
DoWe Need Specialized Graph Databases? Benchmarking
Real-Time Social Networking Applications

Anil Pacaci, Alice Zhou, Jimmy Lin, and M. Tamer Özsu
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, Ontario, Canada

{apacaci,r32zhou,jimmylin,tamer.ozsu}@uwaterloo.ca

ABSTRACT
With the advent of online social networks, there is an increasing
demand for storage and processing of graph-structured data. Social
networking applications pose new challenges to data management
systems due to demand for real-time querying and manipulation of
the graph structure. Recently, several systems specialized systems
for graph-structured data have been introduced. However, whether
we should abandon mature RDBMS technology for graph databases
remains an ongoing discussion. In this paper we present an graph
database benchmarking architecture built on the existing LDBC
Social Network Benchmark. Our proposed architecture stresses the
systems with an interactive transactional workload to better simu-
late the real-time nature of social networking applications. Using
this improved architecture, we evaluated a selection of specialized
graph databases, RDF stores, and RDBMSes adapted for graphs. We
do not �nd that specialized graph databases provide de�nitively
better performance.

1 INTRODUCTION
Graphs provide an intuitive abstraction to model objects and re-
lationships. The highly-connected structure of many natural phe-
nomena, such as road, biological, and social networks make graphs
an obvious choice in modelling. Recently, storage and processing
of such graph-structured data have attracted signi�cant interest
from both industry and academia and have led to the development
of many graph analytics systems and graph databases. Graph ana-
lytics systems such as Pregel, Giraph, and PowerGraph specialize
in OLAP-like batch-processing of graph-structured data on large
computing clusters. Graph databases, on the other hand, focus on
real-time querying and manipulation of entities, relationships, and
the graph structure. Unlike RDBMSes, graph databases treat rela-
tionships as �rst class citizens and enable e�cient traversals by
native graph storage and index-free adjacency list access.

Despite recent interest in specialized graph analytics systems,
some studies favour the use of RDBMSes for graph analytics for
two main reasons: (i) over thirty years of research and experience

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
GRADES’17, Chicago, IL, USA
© 2017 ACM. 978-1-4503-5038-9/17/05. . . $15.00
DOI: http://dx.doi.org/10.1145/3078447.3078459

in robust RDBMS technology, and (ii) its dominance in data ana-
lytic ecosystems in enterprise settings. Studies show that special-
purpose graph analytics engines do not necessarily provide the
best performance across all scenarios. Indeed, relational models can
provide competitive performance for various graph analytic tasks,
especially on single node, out-of-memory settings [5, 8].

Similar arguments can be made for OLTP-like graph workloads;
however, there are no comprehensive studies of existing systems
for real-world, dynamic graph workloads such as online social net-
works. Many studies focus on comparisons between di�erent graph
database engines and graph analytics systems [7, 10]. Although
there are some studies comparing graph databases with relational
models [2, 3, 6, 11], the real-time aspect of graph applications is
mostly ignored and more complex graph traversals are not tested.

Our objective in this paper is twofold: (i) to propose and imple-
ment an improved graph database benchmarking architecture for
real-time transaction processing and (ii) to present an experimental
comparison of various graph data management solutions in online
social networking scenarios. We decided to adopt the LDBC Social
Network Benchmark Interactive Workload [4] due to the realistic
characteristics of its generated data and queries. By integrating
Kafka into the existing workload driver and ingesting updates from
a Kafka queue, data ingestion and update streams can be processed
in real-time to better re�ect the streaming nature of updates. Using
the proposed architecture, we study the performance of various
data management solutions for online social networking workloads.
Our study is most similar to [2] in terms of objectives; however, we
believe that adopting a more realistic social graph and a stream-
ing transactional workload better represents the characteristics of
present-day social networking applications.

Our experiments show that, just as in the case of graph analyt-
ics [5], specialized graph databases do not necessarily provide the
best performance across all scenarios. RDBMSes exhibits competi-
tive performance under an interactive transactional workload in
single node deployments.

The contributions of this paper can be summarized as follows:

• We implement a Kafka-based update mechanism on top of the
LDBC SNB Interactive Workload to better re�ect the real-time,
streaming aspect of social networking applications.

• We introduce a reference implementation for the LDBC SNB
Interactive Workload in the Gremlin query language that can be
executed against any TinkerPop3-compliant graph database.

• We conduct an extensive performance analysis of various data
modelling approaches (RDBMS, graph API over RDBMS, RDF

GRADES’17, May 19, 2017, Chicago, IL, USA Anil Pacaci, Alice Zhou, Jimmy Lin, and M. Tamer Özsu

store, and specialized graph database) using our proposed bench-
mark architecture to investigate their performance for social
networking applications.

2 BACKGROUND
2.1 Graph Databases
Although traditional relational databases are su�cient to repre-
sent and process graph-structured data, they fail to provide intu-
itive interfaces and e�cient operations for graph queries such as
path queries, neighbourhood traversal, etc. Representing highly-
connected data in the relational model results in a large amount of
many-to-many relations, which can produce complex, join-heavy
SQL statements for graph queries. By focusing not on the entities
but rather the relationships among the entities, graph databases and
RDF stores can o�er e�cient processing of graph operations like
reachability queries and pattern matching. RDF stores represent
graphs as collections of triples, whereas graph databases mostly
adopt the adjacency list format and store adjacency information
next to each entity. This enables graph databases to provide e�-
cient graph-centric operations such as retrieving the neighbours of
a vertex. Unlike in the relational model, the performance of such
operations is not a�ected by the data size, i.e., number of vertices
in the graph.

Most existing graph databases such as Neo4j, TitanDB, OrientDB
employ the property graph model, which is a directed, edge-labeled
multi-graph with an arbitrary number of key-value pairs attached to
vertices and edges. Unlike RDF databases which have a structured,
standardized query language called SPARQL, graph databases lack
a standardized interface. Although most vendors have proprietary
APIs and languages such as Neo4j’s Cypher, there exist open-source
e�orts to unify the graph processing space; the most-prominent
example being the TinkerPop project.1

The Apache TinkerPop3 stack provides a collection of tools and
libraries for storage, querying, and analysis of graph-structured
data. The Gremlin Structure API and the Gremlin query language lie
at the core of TinkerPop3 stack. The former provides a common set
of interfaces for the property graph model, and the latter de�nes a
procedural query language structured around the Gremlin Structure
API. They can be considered analogues to JDBC and SQL for graph
databases, providing a standardized, uni�ed way of querying and
processing data modelled as a property graph.

2.2 LDBC Social Network Benchmark
The Linked Data Benchmark Council (LDBC) [1] is a joint e�ort
from academia and industry to establish benchmarking practices
for evaluating RDF and graph data management systems, similar to
the Transaction Processing Performance Council (TPC).2 The main
objective of the LDBC is to specify benchmark speci�cations, proce-
dures, and publish benchmarking results for di�erent technological
solutions. The LDBC Social Network Benchmark (LDBC SNB) [4]
models a social network graph and introduces three di�erent work-
loads on this common graph. The LDBC SNB Interactive Workload
can be considered an OLTP-like workload and is designed to simu-
late real-world interactions in social networking applications. The
1http://tinkerpop.apache.org/
2http://www.tpc.org/

LDBC Workload Driver

Query parameter generator

LDBC
Social

Network
Generator

Kafka

SUT

updates
reads

Operation executor
Data Loader

Figure 1: Our benchmarking architecture, integrating Kafka
into the LDBCWorkload Driver. Our contributions are high-
lighted.

synthetic data generator simulates the user activity of a social net-
work for a given period of time and generates a social network
graph with realistic distributions and correlations. The generated
dataset contains two parts: (i) a static part which is loaded into the
system as an intermediate state of the social network, (ii) updates
which are played out on this intermediate state.

The LDBC SNB Interactive Workload speci�es a set of read-only
traversals that touch a small portion of the graph and concurrent
update transactions that modify the social network’s structure. The
majority of the read-only traversals are simple, common social
networking operations that involve transitive closure, one-hop
neighbourhood, etc. The rest of the read-only traversals are complex
operations that are usually beyond the functionality of real-world
social network systems due to their online nature [4].

The LDBC SNB Interactive Workload uses a dependency tracking
strategy to parallelize its highly-connected workload. In a nutshell,
each update transaction is scheduled to be executed some time
after its dependent transactions are guaranteed to be executed,
e.g., a post cannot be created before the dependent user and forum
are created. Such schedule-based execution enables the driver to
maintain a pre-set transaction rate and test whether the system
under test (SUT) can maintain operation at a steady rate. On the
other hand, this execution strategy does not completely simulate a
real-time workload of an online social network. Rather, the primary
principle of the LDBC SNB Interactive Workload is to evaluate
technical choke points of the SUT, that is, queries that will exhibit
the behaviour of the SUT under di�cult aspects of query execution
and optimization [4].

3 SYSTEM ARCHITECTURE
3.1 Benchmarking Architecture
Figure 1 shows our overall benchmarking architecture, where our
contributions are highlighted. First, the static portion of the syn-
thetic social network is generated by the LDBC Data Generator,
then loaded into the system under test (SUT) using vendor-speci�c
loading mechanisms. The LDBC Workload Driver generates query
parameters, which are consumed by operation executors. For read-
only queries, operation executors can directly interact with the
SUT, whereas updates are processed through a dedicated Kafka

Benchmarking Real-Time Social Networking Applications GRADES’17, May 19, 2017, Chicago, IL, USA

Gremlin server

SNB Interactive Gremlin

TinkerPop3-enabled graph stores

Gremlin Structure API

Titan

Neo4j

Postgres

Figure 2: Execution of Gremlin queries on TinkerPop3-
compliant databases via the Gremlin Server.

queue. In brief, the LDBC Workload Driver populates the Kafka
queue using the generated parameters; then, update handlers read
from the Kafka queue and execute updates on the SUT. We designed
the Kafka integration with two considerations in mind: (i) to more
accurately simulate the streaming nature of updates in online social
networks and (ii) to achieve better stress testing of the SUT.

Real-world social network interactions often follow the stream-
ing nature of updates, as seen in Twitter’s GraphJet [9]. Graph-
Jet supports concurrent read queries, while updates are handled
through a single writer reading from a Kafka queue. The Kafka
integration into the LDBC Workload Driver enables us to simulate
a continuous stream of updates and better represent the dynamic
nature of online social networks. Kafka has become the de facto
architecture for streaming applications, used by LinkedIn,3 Twit-
ter,4 and Pinterest,5 just to name a few organizations. Thus, our
benchmarking architecture better mirrors industry deployments.

Furthermore, Kafka integration achieves better stress testing
of the SUT. Although the LDBC Workload Driver provides a time
compression ratio parameter to achieve certain throughputs, this
is accomplished by coarsening the granularity of scheduled and
dependency times. This puts an upper bound on the throughput
that can be achieved while maintaining correct ordering for updates.
Replacing the scheduled execution with a single Kafka queue for
updates guarantees correct ordering of the updates at maximum
throughput.

We have open-sourced our modi�ed driver with this Kafka in-
tegration so that the community can replicate and build on our
work.6

3.2 Reference Implementations
We created a reference implementation of the LDBC SNB Interactive
Workload in the Gremlin language as well as SQL.7 The Gremlin
implementation contains all the queries of the original benchmark
speci�cation implemented as Gremlin traversals and helper utilities
for graph loading. It is used by the LDBC Workload Driver to exe-
cute the LDBC SNB Interactive Workload on TinkerPop3-compliant
graph databases.

3https://engineering.linkedin.com/blog/2016/04/kafka-ecosystem-at-linkedin
4https://blog.twitter.com/2015/handling-�ve-billion-sessions-a-day-in-real-time
5https://medium.com/@Pinterest_Engineering/introducing-pinterest-secor-
e868d9400bec
6https://github.com/anilpacaci/ldbc_driver/
7https://github.com/anilpacaci/graph-benchmarking/

The SQL implementation is formulated on a schema where ver-
tices and edges are represented as separate tables. The reference im-
plementation contains helper utilities to import the social network
generated by the LDBC data generator into a Postgres database.

In Figure 2, we show the execution of Gremlin queries over
TinkerPop3-compliant databases. Gremlin queries are submitted to
the Gremlin Server, then executed over the underlying TinkerPop3
graph database.

4 EXPERIMENTAL EVALUATION
In this section, we provide experimental performance analysis of
various graph data management solutions under a real-time trans-
actional workload.

4.1 Experimental Setup
The database systems used in this study are listed below. Selected
systems cover relational, graph, and RDF databases with di�erent
data models, interfaces, and query languages.
• TitanDB v1.1 with Cassandra (Titan-C) and BerkeleyDB (Titan-

B) storage backends. TitanDB is an open-source, real-time graph
processing layer built on various third-party storage solutions.
Cassandra is run as a separate process, while BerkeleyDB is used
in embedded mode. Both systems were tested using the queries
implemented in the Gremlin query language.

• Neo4j v2.3.6 (Neo4j) is a single-node, specialized graph database.
Being a TinkerPop-compatible graph database, Neo4j supports
Gremlin in addition to its native query language Cypher. It was
tested with queries implemented in both query languages.

• Virtuoso Opensource v7.2.4 (Virtuoso) is an RDBMS with column
store support for RDF processing. It was used both as an RDBMS
and as an RDF store, tested with native SQL and SPARQL queries,
respectively.

• Postgres v9.5 (Postgres) is a popular RDBMS implemented as a
row store. It was tested with native SQL queries.

• Sqlg v1.3.3 (Sqlg) is an implementation of the TinkerPop3 API on
Postgres. Initially, we developed a simple implementation for the
TinkerPop3 API on an RDBMS but we switched to Sqlg due to
its better performance. It was tested with queries implemented
in the Gremlin query language.
The graph databases (Neo4j and TitanDB) implement their own

adjacency-list based custom data model on the underlying stor-
age engine, over which user does not have control. Virtuoso-RDF
employs the single table with extensive indexing approach, where
the entire graph is stored in a single relational table with multi-
ple indexes. SPARQL queries on the RDF graph are translated into
SQL queries over these indexes and the base table. For relational
databases (Virtuoso-RDBMS and Postgres), each vertex and edge
type is represented by a separate table. For all systems, we created
indexes on vertex IDs to prevent expensive linear scans on initial
vertex look-ups. Although more advanced indexing schemes can
be considered on an individual basis, we restricted indexes only on
vertex IDs for fairness.

We used TinkerPop v3.2.3 for Gremlin Server-based experiments,
the latest version available at the time of this study. The LDBC
SNB Gremlin implementation (see Section 3.2) was used for all
TinkerPop3-compliant systems. Similarly, we developed and used

GRADES’17, May 19, 2017, Chicago, IL, USA Anil Pacaci, Alice Zhou, Jimmy Lin, and M. Tamer Özsu

Table 1: Dataset statistics and database sizes after data loading in GB.

Dataset # of vertices # of edges Raw �les Neo4j Titan-C Titan-B Postgres Virtuoso-RDBMS Virtuoso-RDF
SNB scale factor 3 10M 64M 3 20 6.3 29 11 2.4 8.5
SNB scale factor 10 34M 217M 10 65 18 107 36 7 25

the SQL implementation for Postgres (SQL) (see Section 3.2). For Vir-
tuoso and Neo4j (Cypher), we modi�ed and used the reference im-
plementations provided by the LDBC8 and an open-source Cypher
implementation (Cypher).9

All systems were initially loaded with the synthetic social net-
works generated using the LDBC data generator to bring the social
network into an intermediate state where the daily operations of a
social networking application can be simulated. Two di�erent scale
factors were used to generate datasets for this study. The corre-
sponding statistics for the generated datasets and database sizes of
the selected systems are listed in the Table 1. Further information
about the loading phase and the data ingestion performance of the
systems are presented in Appendix A.

We conducted our experiments on two machines in a local cluster
connected with 10 Gbit/s Ethernet (one for running the SUT, the
other for running the benchmarking code). Each machine has 32
2.6 GHz cores and 256 GB RAM. All systems were con�gured to
load the entire dataset into main memory before the benchmark
execution in order to eliminate the overhead of disk I/O.

4.2 Read-Only Graph Queries
In this section, we evaluate the read-only performance of selected
systems on four main types of graph queries: (i) point lookups,
(ii) one-hop traversals, (iii) two-hop traversals, and (iv) single-pair
shortest path queries. To obtain consistent results and to minimize
noise, queries are executed on the static portion of the social net-
work with no other concurrent query execution. Each query type
is executed 100 times on the selected systems and execution times
are recorded. Tables 2 and 3 show the average latency obtained
from di�erent systems on both scale factor 3 and 10 (the symbol ‘-’
indicates that the system was unable to complete in a reasonable
amount of time).

Tables 2 and 3 clearly show that TinkerPop3 compliance comes
with an overhead. For Neo4j, the Gremlin interface introduces up
to two orders of magnitude of performance degradation compared
to the native Cypher interface. Similarly, Postgres (SQL) signi�-
cantly outperforms Sqlg (Gremlin) even though both systems have
the same underlying data model and storage engine. In general,
TinkerPop3-compliant systems have the slowest read performance
among all systems. These systems translate a complex graph opera-
tion into multiple small requests to the underlying system, whereas
native, declarative query interfaces (Cypher, SQL, or SPARQL) en-
able the underlying system to generate an optimized query exe-
cution plan. Furthermore, performance di�erences become more
signi�cant with increasing query complexity.

Neo4j (Cypher) is the only system where there is no strict cor-
relation between query latency and dataset size, which supports

8https://github.com/ldbc/ldbc_snb_implementations
9https://github.com/PlatformLab/ldbc-snb-impls

the case for adjacency-list based native graph storage. It enables
index-free adjacency access where relationships of a given ver-
tex can be accessed directly through pointers. On the other hand,
the relational databases Virtuoso and Postgres (SQL) provide the
lowest query latency across all query types. While Postgres (SQL)
performs better in point-lookups and one-hop traversals, Virtuoso
(SQL) outperforms Postgres (SQL) in more complex two-hop traver-
sals and single-pair shortest path queries. Virtuoso’s graph-aware
engine and optimized transitivity support enable it to execute such
complex graph queries e�ciently. Virtuoso (SPARQL) has slightly
lower performance due to query translation costs, even though the
benchmark queries are graph queries.

4.3 Real-Time Interactive Workload
In this section, we used the modi�ed the LDBC Interactive Workload
described in Section 3.1 to simulate the real-time aspects of online
social networking applications. A single writer was responsible for
continuously consuming the Kafka queue and executing update
transactions on the SUT. By changing the number of concurrent
readers, we tested the throughput of the SUT under a stream of
updates. Initially, we used the query mix de�ned by the LDBC SNB
speci�cation. However, TinkerPop3-compliant systems could not
e�ciently process large numbers of concurrent complex queries
(i.e., 64 concurrent clients). Therefore, experiments reported in
this section were performed using a query mix consisting of a
two-hop neighbourhood based complex query and a set of short
read-only queries (see Section 4.4). Figure 3 reports the read and
write throughput on the scale factor 3 dataset using 32 concurrent
readers.

We discovered that Titan-B su�ers signi�cant performance degra-
dation under highly-concurrent reads and writes, which makes it
unsuitable for this experiment. For the remainder of this section,
we focus on those remaining systems with reasonable performance.

In general, RDBMSes with a native SQL interface provide the
best performance under the real-time interactive workload. While
read performance of selected systems are comparable and within
a factor of four, Postgres (SQL) and Virtuoso (SQL) exhibit signi�-
cantly better update performance and maintain up to an order of
magnitude faster write throughput compared to their competitors.
On the other hand, Gremlin-based systems have the lowest read
and write throughput, which demonstrates the signi�cant overhead
incurred by the Gremlin Server. Considering that the majority of
the query mix consists of lookups and neighbourhood retrievals,
these results are inline with our �ndings in Tables 2 and 3.

The two specialized graph databases covered in this study, Titan-
C (Gremlin) and Neo4j (Cypher), demonstrate comparable read per-
formance, whereas Neo4j (Cypher) outperforms Titan-C (Gremlin)
in number of writes per second. However, Neo4j’s (Cypher) up-
date performance su�ers from sudden drops due to checkpointing

Benchmarking Real-Time Social Networking Applications GRADES’17, May 19, 2017, Chicago, IL, USA

Table 2: Query Latencies in ms — Scale Factor 3

System Neo4j Titan-C Titan-B Sqlg Postgres Virtuoso
Query Language Cypher Gremlin Gremlin Gremlin Gremlin SQL SQL SPARQL

Point lookup 9.08 122 39 65 16.1 0.25 0.35 3
1-hop 12.82 101 240 223 34 1.4 2.15 1.23
2-hop 368 275 439 1271 2526 29 11.55 16.62
Shortest Path 21 4813 10732 13948 10243 2242 4.81 26

Table 3: Query Latencies in ms — Scale Factor 10

System Neo4j Titan-C Titan-B Sqlg Postgres Virtuoso
Query Language Cypher Gremlin Gremlin Gremlin Gremlin SQL SQL SPARQL

Point lookup 11.16 177 42 236 16.9 0.32 0.41 3
1-hop 14.1 377 129 2117 43 1.62 2.22 1.71
2-hop 579 683 1570 12978 4408 46 15.92 52
Shortest Path 16 4053 17379 - 7003 3648 7.09 32

whereas Titan-C (Gremlin) can achieve a steady write through-
put. The poor update performance of Titan-C can be attributed to
storage and indexing abstractions introduced by TitanDB itself. Ad-
ditionally, Titan-C must implement locking mechanisms to ensure
uniqueness, since the underlying storage backend, Cassandra, does
not provide transactional isolation. This further hinders Titan-C’s
update performance.

For Neo4j, native Cypher queries lead to better performance than
traversals implemented in the Gremlin query language. Similar
behaviour is observed in the Postgres case where Postgres (SQL)
provides signi�cantly better performance than Sqlg (Gremlin). In
both Neo4j and Sqlg, Gremlin traversals are translated into multiple
small requests to the underlying storage engine, thereby eliminating
optimization opportunities.

Virtuoso SQL and SPARQL interfaces have similar read perfor-
mance, but Virtuoso (SQL) has up to 3× better write throughput
than Virtuoso (SPARQL). The di�erence can be attributed to higher
index maintenance costs for Virtuoso (SPARQL), where multiple
indexes over one big table must be maintained.

Despite similar read performance, Postgres (SQL) outperforms
its closest competitor Virtuoso (SQL) by 1.6× in write performance.
Considering that both systems use SQL queries over the same data-
base schema, performance di�erences can be attributed to storage
formats. Unlike Postgres row storage, Virtuoso employs columnar
storage, which is known to su�er under transactional workloads
with frequent updates.

4.4 Discussion
We encountered several roadblocks during our experimental study.
First, the reference LDBC implementations contained several bugs.
For Virtuoso’s reference implementations, the provided SPARQL
queries did not match the schema of the RDF data generated by
the LDBC SNB graph generator. In addition, the SQL reference
implementation did not correctly handle bi-directional edges, so
a majority of queries returned either empty or incorrect results.

We provided �xes to the issues we encountered in the existing
reference implementations.10,11

A more concerning problem we encountered relates to the per-
formance of the Gremlin Server. As described in Section 3.1, the
Gremlin Server is a layer on top of a TinkerPop3 implementation
and enables multiple clients to communicate with the same data-
base in a platform-agnostic manner. However, the Gremlin Server
was unable to handle complex queries under a large number of
concurrent clients. Concurrent complex queries of the LDBC SNB
Interactive Workload caused the Gremlin Server to hang and even-
tually crash. Consequently, we modi�ed the read query mix for
Section 4.3 and omitted long running complex queries. Overall, our
experience reveals the generally poor state of implementations and
suggests that TinkerPop3 and speci�cally the Gremlin Server are
not production ready.

Based on our �ndings, we draw the following conclusions:
• The lower performance of SPARQL compared to SQL for Virtu-

oso suggests that storing RDF data in a single relational table
with extensive indexing is not favourable for transactional graph
workloads due to index maintenance and query translation costs.

• The superior performance of Postgres (SQL) over Sqlg (Grem-
lin) indicates that translating graph queries into multiple small
requests eliminates optimization opportunities and reduces e�-
ciency compared to native SQL execution.

• Although TinkerPop3 presents an important vision to unify the
graph processing space, the signi�cantly lower performance of
TinkerPop3-compliant systems suggests that it incurs a high
overhead. Performance di�erences between Neo4j with Cypher
and Gremlin further support the case against Gremlin.
Although results from previous work on graph database bench-

marking favour graph databases for complex graph operations [2,
11], our �ndings show that RDBMSes can provide competitive per-
formance under a concurrent transactional workload. We found
10https://github.com/anilpacaci/ldbc_snb_implementations
11https://github.com/anilpacaci/ldbc-snb-impls

GRADES’17, May 19, 2017, Chicago, IL, USA Anil Pacaci, Alice Zhou, Jimmy Lin, and M. Tamer Özsu

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

00 01 02 03 04 05 06 07 08 09 10

Op
er

at
io

ns
 p

er
 s

ec
on

d

Minute

Neo4j (Cypher)

Read
Write

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

00 01 02 03 04 05 06 07 08 09 10

Op
er

at
io

ns
 p

er
 s

ec
on

d

Minute

Neo4j (Gremlin)

Read
Write

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

00 01 02 03 04 05 06 07 08 09 10

Op
er

at
io

ns
 p

er
 s

ec
on

d

Minute

Titan-C (Gremlin)

Read
Write

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

00 01 02 03 04 05 06 07 08 09 10

Op
er

at
io

ns
 p

er
 s

ec
on

d

Minute

Sqlg (Gremlin)

Read
Write

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

00 01 02 03 04 05 06 07 08 09 10

Op
er

at
io

ns
 p

er
 s

ec
on

d

Minute

Postgres (SQL)

Read
Write

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

00 01 02 03 04 05 06 07 08 09 10

Op
er

at
io

ns
 p

er
 s

ec
on

d

Minute

Virtuoso (SQL)

Read
Write

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

00 01 02 03 04 05 06 07 08 09 10

Op
er

at
io

ns
 p

er
 s

ec
on

d

Minute

Virtuoso (SPARQL)

Read
Write

Figure 3: Aggregate read and write throughput for the real-
time interactive workload.

that the relational databases Virtuoso and Postgres have low query
latencies as in [4] and provides the best overall performance among
all systems. Similar to [5], we believe that robust RDBMS tech-
nology can deliver competitive performance for OLTP-like online
social networking applications, especially in single node settings.

5 CONCLUSIONS
In this paper, we proposed a benchmarking architecture to simu-
late real-time transactional workloads in social networking appli-
cations and designed an extension of the LDBC Social Network
Benchmark’s Interactive Workload. In addition, we developed a
reference Gremlin implementation of the LDBC SNB Interactive
Workload for TinkerPop3-compliant systems. Using the proposed
architecture, we conducted an experimental comparison of various
data modelling approaches: RDBMSes, graph API over RDBMSes,
RDF stores, and specialized graph databases.

Problems we encountered during this study led us to conclude
that TinkerPop3 and speci�cally the Gremlin Server are not ready
for real-world deployments. In addition, signi�cant performance
di�erences of query languages in Neo4j (Cypher vs. Gremlin) and
Postgres (SQL vs. Gremlin) clearly show that TinkerPop3 compat-
ibility and the Gremlin Server integration incur signi�cant over-
head and negatively e�ect end-to-end system performance. Neo4j
(Cypher), as a commercial system with native graph storage and op-
timized query execution engine, achieved higher throughput than
TitanDB. Postgres provided the best overall performance, followed
by Virtuoso (SQL), which led us to conclude that RDBMSes should
not be ignored for interactive transactional graph workloads.

Directions for future work include considering larger datasets
with di�erent characteristics, testing the scale-out of character-
istics of the systems in distributed settings, and improving our
benchmarking architecture to support more realistic workloads.

ACKNOWLEDGMENTS
This research was supported by multiple Discovery Grants from
the Natural Sciences and Engineering Research Council (NSERC)
of Canada.

REFERENCES
[1] Renzo Angles, Peter Boncz, Josep Larriba-Pey, Irini Fundulaki, Thomas Neumann,

Orri Erling, Peter Neubauer, Norbert Martinez-Bazan, Venelin Kotsev, and Ioan
Toma. 2014. The Linked Data Benchmark Council: a graph and RDF industry
benchmarking e�ort. ACM SIGMOD Record 43, 1 (2014), 27–31.

[2] Renzo Angles, Arnau Prat-Pérez, David Dominguez-Sal, and Josep-Lluis Larriba-
Pey. 2013. Benchmarking database systems for social network applications. In
GRADES. ACM, 15.

[3] Shalini Batra and Charu Tyagi. 2012. Comparative analysis of relational and
graph databases. IJSCE 2, 2 (2012), 509–512.

[4] Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Cha�, Andrey Gubichev,
Arnau Prat, Minh-Duc Pham, and Peter Boncz. 2015. The LDBC Social Network
Benchmark: Interactive Workload. In SIGMOD. ACM, 619–630.

[5] Jing Fan, Adalbert Gerald Soosai Raj, and Jignesh M Patel. 2015. The case against
specialized graph analytics engines. In CIDR.

[6] Vojtěch Kolomičenko, Martin Svoboda, and Irena Holubová Mlỳnková. 2013.
Experimental comparison of graph databases. In IIWAS. ACM, 115.

[7] Robert Campbell McColl, David Ediger, Jason Poovey, Dan Campbell, and David A
Bader. 2014. A performance evaluation of open source graph databases. In
Workshop on Parallel Programming for Analytics Applications. ACM, 11–18.

[8] Marc Najork, Dennis Fetterly, Alan Halverson, Krishnaram Kenthapadi, and
Sreenivas Gollapudi. 2012. Of hammers and nails: an empirical comparison of
three paradigms for processing large graphs. In WSDM. ACM, 103–112.

[9] Aneesh Sharma, Jerry Jiang, Praveen Bommannavar, Brian Larson, and Jimmy
Lin. 2016. GraphJet: real-time content recommendations at Twitter. PVLDB 9, 13
(2016), 1281–1292.

[10] Aparna Vaikuntam and Vinodh Kumar Perumal. 2014. Evaluation of contempo-
rary graph databases. In ACMICC. ACM, 6.

[11] Chad Vicknair, Michael Macias, Zhendong Zhao, Xiaofei Nan, Yixin Chen, and
Dawn Wilkins. 2010. A comparison of a graph database and a relational database:
a data provenance perspective. In ACMSE. ACM, 42.

Benchmarking Real-Time Social Networking Applications GRADES’17, May 19, 2017, Chicago, IL, USA

Table 4: Data loading performance for SNB scale factor 3
graph with a single loader

Dataset Neo4j Titan-C Titan-B Sqlg
Total time (min) 123 767 231 894
Vertex / second 8503 4566 4032 4660
Edge / second 10256 1465 5652 1092

A DATA INGESTION PERFORMANCE
Data loading was performed to bring the social network into an
intermediate state on which social network interactions can be
simulated. Initial data loading was performed using system-speci�c
bulk loading tools for Postgres and Virtuoso, and graph-loading
utilities from the LDBC Gremlin implementation for the remaining
systems (see Section 3.2). System-speci�c bulk loading utilities
enabled the loading phase to be an order of magnitude faster than
that of the other systems. Table 4 reports the graph loading statistics
for the SNB scale factor 3 graph for TinkerPop3-compliant systems.
Sqlg, as a naive graph wrapper over a relational database, has the
worst edge-insertion performance, while its vertex insertion rate
is comparable to other systems. On the other hand, Neo4j’s native
graph storage provides the best ingestion performance in the single-
loader scenario.

In addition, we evaluated the e�ect of concurrency on data in-
gestion performance. We measured the aggregate vertex and edge
ingestion rates for TitanDB and Sqlg with 1 to 16 concurrent loaders.
Neo4j (Gremlin) was omitted because it does not support concurrent
data loading. Although TitanDB with BerkeleyDB storage provided
better performance when there is a single loader, its performance
degrades with increasing concurrency. In fact, TitanDB with Cas-
sandra storage is the only system that scales with an increasing
number of concurrent loaders. This can be attributed to the trans-
actional nature of Postgres and BerkeleyDB backends. Locking
introduced by transactional semantics increases latency in such
write-heavy scenarios.

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000

 1 4 8 16

V
e
rt

e
x
 p

e
r

s
e
c
o
n
d

of concurrent loaders

Titan-C Titan-B Sqlg-P

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000

 1 4 8 16

E
d

g
e
 p

e
r

s
e
c
o
n
d

of concurrent loaders

Titan-C Titan-B Sqlg-P

Figure 4: Aggregate data ingestion rate for varying number
of concurrent loaders

	Abstract
	1 Introduction
	2 Background
	2.1 Graph Databases
	2.2 LDBC Social Network Benchmark

	3 System Architecture
	3.1 Benchmarking Architecture
	3.2 Reference Implementations

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Read-Only Graph Queries
	4.3 Real-Time Interactive Workload
	4.4 Discussion

	5 Conclusions
	Acknowledgments
	References
	A Data Ingestion Performance

