Data Manage-
ment Experience and Systems (GRADES 2013), June 23, 2013, New York,
NY, USA.
Copyright 2013 ACM 978-1-4503-2188-4 ...$15.00.

[15, 8, 9] that deal with the temporal aspect of graph struc-
tures support some form of two-phase query evaluation that
involves first, retrieving the past graph snapshots required
by the query and then, the actual evaluation of the query on
them. In such approaches, snapshot construction induces a
considerable additional cost to query evaluation.

Our goal is to reduce the cost of historical query evalu-
ation by avoiding snapshot construction when possible. To
this end, we discern between two types of queries: global and
targeted [6]. Global queries measure global properties of a
graph and require traversing the entire graph, while targeted
queries only address specific portions (subgraphs) of the so-
cial graph. Examples in the first category include comput-
ing the diameter of the graph, degree distribution, etc, while
examples in the second include measures centered around a
single node v, such as its neighborhood, its K-step neigh-
bors, induced subgraphs and other. Targeted queries play
an important role in micro-level analysis of social networks
[13], where measurements of the nodes (users) are evaluated
such as degree centrality and local clustering coefficient. In
addition, targeted queries are used as the building blocks for
global query analysis, for instance, K-egonets can be used
to find communities in the global graph [6].

Full graph snapshot construction for targeted queries leads
to redundant computations as the queries do not access the
entire graph that is constructed. Thus, instead of full snap-
shot construction, we propose using partial view construc-
tion, i.e., constructing only the subgraph targeted by a given
query. In particular, we use the K-egonet of a node v as our
basic unit for graph construction and query evaluation, i.e.,
queries are also represented as egonets. We then define a
subsumption relationship between partial views, based on
which we can determine when a query can be evaluated on
a particular view.

We describe algorithms for constructing a partial view
based on the current graph and the parts of the log file
associated with the nodes included in the partial view, and
also algorithms for partial view extension, so as to derive
new views from existing ones with reduced cost.

Finally, we propose maintaining a cache of such partial
views that used by subsequent queries can improve perfor-
mance. To determine which views to cache, we study a
problem of static view selection. That is, given a query
workload, select the set of views to cache so as to minimize
its total evaluation cost. We describe a greedy solution to
the problem that is based on grouping views based on their
center, and report some preliminary experimental results.

To summarize our contributions:

• We introduce partial view instead of full snapshot con-
struction for targeted queries.
• We define subsumption conditions that determine when a

partial view can be used for the evaluation of a query.
• We propose using a cache of partial views and describe a

greedy solution to the static view selection problem.

Table 1: Update Operations
Operation Description

addNode(vi) adds a new node vi in V
addEdge(vi, vj) adds a new edge (vi, vj) in E
remNode(vi) deletes vi from V

remEdge(vi, vj) deletes edge (vi, vj) from E

• Finally, we present algorithms for partial view construc-
tion and view extension.

The rest of the paper is structured as follows: Section 2
describes our graph and storage model. In Section 3, we
define partial views and the view selection problem. Section
4 presents a greedy solution for view selection along with
algorithms for view construction and extension. Section 5
includes experimental results and Section 6 related work.
We conclude in Section 7.

2. PRELIMINARIES
We model a social network as an undirected graph, G =

(V,E). Each graph node vi ∈ V corresponds to a user ui

of the social network. Edges (vi, vj) ∈ E capture social
relationships (i.e., friendship) between users ui and uj that
correspond to nodes vi and vj ∈ V respectively.

Our model for capturing the evolution of the social net-
work through time is based on the copy+log approach de-
scribed in [16]. Its basic components are graph snapshots
and a log file maintaining the updates on the graph.

2.1 Capturing Graph Evolution
We consider an object, node or edge, of a graph G as valid

for the time periods for which the corresponding item (user
or friendship) of the social network it represents is also valid.
Each node vi ∈ V is valid for the time periods for which
the corresponding user ui participates in the social network
represented by the graph. Similarly, each edge (vi, vj) ∈ E
is valid for the time periods that the corresponding users ui

and uj are friends in the network.

Definition 1 (Graph Snapshot). The graph snapshot
of a graph G, at a time point t, is defined as the graph
SGt = (Vt, Et), where Vt ⊆ V and Et ⊆ E, such that
vi ∈ Vt, iff, vi is valid at time point t and (vi, vj) ∈ Et,
iff, (vi, vj) is valid at time point t.

Graph G captures the social network as it evolves. Any
update in the social network is directly reflected on G. A
graph snapshot SGt of G can be simply viewed as an in-
stance of G frozen at time point t, capturing the state of G
at this specific time point.

We focus on the structure of the social network and con-
sider changes such as addition/deletion of a user ui or of a
friendship relationship (edge) between two nodes in the so-
cial network. Table 1 summarizes the corresponding update
operations on the graph.

Given two graph snapshots SGtk and SGtl of a graph G,
we maintain in the log file the operations that, if applied to
SGtk , produce SGtl .

Definition 2 (Graph Log). The graph log L[tk,tl] of
a graph G for a time interval [tk, tl] is defined as a set of
pairs, (op, t), such that a pair (op, t) ∈ L[tk,tl], iff operation
op appeared in G at time point t, tk ≤ t ≤ tl.

To enable us to construct snapshots of the graph in the
past, the graph log needs to satisfy two requirements: it
must be complete and invertible.

Property 1 (Completeness). A graph log L[tk,tl] of
a graph G is complete, if given the graph snapshot SGtk , we
can derive any snapshot SGt′ , tk ≤ t′ ≤ tl, by applying the
operations ops in L[tk,tl] for which t < t′.

That is, a complete log file maintains all the information
necessary to construct snapshots at any time point during
its time interval as long as it has access to the original graph
snapshot at time tk.

Thus, given a complete log file and the initial graph snap-
shot we can construct any snapshot later in time. Besides
this ’forward’ direction of moving through time, we are also
interested in the opposite. That is, given the current snap-
shot to retrieve a snapshot older in time, i.e., to move ’back-
wards’ in time. This is accomplished by invertible log files.

Property 2 (Invertible Log). A graph log L[tk,tl] of
a graph G is invertible, if by applying on SGtl the reverse
ōp of the operations op in L[tk,tl], for which t > t′, we can
derive any snapshot SGt′ , tk ≤ t′ ≤ tl.
The log with the reverse operations is called, inverted log
and denoted as L̄[tk,tl]. The reverse of the update opera-

tors are derived as follows: addNode(vi) = remNode(vi),

remNode(vi) = addNode(vi) and so on. All operations can
be inverted as long as the necessary information is main-
tained in the log file. In particular, to maintain a complete
log that is also invertible, we make the following assump-
tion. Before recording any remNode(vi), we record first
remEdge(vi, vj) operations, for each edge of vi, annotated
with the same time point as the remNode(vi) operation.

2.2 Storage Model
Given that the log file we maintain is both complete and

invertible, we deduce a very space efficient storage model
that requires maintaining only one graph snapshot besides
the log file to permit constructing graph snapshots at any
time point in the recorded time interval. In particular:

Theorem 1. Given the graph log L[tk,tl] of graph G that
is complete and invertible, it suffices to maintain only one
graph snapshot SGt′ , tk ≤ t′ ≤ tl to construct graph snap-
shots at any other time point t′′, tk ≤ t′′ ≤ tl.
Proof. If t′′ > t′, we construct SGt′′ by applying the ops in
L[t′,t′′] ⊆ L[tk,tl] on SGt′ . If t′′ < t′, we construct SGt′′ by

applying the ops in L̄[t′′,t′] ⊆ L̄[tk,tl] on SGt′ .

Let t0 be the time point at which we start maintaing the log
file, and tcur be the current time point. Based on Theorem
1, we choose to maintain besides the log file, L[t0,tcur], the
current graph snapshot SGtcur , as we expect queries about
the recent past to be more popular.

As updates occur in G, we need to periodically update
both the current snapshot and the log file. To accomplish
this, we use a temporary log that records the updates on
G until the next time unit. We then apply this log on the
current snapshot to derive the next current snapshot. The
temporary log is appended to L and the algorithm is applied
anew with a new temporary log for the next time period.

3. PARTIAL VIEWS
Historical queries are queries that refer to a state of the

graph in the past. The straightforward way to evaluate them
proceeds in two steps. In the first step, the snapshot (or
snapshots) required to evaluate the query are constructed,
and in the second, the actual query evaluation takes place
on them. We discern between global and targeted queries [6].
While global queries require access to the entire graph, tar-
geted queries need to access only a specific subgraph, usually
centered around one node (or a few) as such queries tend to
be egocentric.

Thus, in the first step of query evaluation for targeted
queries, parts of the graph that are not required are still con-
structed increasing the total cost of query evaluation with

redundant operations. We propose partial view construction
instead of full snapshot construction for targeted queries,
i.e., to construct only the subgraph targeted by each query
and thus, reduce the total query evaluation cost.

3.1 Partial Views and View Subsumption
Before defining a partial view, let us start with some im-

portant definitions. Consider two nodes vk and vl ∈ V . The
distance dt(vk, vl) between two nodes vk, vl ∈ V is defined
as the number of edges in the shortest path connecting the
two nodes at SGt. We denote as N(vk, R, t) the set of neigh-
bors of node vk at distance at most R, R ≥ 0, in SGt, i.e.,
vl ∈ N(vk, R, t) iff dt(vk, vl) ≤ R.

As targeted queries tend to be centered around a specific
node, such as node’s v degree at time point t, we are inter-
ested in defining subgraphs centered around some node. To
this end, we use egonets as the main unit for both graph
construction and query representation and evaluation.

Definition 3 (Egonet). The egonet EG(v,R, t) of a
node v with radius R, R ≥ 0, at time point t is the in-
duced subgraph EG(v,R, t) = {V ′, E′} of graph snapshot
SGt, such that v′ ∈ V ′ iff dt(v, v

′) ≤ R and (v′k, v
′
l) ∈ E′ iff

v′k, v
′
l ∈ V ′ and ∃(v′k, v′l) in SGt.

Using the egonet as the graph construction unit, we have:

Definition 4 (Partial View). A partial view PV of
a graph snapshot SGt is defined as an egonet EG(v,R, t)
that is determined by a center node v ∈ SGt, a radius R
and the time point t at which it is valid.

In the rest of the paper, we use the two terms, egonet and
partial view, interchangeably.

Similarly to partial views, queries are also represented as
egonets.

Definition 5 (Query Egonet). The query egonet EGq

of a targeted query q is defined as the minimum partial view
of SGt such that the result of the evaluation of q on EGq is
equal to the result of evaluating q on the full snapshot, SGt.

For instance, for a query requiring the degree of a node vq
at time point tq, it suffices to reconstruct the partial view
with radius 1 around vq at time point tq. In the rest of the
paper, we assume that targeted queries are represented by
their corresponding query egonets. How these egonets are
derived from a targeted query, in the general case, is out of
the scope of this paper.

Given a set of partial views, we need to determine when
a partial view EG(v,R, t) can be used to evaluate q corre-
sponding to some EGq. To this end, we define a subsump-
tion relationship between partial views, i.e., subsumption
between two egonets.

Definition 6 (View Subsumption). Given two views,
EG1(v1, R1, t1) and EG2(v2, R2, t2), EG1 subsumes EG2,
EG1 � EG2, if the result of the evaluation of any targeted
query q on EG2 is equal to the result of evaluating q on EG1.

For simplicity, we assume that there is at least one node v′ ∈
SGt with dt(v, v

′) = R to define EG(v,R, t). Otherwise, we
reduce the egonet to one with a smaller radius. Note also
that view subsumption is only meaningful for the same point
in time, i.e., t1 = t2. The following theorem determines
when one view is subsumed by another.

Theorem 2. Given two partial views EG1(v1, R1, t1) and
EG2(v2, R2, t2) of a graph G, EG1 subsumes EG2, iff t1 =
t2 and (v1 = v2 and R1 ≥ R2) or (v1 6= v2 and d(v1, v2) +
R2 ≤ R1).

Proof. Let q be a targeted query and EGq = EG2(v2, R2, t2).
For EG1 to subsume EG2, q needs to yield the same result
when evaluated on both egonets. It suffices for EG2 to be a
subgraph of EG1. For EG2 to be a subgraph of EG1 both
need to be partial views of the same graph snapshot SGt,

i.e., t1 = t2 = t. If v1 = v2 and R1 ≥ R2 then EG2 is a
subgraph of EG1. If v1 6= v2 and d(v1, v2) +R2 ≤ R1, even
though the egonets have different centers all the nodes in
N(v2, R2, t2) are within R1 radius of v1 since d(v1, v2)+R2 ≤
R1, thus, EG2 is contained in EG1. Therefore, EG1 �EG2.

If EG1 subsumes EG2, then EG2 is a subgraph of EG1

and both are subgraphs of the same graph snapshot SGt,
i.e. t = t1 = t2. We may discern two cases, either v1 = v2
or v1 6= v2. Let us first assume v1 = v2 and R2 > R1. Then
∃v′′ ∈ EG2 and v′′ /∈ EG1, then EG2 is not a subgraph of
EG1. Thus, if it holds v1 = v2, it also holds R2 ≤ R1. Let
us now assume v1 6= v2 and d(v1, v2) + R2 > R1. Similarly,
we determine that EG2 is not a subgraph of EG1. Thus,
d(v1, v2) +R2 > R1.

3.2 View Selection
The use of partial views instead of full graph snapshots

reduces the overall query evaluation cost as partial views
have lower construction cost than full snapshots. To further
reduce the cost of the first step of query evaluation, that is
of partial or full snapshot construction, one can choose to
materialize (cache) a set of such snapshots or partial views to
be used by subsequent queries. While full snapshots require
a considerable space overhead for their materialization, and
thus such a solution is not practical, partial views require
significantly less space as we consider most targeted queries
to require egonets of a rather small radius. Therefore, we
propose maintaining a cache of partial views so as to further
facilitate query evaluation.

Let Q = {q1, q2, . . . , qn} be a set of targeted queries and
EGq1 , EGq2 , . . . , EGqn be their corresponding query egonets.
Our goal is to determine which egonets to cache to achieve
the greatest possible reduction in the evaluation cost of Q.
Let cost(qi) be the evaluation cost of query qi. The cost con-
sists of two parts: the construction cost for EGqi and the
cost of processing qi on EGqi . Then, the total evaluation
cost of the set Q is defined as: cost(Q) =

∑
qi∈Q cost(qi).

Definition 7 (Static View Selection Problem).
Given the current graph snapshot SGcur, log file L[t0,tcur]

and a set of targeted queries Q = {q1, q2, . . . , qn}, select from
the set of corresponding query egonets EGQ = {EGq1 , EGq2 ,
. . . , EGqn}, a set C ⊆ EGQ of K egonets, 0 < K < n, such
that, given that C is materialized, the total evaluation cost
of Q is minimized.

The reduction in cost(Q) is achieved by reducing the con-
struction cost of the egonets. Therefore, the basic idea is to
select for caching the egonets that can be exploited by the
largest number of queries. To this end, in addition to the
partial view construction algorithms, we also define view ex-
tension algorithms that derive new views from existing ones
with cost lower than the cost required for constructing them
from scratch. These algorithms enable the cached views to
be used for reducing the cost for more queries, and thus
further reduce the total evaluation cost of Q.

4. SOLVING THE PROBLEM
Next, we describe the components necessary to solve the

static view selection problem, along with the view construc-
tion and extension methods.

4.1 View Construction
Given the current graph snapshot SGcur and the log file

L[t0,tcur], to construct a full snapshot SGt, t0 ≤ t ≤ tcur,

based on Theor. 1, we apply L̄[t,tcur] ⊆ L̄[t0,tcur] on SGcur.
To construct a partial view EG(v,R, t), which is a sub-

graph of SGt, we do not need to apply all the updates in the
log, but only the updates that concern nodes that appear in
the partial view.

Algorithm 1 Hop1Neighbors

Input: v, SGcur, πvL[t,tcur]

Output: N(v, 1, t)
1: Retrieve N(v, 1, tcur) from SGcur

2: Apply πvL̄[t,tcur] on N(v, 1, tcur) to get N(v, 1, t)
3: return N(v, 1, t)

Algorithm 2 EgoNet1

Input: v, SGcur, L[t,tcur]

Output: EG(v, 1, t)
1: N(v, 1, t):=Hop1Neighbors(v, SGcur, πvL[t,tcur])
2: Initialize EG(v, 1, t) to N(v, 1, t)
3: for all vk, vl ∈ N(v, 1, t) do
4: Retrieve πvkL[t,tcur] or πvlL[t,tcur]

5: if (vk, vl) ∈ SGt then
6: Add the edge (vk, vl) to EG(v, 1, t)
7: end if
8: end for
9: return EG(v, 1, t)

Algorithm 3 EgoNetR

Input: v,Gcur, L[t,tcur]

Output: EG(v,R, t)
1: EG(v, 1, t) := EgoNet1(v, SGcur, L[t,tcur])
2: EG(v,R, t) := EG(v, 1, t), Added := ∅, i := 1
3: while i < R do
4: for vk ∈ EG(v,R, t): d(vk, v) = i and vk /∈ Added do
5: EG(vk, 1, t) := EgoNet1(vk, Gcur, L[t,tcur])
6: Add all objects in EG(vk, 1, t) to EG(v,R, t)
7: Add vk to Added
8: end for
9: i+ +

10: end while
11: return EG(v,R, t)

Definition 8 (Log Projection on node v). The log
projection on node v, πvL[tk,tl], is the set of (op, t) pairs
((op, t) ∈ L[tk,tl]) such that: (op, t) ∈ πvL[tk,tl], iff (op =
addNode(v) or op = remNode(v)) or ((op = addEdge(vi, vj)
or op = remEdge(vi, vj)) and (vi = v or vj = v)).

Given SGtcur and L[t0,tcur], Alg. 3 presents the iterative
procedure that constructs EG(v,R, t). Starting from the
center v of the egonet, which we may consider as an egonet
EG(v, 0, t), at each iteration i (1 ≤ i < R), the egonet’s
radius (i) is extended by 1 by applying Alg. 2 on all nodes
at distance i from v. Egonets of increasing radius are pro-
gressively produced until the target EG(v,R, t) is derived.

Given node v, SGcur, and the log projection on v, πvL[t,tcur],
Alg. 2 constructs EG(v, 1, t). The algorithm uses Alg. 1
which constructs N(v, 1, t) and then, establishes the edges
between the nodes in N(v, 1, t) to produce EG(v, 1, t).

We will prove the correctness of Alg. 3 using the following
two lemmas.

Lemma 1. An object o, node or edge, ∈ SGt, (if o ∈ Gcur

and @(add(o) ∈ L(t,tcur])) or (∃rem(o) ∈ L[t,tcur)).

Proof. If o ∈ Gcur, o is deleted from SGt, iff ∃add(o) ∈ L.
Thus, if @(add(o) ∈ L), o ∈ SGt. If o /∈ Gcur and o ∈ Gt, o
must have been deleted after t, thus, ∃rem(o) ∈ L.

Lemma 2. Given EG(v, i, t) it suffices to apply algorithm
EgoNet1(vk, Gcur, L[t,tcur]) ∀vk, vk ∈ N(v, i, t) and d(v, vk) =
i, to construct EG(v, i+ 1, t).

Proof. Let U =
⋃

vk∈N(v,i,t)and d(v,vk)=iEG(vk, 1, t). Then,

EG(v, i+ 1, t) = EG(v, i, t)
⋃
U , as U defines the subgraph

Algorithm 4 EgoNetT

Input: EG1(v,R, t), L[t0,tcur], t
′, Gcur

Output: EG2(v,R, t′)
1: EG2 := ∅, Added := ∅, N(v,R, t′) := ∅, i := 0
2: while i <= R do
3: for all vk ∈ EG1: d(vk, v) = i and vk /∈ Added do
4: Retrieve N(vk, 1, t) from EG1
5: if t′ > t then
6: Apply πvL[t,t′] on N(v, 1, t) to get N(v, 1, t′)
7: else
8: Apply πvL̄[t′,t] on N(v, 1, t) to get N(v, 1, t′)
9: end if

10: Add vk to Added
11: N(v,R, t′) := N(v,R, t′)

⋃
N(v, 1, t′)

12: end for
13: i+ +
14: end while
15: for all vk, vl ∈ N(v,R, t′) do
16: if (vk, vl) ∈ SG′

t then
17: Add edge (vk, vl) to EG2
18: end if
19: end for
20: return EG2

formed by the nodes at distance i + 1 of v and if we apply
its union with the egonet with radius i, we get the egonet
with radius i+ 1.

We are now ready to prove the correctness of Alg. 3.

Theorem 3. Algorithm 3 is correct.
Proof. It suffices to prove that at each iteration i, applying
Alg. 2, in lines 4-8 of Alg. 3, correctly derives EG(v, i, t)
from EG(v, i−1, t), which is true according to Lem. 2, if Alg.
2 is correct. Algorithm 2 correctly constructs EG(v, 1, t) by
adding to N(v, 1, t) only the edges that belong to EG(v, 1, t)
and none other based on Lem. 1, if Alg. 1 is correct. Finally,
based on Lem. 1, by checking πvL[t,tcur], Alg. 1 correctly
constructs N(v, 1, t).

View Extension. Given a partial view EG(v,R, t) an in-
teresting issue is how the view can be used to derive a new
view EG′(v′, R′, t′) more efficiently than constructing it us-
ing Alg. 3. We consider extension between views with the
same center, and discern the following four cases.
Case I (v = v′ and t = t′ and R > R′): Based on Theor. 2,
EG � EG′. Thus, we do not need to construct EG′, as any
query for EG′ can be evaluated on EG.
Case II (v = v′ and t = t′ and R < R′): Based on Lem.
2, to construct EG′, we progressively extend EG(v,R, t) to
EG(v,R+ 1, t), . . . , EG(v,R′, t) by applying Alg. 2.
Case III (v = v′ and t 6= t′ and R ≥ R′): Based on Theor.
2, we do not need to alter R, but only t to t′. According to
Theor. 1, if t > t′, we need to apply backward construction
with L̄[t′,t], while if t < t′, forward construction with L[t′,t]
is deployed. Algorithm 4 presents the procedure.

To prove the correctness of Alg. 4, we extend Lem. 1
based on Theor. 1 to check for an object in L[t,t′] ⊆ L[t,tcur].
The proof is similar to Lem. 1.
Case IV (v = v′ and t 6= t′ and R < R′): We need to extend
both to a new radius and a new time. We apply Alg. 4 to
move to time t′, and then, extend its radius similar to Case
II. The steps can be also applied in reverse order.
Cost Evaluation. Next, we provide an estimation for the
evaluation cost of a historical query. This is split into: the
construction cost of the snapshot or partial view on which q
is evaluated (costcon), and the cost for processing q (costpr).

cost(q) =

{
costcon(SGtq) + costpr(q), if q global

costcon(EGq) + costpr(q), if q targeted
(1)

We ignore the processing cost in the measure as it depends
on the type of query. The construction cost is proportional
to the number of updates applied to construct the snapshot
or view. We assume that all updates have the same cost. Let
S(L[t,t′]) be the size, i.e., the number of updates in L[t,t′],

t < t′. It holds that S(L[t,t′]) = S(L̄[t, t′]).
Given Gcur, L[t0,tcur] and t, t0 ≤ t ≤ tcur, for global

queries, to construct a snapshot SGt, we apply L̄[t,tcur] ⊆
L̄[t0, tcur] on Gcur. Thus, costcon(SGtq) = S(L[t,tcur]).

For targeted queries, for an egonet EGq, the updates in
the log file projections on all the nodes that belong to the
view at any time between [tq, tcur] are applied.

costcon(EGq) =

tcur∑
ti=tq

∑
vj∈N(vq,Rq,ti)

S(πvjL[t,tcur]) (2)

For view extension, given EG(v,R, t) and t′ (without loss
of generality let t < t′) to derive EG(v,R, t′), the term
S(πvjL[t,tcur]) in Eq. 2 is replaced by S(πvjL[t,t′]), where
S(πvjL[t,tcur]) ≥ S(πvjL[t,t′]). Thus, compared to view con-
struction, the cost is reduced.

4.2 Greedy Selection
Given the current graph snapshot SGcur, log file L[t0,tcur],

set of queries Q = {q1, q2, . . . , qn} and corresponding query
egonets EGQ = {EGq1 , EGq2 , . . . , EGqn}, the goal of static
view selection is to determine a set C ⊆ EGQ of size K,
such that the total cost of Q, cost(Q), is minimized. Given
that its query egonet is cached, the processing cost of each
query q (costpr(q)) is fixed. Therefore, the goal is to reduce
the construction cost of Q (costcon(Q)).

The optimal solution is derived by an exhaustive algo-
rithm that considers all possible C ⊆ EGQ of size K and
computes the construction cost of Q for each such set. The
set C yielding the smallest construction cost is selected.

As the exhaustive approach is exponential to the size of
Q, we proceed with a baseline greedy algorithm. The greedy
algorithm iteratively selects at each step to add to C the
egonet with the greatest construction cost among all avail-
able egonets. While more efficient, the baseline greedy al-
gorithm ignores that by materializing one partial view, the
construction of other views may also be influenced as view
extension with reduced cost is possible. Such view extension
is possible only between views that have the same center.

Based on this assumption, we proceed on extending the
baseline greedy approach to a two-phase greedy algorithm.
The algorithm first groups the egonets according to their
center. At each iteration, in each group, the egonet with
the greatest construction cost is selected. Then, given the
selected egonet, the total construction cost of the group is
re-evaluated and the benefit from materializing the egonet
computed. After all groups have computed this benefit, the
group with the greatest benefit is selected, all costs are up-
dated and the egonet selected from the group is added to
C and removed from the group. The algorithm proceeds in
the next iteration until K egonets are selected (Alg. 5).

5. EXPERIMENTAL EVALUATION
In our experiments, we first study the properties of egonets,

and then, evaluate the greedy selection approach. We use a
real data set from [18]. The data set describes the structure,
user-to-user links, from the Facebook New Orleans network.
To derive our log, we parsed the data and maintained only
the links that were accompanied by a timestamp indicat-
ing the time of their establishment. The current graph was
produced by creating all edges in the log.
Egonets Properties. We consider 10000 nodes that form
more than 100000 edges. We measure the size of the egonets

Algorithm 5 Two-Phase Greedy Selection

Input: Gcur, L[t0,tcur], Q = {q1, q2, . . . , qn}, EGQ =
{EGq1 , EGq2 , . . . , EGqn},K

Output: C
1: C := ∅
2: Estimate the total construction cost for Q
3: Group the egonets in EGQ according to their center
4: for l=0 to K do
5: for all Groups GRj of egonets do
6: Select the EGqi with max(costcon(EGqi))
7: Given EGqi , estimate the cost for GRj

8: end for
9: Select from all EGqi of all GRj , the one that achieves

the greatest cost reduction, EGqw ∈ GRw

10: Update costcon(EGqi) for all egonets in GRw

11: Remove EGqw from EGQ and added it to C
12: end for
13: return C

of radius R = 1 and R = 2 for all nodes. In Fig.1(left) the
y-axis is the number of nodes that have an egonet up to
size x as indicated in the x-axis. For most nodes the size
of egonet with R = 1 is between 1 to 30, while there is a
small number of nodes with egonet of size > 100. For R = 2,
there is a number of nodes (≈ 500) with egonets that include
almost all nodes in the graph. This is a well known property
of social networks, where a small number of nodes are very
well-connected, while most have much smaller degrees [1].
Thus, for such well-connected nodes with very large egonets,
we will consider special policies in future work.

Figure 1(center) shows how the updates are distributed
over time. The dataset used contains only add edge opera-
tions and we modified it to also include an add node when
a node is encountered for the first time. Such append-only
behavior is usual in social networks, in which density in-
creases over time following a power-low distribution, while
their diameter shrinks [10]. We observe that at first there is
a small peak at the number of add node updates, but as time
progresses their rate stabilizes, while the add edge update
remain the dominant type of updates.
View Selection comparison. We evaluate the two-phase
greedy selection algorithm by measuring the construction
cost for a given query workload. We compare our approach
to a baseline greedy and a random approach. We also in-
clude the cost when no-cache is built. We use 5000 nodes,
and a workload of 100 queries. The cache size is 10, and for
the queries, R = 1 and t and v are uniformly dispersed. We
vary the overlap among the queries from 0 where no groups
are formed, to 70, where 70% of the queries have the same
center with at least one other query (no identical queries
are allowed). Figure 1(right) shows that the two-phase ap-
proach outperforms all others when there is overlap among
the queries. For no overlap, the baseline greedy approach
achieves the same performance with the two-phase one, since
the fact that it ignores the dependencies in the cost between
views of the same group, is in this case irrelevant. As the
overlap among the queries increases, all costs are reduced as
even with random selection some useful views are material-
ized. Still, the two-phase approach has the greatest benefits.
For 70% overlap, two-phase incurs almost half the cost of the
greedy approach, while random is almost three times worse.

6. RELATED WORK
There is a large body of work on temporal data manage-

ment including relational databases (see, for example [14]
and [16] for excellent surveys on the topic), RDF (e.g., [5])
and XML documents (e.g., [12], [2]). In [12], a sequence

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1
0

5
0

1
0
0

3
0
0

7
5
0

1
5
0
0

1
0
0
0
0

#nodes in egonet

n
o

d
es

R=1 R=2

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

t/
1
0

2
t/
1
0

3
t/
1
0

4
t/
1
0

5
t/
1
0

6
t/
1
0

7
t/
1
0

8
t/
1
0

9
t/
1
0 t

time

#
u

p
d

a
te

s

add node add edge

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 30 50 70

overlap

to
ta

l
c
o

st

no-cache random greedy two-phase

Figure 1: (left) Size of egonets, (center) updates over time and (right) view selection.

of versions of XML documents is collected from the web.
The difference between two consecutive versions is repre-
sented by complete deltas based on persistent identifiers of
the XML nodes, while only the current version of the doc-
ument is maintained. To avoid the overhead of applying
deltas to retrieve old versions, in [2], all versions of XML
data is merged into one hierarchy where an element appear-
ing in multiple versions is stored only once along with a
timestamp. Temporal reasoning is incorporated into RDF
in [5], yielding temporal RDF graphs. Its semantics include
temporal entailment and a syntax for adding temporal labels
into standard RDF graphs. In our work, we adopt invertible
log files to track changes through time ([16] [12]) and adapt
them appropriately for large-scale graphs.

View selection and semantic caching have also been widely
studied ([4],[17]) for relational databases. Views for graphs
are studied in [3], in the context of query processing under
schema mappings. The authors consider query processing
under GLAV mappings, which map queries over a source
schema to queries over the target schema, and extend their
work to graphs using regular path expressions as their query
model. Our work is different as we consider the temporal
aspect of graphs and a different query model.

To deal with the large-scale of graphs, general graph man-
agement systems [6, 11] that work in parallel and distributed
settings have been proposed. GBASE [7] uses a common un-
derlying primitive of several graph mining operations, which
is shown to be a generalized form of matrix-vector multi-
plication, while Pregel [11] uses a sequence of supersteps
applied in parallel, by each node executing the same user-
defined function, and separated by global synchronization
points. We plan to explore how to deploy our approach on
top of such systems to construct partial views in parallel.

The problem of supporting historical queries for graphs
has only been addressed recently [15, 8, 9]. [9] presents a
general framework for managing temporal information based
on logs, called graph deltas, and explores different ways for
using deltas to construct graph snapshots. Based on the sim-
ilarity in a sequence of graphs produced by a graph evolving
through time, in [15], graph representatives are computed
by clustering similar graphs and differences from these rep-
resentatives are stored. In [8], snapshot retrieval queries
traverse a hierarchical index, the DeltaGraph, which com-
pactly records the changes in a graph, and apply the updates
recorded at its edges. Similarly to our cache, a GraphPool
of cached snapshots is also used. Our approach supports,
in addition to full snapshot construction, also partial view
construction with reduced cost for targeted queries.

7. CONCLUSIONS & FUTURE WORK
In this paper, we support historical queries on graphs rep-

resenting evolving social networks. We use a log for tracking
changes on the graph, and aim at reducing the cost of the
graph construction phase that precedes query evaluation, by
using partial instead of full snapshot construction. We show
when a partial view can be used for query evaluation and de-
fine algorithms for view construction and extension. We also

propose using a cache of partial views and define a greedy
solution for static view selection.

We plan to enhance view extension by including extension
between views with different centers and show how views can
be combined, i.e., by taking their union. We also intend to
study variations of the view selection problem, such as a
budgeted version with a limited cache size and a dynamic
version equipped with cache replacement policies.

ACKNOWLEDGEMENTS
Research co-financed by the ESF and Greek national funds
through the Operational Program “Education and Lifelong
Learning”of NSRF-Research Funding Program:Thales:Cloud9.

8. REFERENCES
[1] A.-L. Barabási and R. Albert. Emergence of scaling in

random networks. Science Mag., 286:509–512, 1999.
[2] P. Buneman, S. Khanna, K. Tajima, and W. C. Tan.

Archiving scientific data. ACM TODS, 29:2–42, 2004.
[3] D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y.

Vardi. Query processing under glav mappings for relational
and graph databases. PVLDB, 6(2):61–72, 2012.

[4] S. Dar, M. J. Franklin, B. T. Jónsson, D. Srivastava, and
M. Tan. Semantic data caching and replacement. In 22nd
VLDB, 1996.

[5] C. Gutierrez, C. A. Hurtado, and A. Vaisman. Introducing
time into rdf. IEEE TKDE, 19(2):207–218, 2007.

[6] U. Kang, H. Tong, J. Sun, C.-Y. Lin, and C. Faloutsos.
Gbase: a scalable and general graph management system.
In KDD, 2011.

[7] U. Kang, C. E. Tsourakakis, and C. Faloutsos. Pegasus:
mining peta-scale graphs. Knowl. Inf. Syst, 27(2):303–325,
2011.

[8] U. Khurana and A. Deshpande. Efficient snapshot retrieval
over historical graph data. In ICDE, 2013.

[9] G. Koloniari, D. Souravlias, and E. Pitoura. On graph
deltas for historical queries. In 1st WOSS, 2012.

[10] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over
time: Densification laws, shrinking diameters and possible
explanations. In KDD, 2005.

[11] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: A system for
large-scale graph processing. In SIGMOD, 2010.

[12] A. Marian, S. Abiteboul, G. Cobena, and L. Mignet.
Change-centric management of versions in an xml
warehouse. In 27th VLDB, 2001.

[13] W. E. Moustafa, A. Deshpande, and L. Getoor. Ego-centric
graph pattern census. In ICDE, 2012.

[14] G. Özsoyoglu and R. T. Snodgrass. Temporal and real-time
databases: A survey. IEEE TKDE, 7(4):513–532, 1995.

[15] C. Ren, E. Lo, B. Kao, X. Zhu, and R. Cheng. On querying
historical evolving graph sequences. PVLDB,
4(11):726–737, 2011.

[16] B. Salzberg and V. J. Tsotras. Comparison of access
methods for time-evolving data. ACM Comput. Surv.,
31(2):158–221, 1999.

[17] D. Theodoratos and T. Sellis. Data warehouse
configuration. In 23rd VLDB, 1997.

[18] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi.
On the evolution of user interaction in facebook. In WOSN,
2009.

