
Finding Top K Shortest Simple Paths
with Improved Space E�iciency

Qingsong Wen1, Ren Chen1, Lifeng Nai2, Li Zhou3, Yinglong Xia1
1Huawei Research America, Santa Clara, CA 95050, USA
2Georgia Institute of Technology, Atlanta, GA 30332, USA
3The Ohio State University, Columbus, OH 43210, USA

{Qingsong.Wen,Ren.Chen,Yinglong.Xia}@huawei.com,lnai3@gatech.edu,zholi@cse.ohio-state.edu

ABSTRACT
Finding top-K shortest paths is fundamental and crucial to many
graph applications, but known to be nontrivial over large graph
data and large value of K . This problem becomes much more chal-
lenging when the shortest paths require to be simple (paths without
loops). When searching for top-K shortest simple paths, MPS algo-
rithm is a practically fast and e�cient scheme based on the famous
Yen’s algorithm. In this paper, we propose an improved MPS algo-
rithm which can signi�cantly reduce the memory consumption and
increase the execution speed compared to the original MPS algo-
rithm. First, we design a pruning scheme during the construction
of pseudo-tree, such that only the shortest path in each iteration
would be added to the pseudo-tree, instead of adding all possible
candidate paths as that in the original MPS algorithm. Second, we
modify the pseudo-tree of shortest-path candidates with reversed
order and internal ID, such that the shortest paths can be retrieved
directly from the constructed pseudo-tree without explicitly storing
all candidate paths. Furthermore, we evaluate the performance in
terms of running time and memory consumption in both synthetic
and real graphs with millions of vertices and edges. Compared to
the original MPS algorithm, experimental results show that our
improved MPS algorithm can bring up to 6x performance gain in
both running time and memory consumption.

1 INTRODUCTION
Finding top K shortest paths (KSP) problem has been extensively
studied as a generalization of the shortest path problem. Given a
graph G with non-negative edge weights, a positive integer K , a
source vertex s and a destination vertex t , KSP algorithm ranks
the top-K shortest paths from s to t and lists them in increasing
order of length. The KSP problem can be found in various real
world applications including network routing, chip layout plan-
ning, wireless communications, tra�c engineering and database
applications [2, 7, 9, 10, 14, 16, 17]. Several variants of KSP problems
have been examined in the literature [6, 7, 9, 11, 17], which can be
classi�ed into two classes including the unconstrained problem and
the constrained problem. No constraints need to be considered on

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
GRADES’17, Chicago, IL, USA
© 2017 ACM. 978-1-4503-5038-9/17/05. . . $15.00
DOI: http://dx.doi.org/10.1145/3078447.3078460

the path de�nition in the unconstrained problem, while some con-
straints should be satis�ed in the constrained problem [10, 11, 17].
For example, some constrained KSP problems require the shortest
paths to be simple (loopless), i.e., duplicate vertex in a graph should
be excluded in each of the shortest paths. To solve the constrained
problem of �nding top-K shortest simple paths, anO(Kn(n logn+m)
time algorithm has been proposed by Yen et al. [17], where n = |V |
vertices andm = |E | edges; this algorithm is close to the best-case
linear speedup predicted by theory. As a more practical and faster
implementation by improving Yen’s algorithm, MPS algorithm [3, 4]
achieves a time complexity of O(m logn + Kn), when a worst case
analysis is considered. As a highly e�cient algorithm especially for
�nding shortest simple paths, MPS algorithm exhibits much faster
speed than other top KSP algorithms [7, 9, 17] when searching for
top-K shortest simple paths.

In this paper, we propose an improved MPS algorithm by exploit-
ing the available information, such that the unnecessary memory
space can be saved. Speci�cally, we design two novel strategies.
The �rst is to only add the shortest path to the pseudo-tree in
each iteration by a tree-pruning method. The second is to apply
reversed order and internal ID in the pseudo-tree such that the
storing and searching shortest paths would be much more e�cient.
Compared to the original MPS algorithm, the experiments show
that our proposed improved MPS algorithm brings 3x∼6x speedup
while consuming much smaller memory sapce.

2 SHORTEST PATHS PROBLEM
2.1 Top K shortest simple paths
Finding the shortest path/paths in a network is a fundamental prob-
lem or subproblem of many practical applications, which has been
extensively investigated in the literature. Given a graph, di�erent
shortest path/paths variants can be formulated according to the
corresponding application scenarios. The simplest one is the single-
pair shortest path problem, where a shortest path from a given
source to a given destination is calculated. Another problem is to
�nd the single-source shortest paths (SSSP), where we want to �nd
a shortest path from a given vertex to every other vertex in a graph.
Both the problems can be e�ciently solved by Dijkstra’s algorithm
[5]. The more general problem is to �nd the top K (K ≥ 1) short-
est paths (KSP) for a given source-destination pair in a graph. In
this paper, we focus on the general top KSP algorithms, since the
performance of such algorithms has become a critical challenge in
many practical applications.

Given a graph with non-negative edge weights, KSP algorithm
ranks the top-K shortest paths from source vertex to destination

vertex and enumerates them in increasing order of length. In many
real applications, the shortest paths generated by KSP algorithm
are usually required to be simple, i.e., no loops containing two or
more vertexes exist in each path.

2.2 MPS algorithm for top K shortest simple
paths

MPS algorithm (named after the authors)[4] is a high e�cient top
KSP algorithm especially for �nding shortest loopless paths, which
exhibits much faster speed than other top KSP algorithms [7, 9, 17].
Let G = (V ,E) be a directed/undirected graph with n = |V | vertices
andm = |E | edges. The main idea of MPS algorithm is to improve
the shortcomings of the original Yen’s algorithm [17]. Speci�cally,
the computational complexity of Yen’s algorithm was improved
fromO(Kn(n logn+m) toO(m logn+Kn) by MPS algorithm, when
a worst case analysis is considered.

Algorithm 1 The original MPS algorithm for �nding topK shortest
simple paths [3, 4]

Input: G = (V , E)
Output: pk , k = 1, 2, . . . , K

1: Compute T ∗t
2: Compute c∗i j for any edge (i, j) ∈ E
3: Rearrange the set of edges of (V , E) in the sorted forward star form
4: p1 ← shortest path from s to t
5: k ← 1
6: X ← {pk }
7: Tk ← {pk }
8: while k < K and X , ∅ do
9: p ← shortest path in X

10: X ← X − {pk }
11: if p is loopless then
12: k ← k+ 1
13: pk ← p
14: end if
15: vk ← deviation node of pk
16: for each v ∈ pkvk t do

17: if pksv is not loopless then
18: break
19: end if
20: if E(v) − ETk (v) , ∅ then
21: �nd the �rst edge (v, x) in the set E(v) − ETk (v), xxx xxxx xxxxx

xxxxxxxxx such that pksv � < v, (v, x), x > is loopless
22: q ← pksv � < v, (v, x), x > � p∗xt
23: X ← X ∪ {q }
24: qvt ← < v, (v, x), x > � p∗xt
25: Tk ← Tk ∪ {qvt }
26: end if
27: end for
28: end while

We de�ne the following notations for Algorithm 1, which presents
the MPS algorithm for ranking paths:

• X : a set containing distinct paths which are ranked to select
the shortest path in kth iteration.

• Tk : a pseudo-tree composed of shortest-path candidates.
• T ∗t : a graph having the same topology ofG , where minimal

cost of each vertex has been calculated using single-source
shortest path algorithm.

• c∗i j : pre-computed reduced cost [4] for any edge (i, j) ∈ E.
• pk : shortest path found in the kth iteration.
• pkvk t : a sub-path fromvk to t inpk , also called as a deviation

path of pk .

• p∗vk t : the shortest path from vk to t in T ∗t .
• pksv : the path from s to v in pk .
• p �q : the concatenation of two paths p and q.
• (u,v) : the edge connecting a pair of vertices u and v .
• < u, (u,v),v > : the path containing vertex u, edge (u,v),

and vertex v .
• E(v): the set of edges whose tail vertex is v .
• ETk (v) : the set of edges in Tk whose tail vertex is v .

In Algorithm 1, set X containing path candidates for ranking
shortest paths is used and initialized with the shortest path p1. In
the kth step, the shortest path candidate inX is selected and popped
out as pk . Then some new path candidates to obtain the (k + 1)th
shortest path are generated. For this purpose, for each node v in
pkvk t , the shortest path p∗vk t from v to t whose �rst edge is not an
edge of ETk (v), will be computed. In Algorithm 1, pksv �p∗vt denotes
a new candidate for pk+1. Note that p∗vt has been pre-computed
when generating T ∗t , which can be used to �nd the shortest path
from any vertex v ∈ V to t . When all deviation paths for node v
have been determined, E(v) − ETk (v) becomes an empty set.

The MPS algorithm works similarly to Yen’s algorithm. Note
that T ∗t can be easily computed with classic single-source shortest
path algorithms by reversing the orientation of all the edges and
considering t as the initial node. The total time complexity of MPS
algorithm isO(m logn+Kn), where determiningT ∗t takesO(m logn)
time using the classic Dijistra shortest path algorithm, and ranking
K shortest paths needs O(Kn) time. In fact, in the worst case, no
more than n di�erent vertexes will be considered after the deviation
node, when new candidate paths are being added to the set X . To
produce only simple paths, a potential candidate path is examined
if it is loopless when constructing the pseudo-tree (see Lines 11-
14, 17-19, and 21 in Algorithm 1). Those candidate paths will be
dropped if they are not loopless.

3 PROPOSED IMPROVED MPS ALGORITHM
The original MPS algorithm works well in the case of small net-
works with small values of K . However, the original MPS algorithm
would consume excessive amount of memory in case of large net-
works with large values of K due to storing all candidate paths,
which increases the execution time and even stalls because of run-
ning out of memory space. Therefore, we propose an improved
MPS algorithm (see Algorithm 2) which signi�cantly reduces the
memory space to increase execution speed without a�ecting the �-
nal output paths. The main improvement comes from the following
two novel designs.

3.1 Pseudo-tree with pruning
The majority of memory consumption of the MPS algorithm comes
from constructing the pseudo-tree Tk of shortest-path candidates.
Since most of path candidates would not be in the �nal top K
shortest paths in large networks, we propose a novel scheme to add
only one path to the pseudo-tree in an iteration, while the original
MPS would add a path for each vertex on the deviation path in
an iteration. To illustrate the proposed scheme, let us consider a
simple network shown in Fig. 1, where the T ∗t (shortest paths of
all vertices to the destination vertex t) is also provided. Based on

2

Algorithm 2 The improved MPS algorithm for �nding top K short-
est simple paths

Input: G = (V , E)
Output: pk , k = 1, 2, . . . , K

1: Compute T ∗t
2: Compute c∗i j for any edge (i, j) ∈ E
3: Rearrange the set of edges of (V , E) in the sorted forward star form
4: p1 ← shortest path from s to t
5: k ← 1
6: Tk ← {pk }
7: Insert(Q , the last vertex’s internal ID of pk)
8: while k < K and X , ∅ do
9: a ← Extract-min(Q)

10: p ← �nd the path whose last vertex’s internal ID is a
11: if the last vertex (denote as m) of p is not t then
12: p ← p � p∗mt
13: end if
14: if p is loopless then
15: k ← k+ 1
16: pk ← p
17: end if
18: vk ← deviation node of pk
19: for each v ∈ pkvk t do

20: if pksv is not loopless then
21: break
22: end if
23: if E(v) − ETk (v) , ∅ then
24: �nd the �rst edge (v, x) in the set E(v) − ETk (v)

such that pksv � < v, (v, x), x > is loopless
25: Tk ← Tk∪ < v, (v, x), x >
26: Insert(Q , the internal ID of x)
27: end if
28: end for
29: end while

the aforementioned MPS algorithm, we can obtain the pseudo-tree
of candidate paths after the �rst two iterations as shown in Fig.
2. At the second iteration with k = 2, the MPS will add a path to
destination vertex 6 for each vertex v on the deviation path (i.e.,
vertices 1, 2, 5). In contrast, our scheme only needs to add one path
by designing a tree-pruning scheme. First, at each vertex v on the
deviation path, our scheme only needs to add one vertex x instead
of one path as shown in Fig. 3 (also see Line 25 of Algorithm 2),
where the shaded vertices would not be added in the pseudo-tree
unless they are on the top K shortest paths. Even though we only
add one vertex each time instead of a candidate path, its �nal path
cost can be obtained based on the information of T ∗t . Next, based
on all path costs, the "path" with minimum cost is selected and
the corresponding full path is then added in the pseudo-tree (see
Lines 9-13 of Algorithm 2), which is the shortest path in current
iteration. It can be seen in Fig. 3 that the proposed scheme brings
reduced memory consumption. This memory reduction would be
signi�cant and brings impressive speedup in large networks, which
will be demonstrated in the following experiment section.

3.2 Pseudo-tree with internal ID and reversed
order

The second source of major memory consumption in MPS algo-
rithm comes from storing the set of candidate paths (see X in Line
23 in Algorithm 1). Since all the information about the candidate
paths is available in the constructed pseudo-tree, we do not need
to explicitly store these paths. Here we propose a simple yet e�-
cient way to retrieve the candidate paths without actually storing

Figure 1: (a) An example network where edge cost is located
beside each edge; (b) The corresponding T ∗t calculated by
SSSP where the number beside each vertex denotes the min-
imum sum cost to the destination vertex.

Figure 2: The constructed pseudo-tree from the �rst two iter-
ations of MPS algorithm. The number beside the leaf vertex
denotes the path cost. p1 and p2 denote the �rst and second
shortest paths, respectively.

Figure 3: The constructed pseudo-tree from the �rst two it-
erations of the improved MPS algorithm with tree pruning.
The number on the right hand side of the leaf vertex denotes
the path cost. p1 and p2 denote the �rst and second shortest
paths, respectively. The shaded vertices would not be added.

them. In the original MPS algorithm, each vertex points to its child
vertex/vertices in the pseudo-tree as shown in Figure 2. We adopt

3

a reversed order such that each vertex points to its parent vertex.
Furthermore, we add a distinct internal ID for each vertex as its
property. By doing so, we can obtain the whole path from any leaf
vertex’s internal ID by repeated proceeding from child to parent
in the pseudo-tree. This reversed-order with internal ID scheme
combining with tree pruning in the pseudo-tree is depicted in Fig-
ure 4. During the construction of the pseudo-tree (with or without
our proposed pruning scheme), the �nal cost of each added path
or pruned path is also available. Therefore, we can just store the
key-value pair (path cost, leaf’s internal ID) of each added path or
pruned path into a min-priority queue Q (see Lines 7, 26 in Algo-
rithm 2) instead of storing the whole path as in the original MPS
algorithm (see Lines 6, 23 in Algorithm 1).

Due to the adopted min-priority queue Q , the operation of �nd-
ing the leaf’s internal ID of the shortest path can be �nished in
O(1) time (see Line 9 in Algorithm 2). Once the leaf’s internal ID
is found, the whole shortest path in current iteration can be easily
retrieved from the reversed-ordered pseudo-tree as shown in Figure
4 (aslo see Lines 9-13 in Algorithm 2).

Figure 4: The constructed pseudo-tree from the �rst two iter-
ations of the improvedMPS algorithmwith tree pruning, in-
ternal ID, and reversed order. The shaded vertices would not
be added. The number inside parenthesis on the left hand
side of each vertex denotes its internal ID. The internal IDs
are distinct, so any path can be fetched based on its last ver-
tex’s internal ID. The number on the right hand side of the
leaf vertex denotes the �nal path cost (the cost from s to t),
even though the path is pruned.

4 EVALUATION
4.1 Evaluation methodology
In this section, we compare the performance of our improved MPS
algorithm against the original MPS algorithm. To minimize the
running time, we implement both algorithms in C++ on top of the
GraphBIG [12]. Here GraphBIG is adopted for basic graph oper-
ations, since GraphBIG is an open-sourced e�cient graph frame-
work similar to the IBM System G library [15] and covers major
graph computing types and data structures. The experiments are

Table 1: The number of vertices and edges for each generated
grid network.

Grid Network 32 × 32 128 × 128 512 × 512 2048 × 2048
Vertex Number n 1,024 16,384 262,144 4,194,304
Edge Numberm 1,984 32,512 523,264 8,384,512

performed on a desktop with Intel i7-6700 CPU (3.4 GHz), 64 GB
memory, and Ubuntu 16.04 operating system. Note that both algo-
rithms do not bene�t from multi-core parallel computing due to no
parallel implementations at current stage. It is expect that similar re-
sults can be obtained in parallel computing since the two algorithms
follow similar execution �ow. The running time of each algorithm
is measured between the input graph is loaded into memory and
all shortest paths are written into output �les.

4.2 Evaluation with synthetic grid networks
Without loss of generality, we consider synthetic square grid net-
works similar to [9] and [7] for ad hoc networks, where each vertex
is connected to its four neighboring vertices with random edge
weight uniformly distributed in (0, 10). Four grid networks with
di�erent sizes, from thousands to millions vertices and edges, are
generated in the experiments, which are summarized in Table 1. For
each experiment of searching top K shortest paths, we randomly
select 50 pairs of source and destination vertices, located on the
opposite sides of grid networks, to record the total running time.

Running time: First, we consider the case of �nding top 10
shortest paths under di�erent grid network con�gurations. The
total running time of 50 pairs under di�erent grid networks are de-
picted in Figure 5. In all grid networks, our improved MPS algorithm
brings around 3x∼4x speedup over the original MPS algorithm. Sec-
ond, we evaluate the total running time of 50 pairs of �nding top K
shortest paths under di�erent K values in a 128 × 128 grid network,
where the value of K is selected from 10 to 10,000. The results are
depicted in Figure 6 by log-log scale. It can be seen that our im-
proved MPS consistently provides 4x∼6x speedup over the original
MPS algorithm.

Similar speedup can be obtained in the case of other grid network
and K value con�gurations. However, when the network and the
value of K are large to some extent, the original MPS slows down
rapidly. For example, in a case of �nding top-100 shortest paths of 50
pairs under 2048 × 2048 grid network, the improved MPS algorithm
requires about 13 minutes running time while the original MPS
algorithm needs over 50 hours. This is due to the excessive amount
of space requirements of storing all candidate paths in the original
MPS algorithm which may exceed the 64 GB memory in the desktop
computer.

Memory: To measure the improvement of memory consump-
tion for our improved MPS method, we perform experiments by
utilizing the massif tool in Valgrind [13]. In our experiment, we
compare the memory consumption of the original MPS and our
improved MPS under di�erent grid networks and di�erent K val-
ues. As shown in Figure 7, compared to our improved MPS, the
original MPS consumes up to 6.7× memory when K=100 and 2.5×

4

32 x 32 128 x 128 512 x 512 2048 x 2048

Grid Network Configuration

0

200

400

600

800

1000

1200

T
ot

al
 R

un
ni

ng
 T

im
e

(S
ec

on
ds

)

MPS
Improved MPS

32 x 32 128 x 128
0

2

4

6

Figure 5: Total running time of 50 pairs of �nding top 10
shortest paths under di�erent grid networks.

101 102
100

101

102

101 102 103 104

K Value

100

101

102

103

104

T
ot

al
 R

un
ni

ng
 T

im
e

(S
ec

on
ds

)

MPS
Improved MPS

Figure 6: Total running time of 50 pairs of �nding top K
shortest paths under di�erent K values in a 128 × 128 grid
network.

when K=10. With the increment of network size, the memory con-
sumption of both cases grows dramatically. For example, with the
original MPS, 32×32 grid network consumes only 17MB memory
when K=100. However, when the grid size gets to 2048×2048, the
memory consumption of the original MPS even exceeds 23GB, while
our improved MPS only consumes 6.9GB memory in this case. In
real-world use cases, the memory consumption problem would be
even more severe when processing larger networks. If the mem-
ory footprint exceeds the available memory capacity, we have to
inevitably introduce the overhead and complexity of disk storage
or distributed computing. Therefore, compared to the original MPS,
our improved MPS signi�cantly reduces memory consumption and
enables the processing larger network in a single machine.

0

10000

20000

30000

32x32 128x128 512x512 2048x2048

M
em

or
y	
U
sa
ge
	(M

B)

Grid	Network	Configuration

MPS
Improved	MPS

0

5000

10000

15000

32x32 128x128 512x512 2048x2048

M
em

or
y	
U
sa
ge
	(M

B) MPS
Improved	MPS

K=10

K=100

Figure 7: Memory consumption of �nding top K shortest
paths under di�erent grid networks and K values.

4.3 Evaluation with real road network
In this section, we further extend our evaluation to a real-world
road network in US provided by the 9th DIMACS implementation
challenge for shortest path [1]. Among the 12 road networks in
DIMACS, we select the Eastern USA road network (Road-E), which
has 3,598,623 vertices and 8,778,114 edges. Because of the huge
memory consumption of the original MPS, other larger networks in
DIMACS exceed the memory capacity of our evaluation platform
and therefore are infeasible for our evaluation.

Running time: In the evaluation of the Road-E dataset, we �nd
top K shortest path with multiple randomly generated source and
destination pairs and then measure the average execution time. In
the experiments, we compare the original MPS and our improved
MPS with K values varying from 100 to 600. As shown in Figure 8,
with the real-world network, our improved MPS shows signi�cantly
performance improvement over the original MPS. For example,
when K is 100, our improved MPS shows 3.5× speedup over the
original MPS. With higher K values, both the original MPS and
our proposed method require longer processing time. However, the
speedup of our method also increases with the K value increment,
and it reaches up to 4.1× when K is 600.

Memory: In addition, in the experiments of real-world datasets,
we also evaluate the memory usage of both original MPS and our
improved MPS method. As shown in Figure 9, with di�erent K
values, the memory usage remains relatively similar. In this case,
the original MPS consumes close to 25 GB memory, while the im-
proved MPS method consumes only 5 GB, which indicates that our
improved MPS algorithm shows a 5× reduction compared to the
original MPS algorithm in memory usage.

5 RELATEDWORK
The KSP problem has been researched as a classical graph problem
having various variants for decades [4, 7, 9, 17]. Two classes of KSP
problems including the unconstrained KSP and the constrained KSP
have been discussed. For the unconstrained KSP, no restriction is
applied in the de�nition of the path in a graph. Using the classic
Dijkstra’s algorithm with improved priority queue data structures,
the unconstrained KSP problem can be solved in O(m + Kn logn)
time using the well-known approach in [8]. This algorithm is further

5

3.2

3.4

3.6

3.8

4

4.2

0

50

100

150

200

250

100 200 300 400 500 600

Sp
ee
du

p

Av
g	
Ex
ec
ut
io
n	
Ti
m
e	
(S
ec
)

K	Value

Speedup

MPS

Improved	MPS

Figure 8: Average execution time of �nding top K shortest
paths under di�erent K values for Road-E dataset.

0

5

10

15

20

25

30

100 200 300 400 500 600

M
em

or
y	
U
sa
ge
	(G

B)

K	Value

MPS Improved	MPS

Figure 9: Memory usage of �nding top K shortest paths un-
der di�erent K values for Road-E dataset.

improved by Eppstein et al. [6] and their approach maintains an
asymptotic complexity ofO(m+n logn+K) in both time and space in
the worst case. Their algorithm computes an implicit representation
of the paths, from which each path can be output in O(n) extra
time. By proposing a replacement paths algorithm, an improved
implementation of Eppstein’s algorithm is proposed in [9] with
O(n) improvement in time. Such a speedup is achieved through
fast subroutine path replacement, which may fail but at a tiny
probability.

The KSP problem becomes much more challenging when the
K shortest paths require to be simple: in this case, any duplicate
vertices should be eliminated in a path. This problem was origi-
nally examined by Ho�man [10], but most of the early attempts to
solve it resulted in exponential time solutions [11, 17]. To solve this
constrained KSP problem, Yen’s algorithm was proposed in [17]
by essentially executing O(n) single-source shortest path computa-
tion for each output path. By using modern data structure, Yen’s
algorithm can be implemented in O(Kn(n logn +m)) time and its
computational upper bound increases linearly with value of K . This
asymptotic worst-cased bound for enumerating K simple shortest
simple paths in a directed graph has been predicted in theory [10].
Based on Yen’s algorithm, several variants of KSP with heuristic
improvements have been proposed [7, 9, 11]. By improving Yen’s
algorithm in the case of undirected graphs, Katoh et al. reduced the
time complexity to K(m + n logn). To �nd shortest simple paths,
MPS algorithm [4] overcomes the shortcomings of the original Yen’s
algorithm, and exhibits much faster speed than other top KSP algo-
rithms [7, 9, 17]. By introducing the new concepts including reduced

cost and deviation tree, the computational complexity of Yen’s al-
gorithm was improved from O(Kn(n logn +m)) to O(m logn +Kn)
by MPS algorithm in the worst case. In this paper, our proposed al-
gorithm optimizes the MPS algorithm to enumerate shortest simple
paths with optimized space e�ciency. The key idea is to compress
the deviation tree during the search process.

6 CONCLUSION
In this paper, we propose an improved MPS algorithm for ranking
topK shortest simple paths in large graph/networks. Our algorithm
overcomes the problem of excessive amount of memory consump-
tion in the original MPS algorithm by two novel design strategies.
One is to only add the shortest path to the pseudo-tree in each itera-
tion through a tree-pruning scheme. The other is to adopt reversed
order in the pseudo-tree such that the storing and searching shortest
paths would be much more e�cient. Extensive experiments show
that our improved MPS algorithm achieves 3x∼6x running-time
speedup, and 2.5x∼6.7x memory savings compared to the original
MPS algorithm.

REFERENCES
[1] 2006. Ninth DIMACS Implementation Challenge-Shortest Paths. (2006). http:

//www.dis.uniroma1.it/challenge9/
[2] Ren Chen and Viktor K Prasanna. 2016. Accelerating Equi-Join on a CPU-FPGA

Heterogeneous Platform. In IEEE 24th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM). IEEE, 212–219.

[3] Ernesto De Queirós Vieira Martins, Marta Margarida Braz Pascoal, and José Luis
Esteves Dos Santos. 1997. A new algorithm for ranking loopless paths. Research
Report, CISUC (1997).

[4] Ernesto De Queirós Vieira Martins, Marta Margarida Braz Pascoal, and José
Luis Esteves Dos Santos. 1999. Deviation algorithms for ranking shortest paths.
International Journal of Foundations of Computer Science 10, 03 (1999), 247–261.

[5] Edsger W Dijkstra. 1959. A note on two problems in connexion with graphs.
Numerische mathematik 1, 1 (1959), 269–271.

[6] David Eppstein. 1999. Finding the K Shortest Paths. SIAM J. Comput. 28, 2 (Feb.
1999).

[7] Gang Feng. 2014. Improving Space E�ciency With Path Length Prediction for
Finding k Shortest Simple Paths. IEEE Trans. Comput. 63, 10 (2014), 2459–2472.

[8] BL Fox. 1975. K-th shortest paths and applications to probabilistic networks. In
Operations Research, Vol. 23. B263–B263.

[9] John Hershberger, Matthew Maxel, and Subhash Suri. 2007. Finding the k shortest
simple paths: A new algorithm and its implementation. ACM Transactions on
Algorithms (TALG) 3, 4 (2007), 45.

[10] Walter Ho�man and Richard Pavley. 1959. A Method for the Solution of the N
th Best Path Problem. Journal of the ACM (JACM) 6, 4 (1959), 506–514.

[11] Naoki Katoh, Toshihide Ibaraki, and Hisashi Mine. 1982. An e�cient algorithm
for k shortest simple paths. Networks 12, 4 (1982), 411–427.

[12] Lifeng Nai, Yinglong Xia, Ilie G Tanase, Hyesoon Kim, and Ching-Yung Lin. 2015.
Graphbig: Understanding graph computing in the context of industrial solutions.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. ACM, 69.

[13] Nicholas Nethercote and Julian Seward. 2007. Valgrind: A Framework for Heavy-
weight Dynamic Binary Instrumentation. In Proceedings of the 28th ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI
’07). 89–100.

[14] Ajitesh Srivastava, Ren Chen, Viktor Prasanna, and Chelmis. 2015. A hybrid
design for high performance large-scale sorting on FPGA. In 2015 International
Conference on ReConFigurable Computing and FPGAs (ReConFig). 1–6.

[15] Ilie Tanase, Yinglong Xia, Lifeng Nai, Yanbin Liu, Wei Tan, Jason Crawford, and
Ching-Yung Lin. 2014. A highly e�cient runtime and graph library for large
scale graph analytics. In Proceedings of Workshop on GRAph Data management
Experiences and Systems. ACM, 1–6.

[16] Qingsong Wen, Qi Zhou, Chunming Zhao, and Xiaoli Ma. 2013. Fixed-point real-
ization of lattice-reduction aided MIMO receivers with complex K-best algorithm.
In Proc. IEEE Int. Conf. Acoust., Speech and Signal Process. (ICASSP). Vancouver,
Canada, 5031–5035.

[17] Jin Y Yen. 1971. Finding the k shortest loopless paths in a network. management
Science 17, 11 (1971), 712–716.

6

http://www.dis.uniroma1.it/challenge9/
http://www.dis.uniroma1.it/challenge9/

	Abstract
	1 Introduction
	2 Shortest paths problem
	2.1 Top K shortest simple paths
	2.2 MPS algorithm for top K shortest simple paths

	3 Proposed Improved MPS Algorithm
	3.1 Pseudo-tree with pruning
	3.2 Pseudo-tree with internal ID and reversed order

	4 Evaluation
	4.1 Evaluation methodology
	4.2 Evaluation with synthetic grid networks
	4.3 Evaluation with real road network

	5 Related Work
	6 Conclusion
	References

