# Entropy-based Selection of Graph Cuboids

Dritan Bleco dritanbleco@aueb.gr Yannis Kotidis kotidis@aueb.gr

#### Department of Informatics Athens University Of Economics and Business

Grades 2017 - Chicago

# Outline

- Motivation
- Graph Cube
- Entropy main concepts
- External and Internal Entropy
- Experiments
- Conclusions

### Motivation

- Recent interest on big graphs with attributes at node/edge level
  - Running example: social network with 3 attributes on nodes: Gender, Nationality, Profession
- Graph cubes enable exploration of graph datasets by considering all possible aggregations among the node/edge attributes
- Our techniques aim at selecting subsets (called cuboids) from very large Graph cube by utilizing information entropy

### The Graph Cube



The Graph Cube : Cartesian Product of two cubes Starting  $(2^n)$  and Ending  $(2^n)$  Data Cube  $(2^{2n}$  cuboids in total )

Dimensions : Grouping attributes used in the analysis

Cuboid : The result set of a particular grouping on the selected dimensions



#### **Cuboid Dual Representation**

- Cuboids in graph cube may be represented as relations
- Relation schema contains attributes of starting and ending nodes and the computed aggregate

| ITALY           | Record              |                     | Cordinality |
|-----------------|---------------------|---------------------|-------------|
| 60 76           | gender <sub>s</sub> | nation <sub>e</sub> | Cardinanty  |
| FEMALE 54 USA   | male                | Greece              | 80          |
| MALE 80         | male                | Italy               | 76          |
| GREECE          | female              | Italy               | 60          |
|                 | female              | USA                 | 54          |
| Gender - Nation |                     |                     |             |

# Entropy - Navigating Graph Cube

- Analysts attracted by skewed data hidden in peaks and valleys
- Information Entropy or Shanon Entropy captures the amount of uncertainty

# p(a) \* log p(a)

- Increases when data are uniform
- Decreases when there are high peaks or irregularities
- We distinguish External and Internal Entropy

## **External Entropy**

• Cuboid  $C_i$  with m number of records in dual relation  $DC_i$ 

| $eH(C_i) = -\sum_{j=1}^m p(a_j) *$ | $\log_2 p(a_j)$ |    |        |
|------------------------------------|-----------------|----|--------|
| genders                            | natione         | a  | p(a)   |
| male                               | Greece          | 80 | 80/270 |
| male                               | Italy           | 76 | 76/270 |
| female                             | Italy           | 60 | 60/270 |
| female                             | USA             | 54 | 54/270 |

- Drilling down from Cuboid  $C_i$  *parent* to Cuboid  $C_k$  *child* adding attribute A with  $d_{max}$  distinct values
- External Entropy Rate

 $eH_{rate}(C_k, C_i) = \frac{eH(C_k) - eH(C_i)}{eH_{max}^i(C_k) - eH(C_i)}$ 

Drill down ( $C_i$ ,  $C_k$ ) omitted if

 $eH_{rate}(C_k, C_i) > eH_r$  (threshold)



#### **External Entropy**

• Pruning Drill downs using External Entropy Rate



#### Internal Entropy

Starting/Ending Internal Entropy Rate

• 
$$sIH_{rate}(C_i^y) = \frac{sIH(C_i^y)}{sIH_{max}(C_i^y)}$$

• Select prominent trends within cuboid





Gender, Nation - Nation

# Experiments

- Graph records from three real datasets
  - 1. Twitter: Crawled by our team
  - 2. VKontakte : The largest European on-line social network service
  - 3. Pokec : The most popular on-line social network in Slovakia

|                      | Twitter | VK                | Pokec              |
|----------------------|---------|-------------------|--------------------|
| Profiles (nodes)     | 34M     | 3,9M              | 1,6M               |
| Relations (edges)    | 910M    | 493M              | 31M                |
| Number of Attributes | 3       | 5                 | 6                  |
| Number of Cuboids    | 64      | 1024              | 4096               |
| Graph Cube Records   | 4M      | 362M              | 66,3B              |
| Graph Cube Size      | 143MB   | $235 \mathrm{GB}$ | $1.58 \mathrm{TB}$ |

- Experimental evaluation using a Cluster
  - with 4 desktop each 4GB ram and 2T HDD
  - Intel i7-3770 3.40 GHz8
  - 8 VMs one master and 7 slaves
  - Implementation using Apache Spark

# Experiments (2) External and Internal Entropy Statistics

![](_page_11_Figure_1.jpeg)

- Twitter : eH<sub>r</sub> = 3.5% 14% of dataset remains
- VK : eH = 10% 17% >> >> >>
  Pokec : eH = 9% 13% >> >> >>

# Experiments (3) External and Internal Entropy Statistics

![](_page_12_Figure_1.jpeg)

(a) Scaling external entropy rate

- Twitter : siH<sub>r</sub> =
- VK : siH<sub>r</sub> =
- Pokec : siH<sub>r</sub> =

![](_page_12_Figure_6.jpeg)

(b) Scaling starting internal entropy rate

![](_page_12_Figure_8.jpeg)

(c) Scaling ending internal entropy rate

= 10% - 0.70000% of dataset remains
10% - 0.00300% >> >> >> >>
10% - 0.00200% >> >> >>

# Experiments (4) • Iceberg graph cube vs Entropy

![](_page_13_Figure_1.jpeg)

- Compute the Iceberg graph cube for different minimum support and adjust Internal Entropy retaining the same number of records
- Compare the resulting subsets of the graph cube in terms of the sum of entropy retained in them.

#### Conclusions

- We presented a framework of graph cubes representing them as Cartesian product of independent data cubes on the starting and ending nodes of the graph
- Addressed the enormous size and complexity of the resulting graph cubes by proposing an analysis process that steers users towards interesting parts of the resulting aggregations.
- Our methods utilize intuitive entropy measures that help locate skewed associations
- Experimental results validate the effectiveness of our techniques and indicate that real graph cubes do contain interesting trends
- Our proposed optimizations enable us to manage graph cubes containing billions of records

# Thank you,

## **Questions**?