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ABSTRACT
A common way to achieve scalability for processing SPARQL
queries is to choose MapReduce frameworks like Hadoop or Spark.
Processing basic graph pattern (BGP) expressions generating large
join plans over distributed data partitions is a major challenge in
these frameworks. In this article, we study the use of two distributed
join algorithms, partitioned join and broadcast join, for the evalua-
tion of BGP expressions on top of Apache Spark. We compare five
possible implementation and illustrate the importance of cautiously
choosing the physical data storage layer and of the possibility to
use both join algorithms to efficiently take account of existing data
partitioning schemes. Our experimentations with different SPARQL
benchmarks over real-world and synthetic workloads emphasize that
hybrid join plans introduce more flexibility and often achieve better
performance than single kind join plans.
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1 INTRODUCTION
The features expected from modern Resource Description Frame-
work (RDF) stores are reminiscent of many other big data appli-
cations which, instead of reimplementing physical distributed data
processing layers from scratch, prefer to rely on MapReduce frame-
works, e.g., Apache’s Hadoop[13] or Spark [14] or other scalable
NoSQL data stores [10]. MapReduce frameworks are built on hori-
zontally scalable shared nothing architectures to achieve data paral-
lelism and efficient parallel processing of large data sets. However,
this horizontal scalability comes at the cost of complicating the
efficient evaluation of distributed join plans which might generate
important data transfer costs between cluster nodes. A common
goal of existing solutions is to achieve data-to-query locality by
data partitioning, data replication and heuristic or cost-based join
reordering [10, 15].

MapReduce frameworks like Hadoop and Spark propose a variety
of physical data layers with different data storage and access meth-
ods. The choice of a specific data layer for building a distributed
RDF store is generally driven by the available data abstraction APIs
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and their ease of use for implementing specific data partitioning
and join optimization strategies. In this article we first evaluate the
influence of different distributed data layer implementations on the
performance of distributed join plans. The generic Spark platform
supports this evaluation within a uniform optimized software envi-
ronment by eliminating low-level performance side-effects related
to using different technologies. The second contribution is a new
cost-based framework for the distributed processing of SPARQL
graph pattern queries on top of Spark.

Our main contribution is an analytical and experimental evalu-
ation of three data storage and access layers proposed by Spark
(SQL, Resilient Distributed Data sets (RDD), Data Frame (DF)) for
processing SPARQL basic graph patterns through distributed join
plans. The analytical evaluation is based on a simple cost model for
the two main distributed join operations (partitioned and broadcast
join) implemented in Spark for non-replicated partitioned data sets.
We also show that this cost-model can be used to dynamically build
efficient hybrid join plans combining both join operators.

2 DISTRIBUTED SPARQL PROCESSING
2.1 Basic Graph Patterns and Join Query Plans
We focus on the evaluation of basic graph patterns (BGP) which are
the building blocks of more general SPARQL queries with filters,
alternatives (OPTIONAL) and set operators (UNION, MINUS). Ef-
ficiently evaluating BGP expressions is essential for all SPARQL
query engines and an important challenge for SPARQL query opti-
mizers. Fig. 1(a) shows a BGP expression Q8 aiming to retrieve the

Figure 1: LUBM benchmark’s Q8

email address ?z of all students ?x who are members of department
?y in universityUniv0. Each triple pattern t1, ..., t5 implicitly defines
a triple selection which computes all triples respecting this pattern.
For example, t4 filters all triples with property subOrдanisationO f



and objectUniv0 and binds variable ?y to the subjects of these triples.
The formal query semantics of a BGP expression e = {t1, ..., ti } with
variables V for some RDF data set (graph) D consists in finding all
variable bindings m from V to nodes and edges in D, such that m(e)
is a subgraph of D (subgraph isomorphism). Variables ?x and ?y
are called join variables and define n-ary triple pattern joins. For
example, expression joinx (t1, t3, t5) joins triples t1, t3 and t5 on their
subject, whereas joiny (t3, t2, t4) joins the object of t3 with the sub-
jects of t2 and t4. Both expressions can be combined to build a join
plan joiny (joinx (t1, t3, t5), t2, t4)) generating all variable bindings
for query Q8. Observe that it is possible to build several equivalent
plans for Q8 t3 and to decompose n-ary joins into several binary
joins. For example, joinx (joinx (joiny (joiny (t3, t4), t2), t1), t5) is an-
other binary linear join plan for Q8.

2.2 Data partitioning and distributed operators
Given a data set D, a query expression Q and a cluster of nodes C,
the global query evaluation process is as follows: (i) the initial data
set D is partitioned and distributed once over the cluster C following
a predefined query-independent hash-based partitioning strategy; (ii)
triple selections are evaluated locally by each node over its triple
partition; (iii) joins are recursively executed following a distributed
physical join plan using different physical join implementations. In
the following, we provide more details on each of these steps.

Data partitioning. Due to its high efficiency, hash-based parti-
tioning is the foundation of MapReduce-based parallel data process-
ing infrastructures. Consider a cluster C = (node1, · · ·nodem ) ofm
nodes and some query Q with variables V over an input data set D.
Any subset V ′ defines a partitioning scheme for Q , denoted QV ′ ,
which describes the partitioning of the triples matched by Q with
respect to the bindings of a variable subset V ′ ⊆ V . For example,
(?x prop ?y)x denotes that all triples with property prop are parti-
tioned by their subject, (?x ?p ?y)p denotes a vertical partitioning by
property type, (?x ?p ?y)x denotes a horizontal partitioning by sub-
ject and (?x ?p ?y)x y denotes a partitioning by subject and object.
Partitioning schemes are independent of the partitioning process
itself and their main purpose is to decide which triple joins can be
evaluated locally within the partitioned data set. In the following,
we suppose that all triples of the input data set D are partitioned by
their subject. The partitioning scheme defines which joins can be
processed locally and which joins induce data transfer cost between
nodes.

Triple selection. Given a triple pattern t , the triple selection
algorithm consists in scanning the whole input data set D (no index-
ing assumption). All triple selections are evaluated locally on each
cluster node and generate no data transfer. We rely on the semantic
encoding that we proposed in [7] to perform such selections. Triple
selection preserves the partitioning schemes of their input, i.e., the
result of a triple selection has the same partitioning as the input data
set. For instance, considering query Q8 (Fig. 1(a)) over a triple set D
partitioned by subject, we obtain the following partitioning schemes
for each triple selection query: tx1 , ty2 , tx3 , ty4 , tx5 .

Partitioned Join: Pjoin. LetQ = joinV (q
p1
1 ,q

p2
2 ) be a join query,

with qi a triple pattern or a sub-query. The partitioned join operator,
henceforth denoted PjoinV (q

p1
1 ,q

p2
2 ), repartitions and distributes,

when necessary, the input data over the bindings of all variables inV

(i.e., it shuffles onV ) then computes the join result for each partition
in parallel as detailed in Algorithm 1 of Appendix A. We distinguish
three cases depending on pi values : (i) p1 = V ∧ p2 = V ; the join
is local since every qi is already partitioned on the join key V . This
case generates no data transfer. (ii) p1 = V ∧ p2 , V ; the result of
q2 is shuffled on V before evaluating the join. (iii) p1 , V ∧ p2 , V .
Every qi ’s result is shuffled on V before evaluating the join.

The result of Q is partitioned on V , denoted QV . The correspond-
ing transfer cost is:∑

1≤i≤2∧pi,V
Tr (qi ) with Tr (qi ) = θcomm ∗ Γ(qi )

where Γ(q) is the result size of a given sub-query q and θcomm is the
unit transfer cost.

Broadcast Join. The broadcast join, denoted Br joinV (q
p1
1 ,q

p2
2 ),

consists in sending the query result of q1 to all compute nodes, as
detailed in Algorithm 2 of Appendix A. Without loss of general-
ity, we assume that q2 is the target sub-query, excluded from the
broadcast step, and has a larger size than q1. The broadcast join
does not consider the partitioning of its arguments and preserves the
partitioning of the target query, i.e., the result of the broadcast join
has the same partitioning as qp2 . The corresponding transfer cost is:

(m − 1) ∗Tr (q1)
wherem is the number of nodes and Tr (qi ) is defined as before.

3 SPARQL PROCESSING ON SPARK
Apache Spark [14] is a main-memory cluster computing engine
which enables parallel computations on unreliable machines and
automatic locality-aware scheduling. This efficiency is mainly due
to two complementary distributed main-memory data abstractions:
(i) Resilient Distributed Data sets (RDD), a distributed, lineage
supported fault tolerant data abstraction for in-memory computations
and (ii) Data Frames (DF), a compressed and schema-enabled data
abstraction. Both data abstractions ease the programming task by
natively supporting a subset of relational operators like project and
join. These operators enable the translation and processing of high-
level query expressions (e.g., SQL, SPARQL).

On top of RDD and DF, Spark proposes two higher-level data ac-
cess models, GraphX and Spark SQL, for processing semi-structured
data in general, and SPARQL queries over RDF data in particular.
Spark GraphX1 is a library enabling the manipulation of graphs
through an extension of Spark’s RDD and follows a vertex-centric
computation model which is dedicated to perform highly-parallel
iterative algorithms on graphs. This processing model is not adapted
to set-oriented graph pattern matching and is not considered in our
evaluation. Spark SQL [4] allows for querying structured data stored
in DFs. Its optimizer, Catalyst [4] can be used with the DF API and
a Domain Specific Language (DSL) for formulating queries.

We propose four approaches to enable SPARQL query processing
on top of Spark SQL, RDD and DF. Moreover, we investigate how far
each method supports the algorithms presented in Sec. 2 to evaluate
joins. The first three approaches are worth mentioning because they
are used in many state-of-the art distributed SPARQL processing
solutions. We consider them as baselines. The last approach is part
of our contributions.
1https://spark.apache.org/docs/latest/graphx-programming-guide.html
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3.1 SPARQL SQL
The SPARQL SQL method consists in rewriting a given SPARQL
query Q into a SQL query Q ′ which is evaluated by the Spark SQL
engine [4]. The execution plan of Q ′ is determined by the embedded
Catalyst optimizer using the Spark DF data abstraction which applies
the Br join algorithm introduced in Sec. 2.2 . It generates a join plan
which broadcasts all triple patterns, except the last one which is
the target pattern. In our experiments with Spark SQL version
1.5.2, we observed that, when a query contains a chain of more
than two triple patterns, a cartesian product is used rather than a
join. Consider 3 triples patterns t1 = (a,p1,x), t2 = (x ,p2,y) and
t3 = (y,p3,b), and the query joiny (joinx (t1, t2), t3). Then, for the
corresponding SQL expression, Catalyst generates the physical plan
Q1 = Br joinxy (Br join−(t1, t3), t2) which computes a cross product
between t1 and t3 before joining with t2. This obviously is less
efficient than, for example, plan Q2 = Br joiny (Br joinx (t1, t2), t3)).
Fig. 1b shows Q82 , a 5-way join plan which implies to broadcast the
results of t1, t3, t2, and t4.

3.2 SPARQL RDD
The SPARQL RDD approach consists in using the Spark RDD data
abstraction and specifically the f ilter and join methods of the RDD
class for evaluating SPARQL queries over large triple sets. Every
logical join translates into a call to the join method. which imple-
ments the Pjoin algorithm introduced in Sec. 2.2. This strategy
translates each join into a P Join operator, following the order speci-
fied by the input logical query, and recursively merges successive
joins on the same variable into one n-ary Pjoin. This ends up with
a sequence of (possibly n-ary) joins on different variables. The re-
sult of the first n-ary join on variable, say v1, is distributed before
processing the next join on variable, say v2, and so on. Fig. 1 shows
the PJoin plan of Q8: Q81 = Pjoinx (Pjoiny (tx3 , t

y
2 , t

y
4 , )

y , tx1 , t
x
5 ). It

distributes t3 triples based on y, then joins them with t2 and t4 on
y. The result is shuffled on x to be joined with t1 and t5 on x . The
overall transfer cost of Q81 is θcomm · (Tr (t3) +Tr (joiny (t4, t2, t3))).

It evaluates star pattern (sub-) queries locally (i.e., no shuffle)
when the input data is partitioned by the join variable, which is
obviously efficient. However, it lacks efficiency when a broadcast
join is cheaper, e.g., join a small with large data set. Observe that
SPARQL RDD always reads the entire data set for each triple pattern
evaluation. This is remedied by merging multiple triple selections
(Sec. 3.4).

3.3 SPARQL DF
Spark Data Frame (DF) provides an abstraction for manipulating
tabular data through specific relational operators. Translating a
SPARQL query using the DF DSL is straightforward: triple selec-
tions translate into DF where operators whereas SPARQL n-ary join
expressions are transformed into trees of binary DF join operators.
The main benefit of using this approach comes from the columnar,
compressed in-memory representation of DF. The advantages are
twofold. First it allows for managing larger data sets (i.e., up to 10
times larger compared with RDD) for a given memory space, and
second, DF compression saves data transfer cost. DF uses a cost-
based join optimization approach by preferring a single broadcast
join to a sequence of partitioned join if the size of the data set is

less than a given threshold. This achieves efficient query processing
when joining several small data sets with a large one. However we
could observe two important drawbacks in applying the SPARQL
DF approach. The first drawback comes from the fact that DF only
takes into account of the size of the input data set for choosing
Br join. By this, DF does not efficiently handle very frequent join ex-
pressions join(s, t) where s is a highly selective filtering expression
over a large data set. In that case, Br join would be more efficient
since it would avoid the data transfer for pattern t (see Sec. 5 for
performance comparison between partitioned and broadcast joins).
Example Q82 illustrates the processing of Q8 through the DF layer.

The second drawback is that SPARQL DF (up to version 1.5)
does not consider data partitioning and there is no way to declare
that an attribute among (s, p or o) is the partitioning key. Conse-
quently, partitioned joins always distribute data and cause costly
data transfers. This penalizes star pattern queries where the result of
each triple pattern is already adequately distributed, since the query
could have been answered without any transfer.

3.4 SPARQL Hybrid
The goal is to overcome the limitations found in the SPARQL SQL,
RDD, and DF solutions in order to provide a more efficient SPARQL
processing solution on top of Spark. In particular, we aim to: (i)
take into account the current data partitioning to avoid useless data
transfers, (ii) enable data compression provided by the DF layer to
save data transfers and manage larger data sets, and (iii) reduce the
data access cost of self-join operations.

As emphasized in our evaluation (see Sec.5), this SPARQL Hy-
brid strategy allows for combining P Join and Br Join. First, this
allows the query optimizer to exploit knowledge about the existing
data partitioning for combining local partitioned joins with broadcast
joins. For example, if a subject-based partitioning scheme has been
applied to the data set, an optimal join plan for a "snowflake" query
pattern like Q8 might join the result of a set of local partitioned joins
("star" sub-queries) through a sequence of broadcast joins: Plan Q83
of Fig. 1 first joins t4 with t2 ony without any transfer because t4 and
t2 are adequately partitioned on their subject y. Then, it broadcasts
the result and joins it on y with t3 preserving the partitioning of t3
on x . Finally it locally joins the result with the remaining patterns t1
and t5 which are also adequately partitioned on their subject x . Plan
Q83 has a lower transfer cost than the plans generated by the other
planning strategies.

We rely on our cost model to demonstrate that combining the
Br Join and distributed P Join algorithms might also yield more ef-
ficient plans than all other plans using only one distributed join
algorithm. We highlight an example where a plan combining both
Pjoin and Br Join algorithms is beneficial. Fig. 2 shows three join
plans for LUBM query Q9:

Q91 = Pjoiny (tx1 , Pjoinz (t
y
2 , t

z
3 )
z )y (1)

Q92 = Br joinz (tz3 ,Br joiny (t
y
2 , t

x
1 )

x )x (2)

Q93 = Pjoiny (tx1 ,Br joinz (t
z
3 , t

y
2 )

y )y (3)

Plan Q91 is composed of two distributed partitioned joins, plan
Q92 is composed of two broadcast joins, whereas Q93 is a hybrid
plan combining a broadcast join on y and a distributed partitioned
join on z. Suppose the following order on the size of the patterns
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Figure 2: LUBM query Q9

Γ(t1) > Γ(t2) > Γ(t3) and Γ(joiny (t1, t2)) > Γ(joinz (t2, t3)). Then it
is easy to see that Q91 is the optimal partitioned join plan and Q92
the optimal broadcast join plan. The cost of these plans is:

cost(Q91) = θcomm ∗ (Γ(t1) + Γ(t2) + Γ(joinz (t2, t3))) (4)

cost(Q92) = θcomm ∗ (m − 1) ∗ (Γ(t2) + Γ(t3)) (5)

cost(Q93) = θcomm ∗ (Γ(t1) + (m − 1) ∗ Γ(t3)) (6)

Based on that cost model, the best plan depends on the number of
machines. For smallm, Q92 wins because it broadcasts small sized
triple patterns. For large m, Q91 wins because it does not broad-
cast any data. In between, we infer the following two inequalities
specifying the range of values for which the Q93 hybrid plan wins:

Γ(t1) < (m − 1) ∗ Γ(t2) and (m − 1) ∗ Γ(t3) < Γ(t2) + Γ(joinz (t2, t3))

If m is “high enough” then distributing the large sized t1 is cheaper
than broadcasting the medium sized t2. Ifm is not “too high” then
broadcasting the small sized t3 is cheaper than distributing both the
medium sized t2 and the result of join(t2, t3).

We have implemented a simple dynamic greedy SPARQL op-
timization strategy using this cost model which introduces a fine-
grained control of the query evaluation plan at the operator level.
The initial input plan is a set of triple patterns with a size estimation
for each pattern (necessary statistics are generated during the data
loading phase). An evaluation step then consists in (1) choosing the
pair of sub-queries and the join operator which generate the minimal
cost using our cost-model, (2) executing the obtained join expression
and (3) replacing the join arguments by the join expression and an
exact result size estimation. This step is iteratively executed until
there remains a single join expression in the input plan. This strategy
is implemented in both SPARK data abstraction layers, RDD and
DF. For the RDD abstraction (which does not support the Br join
natively) we decompose the Br join operator into two jobs, one for
broadcasting the data and the other for computing the join result
based on the broadcast data using the mapPartition RDD transfor-
mation method2. For the DF abstraction, to ensure that the Br Join
operator runs consistently according to the hybrid choice, we had to
switch-off the less efficient threshold-based choice condition of the
Catalyst optimizer.

Merging multiple triple selections. Consider a query Q =
{t1, · · · , tn } composed of n triple patterns. Since all ti ’s are ex-
pressed over the same data set D, there are opportunities to save on
access cost for evaluatingQ . The basic idea is to replace n scans over
the whole data set D by a single scan over the whole data set and k

2http://spark.apache.org/docs/latest/programming-guide.html#transformations

scans over a much smaller sub-set. For this, we first rewrite the se-
lections inQ into a single selection S = σc1∨···∨cn (D) where ci is the
select condition of ti , which returns all triples

⋃n
i=1 ti necessary for

evaluating Q . To implement this merged access approach we added
a preliminary step to persist the covering subsets in main-memory.
Our experiments will show the benefit of this approach.

3.5 Qualitative Comparison
The different methods presented before can be compared according
to four dimensions:

• Co-partitioning : All methods except SPARQL DF (ver-
sion 1.5) and SPARQL SQL exploit existing data partition-
ing information to join triples partitioned on the join key
locally.

• Join algorithm : SPARQL RDD only uses partitioned join,
SPARQL DF and SPARQL SQL can combine partitioned
joins with a single broadcast join, whereas both hybrid
implementations can combine an arbitrary number of parti-
tioned and broadcast joins.

• Merged access: Both hybrid methods (Hybrid RDD and
Hybrid DF) implement multiple (disjunctive) triple filters
which can be processed through a single data scan.
• Data compression. All DF based methods (SPARQL DF,

SQL and Hybrid DF) use data compression and allow for
managing ten times larger data sets than RDD, at equal
memory capacity.

In conclusion, the SPARQL Hybrid method offers equal or higher
support for all the considered properties. Interestingly, SPARQL Hy-
brid fits with both Spark data abstractions, RDD and DF, because the
underlying logical join optimization is separated from the physical
data representation.

4 RELATED WORKS
CliqueSquare [8] aims at maximizing local joins, but replicates the
whole data set 3 times which is not applicable to a main-memory
approach. S2RDF [12] is built on Spark and uses its SQL interface
to execute SPARQL queries. Its main goal is to address efficiently
all SPARQL query shapes. Its data layout corresponds to the vertical
partitioning (VP) approach, i.e., triples are distributed in relations
of two columns (one for the the subject and one for the object)
corresponding to RDF properties. So-called ExtVP relations are
computed at data load-time using semi-joins, to limit the number
of comparisons when joining triple patterns. Considering query
processing, each triple pattern of a query is translated into a sin-
gle SQL query and the query performance is optimized using the
set of statistics and additional data structures computed during this
pre-processing step. The data pre-processing step generates an im-
portant data loading overhead which might be up to 2 orders of
magnitude larger than the subject-based partitioning without repli-
cation of our solution. The AdPart system [2] implements a main
memory SPARQL engine using MPI (Message Passing Interface)
data transfer and lacks fault tolerance (contrary to Spark). This
engine uses a distributed semi-join operator to limit data transfer for
selective joins over large sub-queries by combining adapted parti-
tioned and broadcast join variants. It could be interesting to study
this new operator within our framework. Distributed multiway join
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processing in general has been the topic of many research papers
since decades [11] and we will cite only some more recent represen-
tative contributions about parallel distributed multiway joins over
partitioned data. In [1], a solution is presented for the computation
of multi-join queries in a single communication round. The algo-
rithm was originally designed for the MapReduce approach, thus
justifying the importance of limiting communication costs which are
associated to a high I/O costs. The authors of [5] have generalized
this single-communication n-ary join problem over a fixed number
of servers and designed a new algorithm named HyperCube by pro-
viding lower and upper communication bounds. HyperCube is also
at the origin of an implementation presented in [6]. This work is a
promising approach for evaluating SPARQL queries in a MapRe-
duce setting where the number of rounds has to be restricted. We
have chosen a different setting, where data is in main memory and
partitioned, thus reducing the whole data transfer cost independently
of the number of rounds (join tree depth).

5 EXPERIMENTAL EVALUATION
We validate the query processing methods of Sec. 3 with two syn-
thetic and three real world workloads including star, chain, and
snowflake queries. Both synthetic data sets, the Lehigh University
Benchmark (LUBM) [9] and the Waterloo SPARQL Diversity Test
Suite (WatDiv) [3], provide a data generator and a set of queries.
The real world data sets correspond to DBPedia, Wikidata and Drug-
Bank RDF dumps. All data sets are partitioned by the triple subjects
to optimize star queries. The evaluation was conducted on a 18
DELL PowerEdge R410 cluster interconnected by a 1GB/s Ethernet
network. Each machine runs a Debian Linux distribution and has
2 Intel Xeon E5645 processors, each constituted of 6 cores with
2.40GHz clock-rate and hyper threading (two threads). We used
Spark version 1.6.2 and implemented all experiments in Scala with
a configuration of 300 cores and 50GB of RAM per machine. More
experimentation details are available on the companion web site3.

Star Queries. This experiment was conducted over the DrugBank
knowledge base (505k triples) which contains high out-degree nodes
describing drugs. A first practical use case is to search for a drug
satisfying multi-dimensional criteria and we defined four star queries
with out-degrees ranging from 3 to 15. The query response times are
reported in Fig. 3(a). SPARQL SQL and DF ignore the actual data
partitioning and generate unnecessary data transfers. SQL and DF
are about 2.2 times slower than SPARQL RDD and Hybrid which
evaluate a star query locally without any transfer costs. Moreover,
SPARQL Hybrid outperforms SPARQL RDD because of the merged
multiple triple selection operator scanning the dataset only once per
query instead of once per star branch.

Property Chain Queries. This experiment was done over the
DBPedia knowledge base (77.5M triples) and chain queries with a
length ranging from 4 to 15. We report the query response times
in Fig. 3(b). Chain queries chain4 and chain6 contain large (not
selective) triple patterns followed by small (selective) ones. These
“large.small” sub-chains should be evaluated by broadcasting the
smaller pattern instead of shuffling the larger one. The strength
of SPARQL Hybrid DF is here to estimate the patterns’ selectiv-
ity at runtime and more accurately than SPARQL DF. This allows

3https://sites.google.com/site/sparqlspark/home

(a) Star queries

(b) Chain queries

Figure 3: Query response time wrt. evaluation strategies on
real world data sets

SPARQL Hybrid DF to choose broadcast joins for this case, whereas
SPARQL DF inaccurately estimated the pattern selectivities and
favored partitioned joins which caused large transfer costs.

SPARQL Hybrid DF recursively chooses the lowest cost join
based on the size estimations of the intermediate results and the
remaining triple patterns. This might lead to a suboptimal plan as
shown for chain query chain15 (SPARQL DF only uses partitioned
join which is more efficient). In this specific query, the first triple
pattern (say t1) and the following one (say t2) are large compared to
the other ones, but joining t1 with t2 yields a very small intermediate
result. However, this knowledge is not available before evaluating
the join and cannot be exploited by SPARQL Hybrid DF.

Snowflake Queries. First, we focus on the most complex

Figure 4: LUBM query Q8

snowflake query of the LUBM benchmark (Q8) over LUBM100M
(133M triples) and LUBM1B (1.33B triples). The evaluation plans
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for Q8 have been introduced in Sec. 2 and we report the response
times in Fig. 4. Q8 did not run to completion with SPARQL SQL.
The evaluation plan contained a cartesian product that was prohibi-
tively expensive. This emphasizes that the Spark’s Catalyst optimizer
strategy to replace two joins by one cartesian product should be ap-
plied more adequately by taking into account the actual transfer
cost. SPARQL DF and SPARQL RDD confirm that working with
compressed data is beneficial as soon as the data set is large enough.
Although SPARQL DF ignores data partitioning, thus distributing
more triples (320M instead of 104M triples for the partitioning-
aware approach), its transfer time is lower than SPARQL RDD,
thanks to compression.

The major experimental result is that SPARQL Hybrid outper-
forms existing methods by a factor of 2.3 for compressed (DF) and
6.2 for uncompressed (RDD) data. This is mostly due to reduced
transfers (only few hundred triples instead of over one hundred
million triples for LUBM1B). SPARQL Hybrid also saves on the
number of data accesses: 2 against 3 and 5 for resp. SPARQL RDD
and SPARQL DF.

Comparison with S2RDF. We finally compare our Hybrid ap-

Figure 5: WatDiv queries on 1B triples

proach with the state of the art S2RDF [12] solution which outper-
forms most other existing distributed SPARQL processing solutions.
We conducted the S2RDF comparative experiments over the same
WatDiv 1 billion triple data set on a cluster with approximately sim-
ilar computing power than the one used in the S2RDF evaluation
(we used 48 cores in our experiment against 50 cores used in the
S2RDF experiments). Our main goal is to show that our solution
is complementary and can be combined with the S2RDF approach.
For this, as a baseline we first selected three representative queries
from the WatDiv query set, one for each category: S1 is a star query,
F5 a snowflake one, and C3 a complex one. We executed S1, F5 and
C3 over one large data set containing all the triples (i.e., without
S2RDF VP fragmentation), using SPARQL SQL and SPARQL Hy-
brid strategies. Then, we split the data set according to the S2RDF
VP approach (i.e., one data set per property) and ran the queries
using SPARQL SQL along with the S2RDF ordering method, and
SPARQL Hybrid strategies (see Fig. 5).

Our SPARQL Hybrid solution outperforms the baseline SPARQL
SQL and the S2RDF solution by a factor of 2 which is encouraging.
This performance gain mainly comes from reduced data transfer
costs saving 483MB for S1, 284MB for F5, and 1.7GB for C3. Note
that while reproducing the S2RDF experiments, we get response
times more than twice faster than those reported in [12] (e.g., 3.6

sec instead of 8.8 sec for query S1) and our 1.72 minimal improve-
ment ratio is a fair comparison. This highlights that our approach
easily combines with S2RDF to provide additional benefit. We did
not compare our approach with the concept of ExtVP relations of
S2RDF’s solution, since it comes at high pre-processing overhead
(17 hours for pre-processing 1 billion triples) which does not comply
with our objectives of reducing data pre-processing and loading cost.

6 CONCLUSION
In this article, we present a comprehensive study comparing four
SPARQL query processing strategies for Apache Spark RDF data
stores. These strategies have been implemented and evaluated over
different benchmark queries and data sets. The obtained results em-
phasize that hybrid query plans combining partitioned and broadcast
joins improve query performance in almost all cases. Our solution
is orthogonal to recent state-of-the-art map-reduce based SPARQL
query processing approaches. For example, it naturally fits into
the recent Spark-based S2RDF system to improve its performance.
As future work, we plan to implement our approach as part of a
full-fledged SPARQL query engine. More theoretically, we intend
to explore more deeply the interaction between data partitioning
schemes and distributed join algorithms as part of a general dis-
tributed join optimization framework.
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A JOIN ALGORITHMS
A.1 Partitioned Join
LetQ = joinV (q

p1
1 , · · · ,q

pn
n ) be an n-ary join query. The partitioned

join operator, denoted PjoinV (q
p1
1 , · · · ,q

pn
n ), partitions (when nec-

essary) the input data over the bindings of all variables in V and
computes the join result for each partition in parallel. Let di be the
result of qi , and di j be the chunk of di on nodej (1 ≤ j ≤ m). The
partitioned join algorithm evaluates the query result in four steps
as detailed in Algorithm 1. After reading the input set di of each
sub-query (lines 3-5), partition (if necessary) each di based on the
join key V intom partitions (lines 6-7). The third step transfers (i.e.,
shuffles) the data to the m target nodes (lines 8-9) such that each
node is responsible for computing the join for some values of V
(lines 10-11). The result of Q is partitioned on V , denoted QV .

Algorithm 1 Partitioned Join

1: Input: {qp11 ,q
p1
2 }, join variables V

2: Output: result fragment Resultj on each node nodej
. Evaluate and shuffle sub-query results

3: for all qi do
4: for all nodej do
5: di j ← evaluate qi on node nodej
6: if pi , V then
7: repartition di j on V into {di j1, · · · ,di jm }
8: for all nodek , nodej do
9: transfer di jk from nodej to nodek

. Compute join locally on each node
10: for all nodej do
11: ResultVj ← (

⋃m
x=1 d1x j ) Z (

⋃m
x=1 d2x j )

A.2 Broadcast Join
The broadcast join, denoted Br joinV (q

p1
1 , · · · ,q

pn
n ), consists in send-

ing the query result di of each sub-query qi except one, called the
target query, to all nodes nodej . Without loss of generality, we as-
sume that qn is the target sub-query, excluded from the broadcast
step, and has the largest result size among all sub-queries. The
corresponding steps are detailed in Algorithm 2.

Algorithm 2 Broadcast Join

1: Input: {qp11 ,q
p2
2 }, join variables V

2: Output: result fragment Resultj on each node nodej
. Evaluate and broadcast q1 result

3: for all nodej do
4: d1j ← evaluate q1 on node nodej
5: for all nodek , nodej do
6: transfer d1j from nodej to nodek

. Compute join locally on each node
7: for all nodej do
8: d2j ← evaluate q2 on node nodej
9: Result

p2
j ←

⋃m
y=1 d1y Z d2j
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