
ASGraph: A Mutable Multi-Versioned Graph Container with
High Analytical Performance

Michael Haubenschild†⋆

michael.m.haubenschild@oracle.com

Manuel Then⋆

then@in.tum.de

Sungpack Hong†

sungpack.hong@oracle.com

Hassan Chafi†
hassan.chafi@oracle.com

†Oracle Labs ⋆Technical University of Munich

ABSTRACT

In the last years researchers and industry have become interested in

the analysis of graphs to gain insights into social networks, road net-

works, and other data that is naturally organized as a set of connected

entities. Many of these graphs are very large, some containing hun-

dreds of billions of edges. Usually, graphs are stored in static or

immutable representations. We propose ASGraph. ASGraph is a

graph container that supports updates and multi-versioning while

still providing high analytical performance in the order of magni-

tude of the predominant CSR. ASGraph stores temporal graphs with

arbitrarily fine granularity. Additionally, it can optimize its internal

layout for analytical queries at specific snapshots. We show that it

has moderate runtime overhead between 7% - 98% for PageRank

compared to CSR. Meanwhile it outperforms CSR both in runtime

and memory consumption in scenarios where a graph is repeatedly

updated between analysis. We designed ASGraph to support an

update stream that can be applied concurrently to all analytical oper-

ations without blocking. In contrast to existing solutions for storing

versioned graphs, its performance is independent of the number of

stored snapshots.

CCS Concepts

•Information systems → Graph-based database models; Tem-

poral data; Data structures; Data streams; •Mathematics of

computing → Graph algorithms; •Networks → Online social net-

works;

1. INTRODUCTION
Graph analytics has become more and more popular over the last

couple of years. Graphs are used to represent social networks, road

maps, physical simulations as well as biomedical applications such

as DNA splicing. The graphs encountered in these domains can

become very large, e.g. a recent Facebook graph contains over 1.3

billion vertices representing users and well over 400 billion edges

representing their friendships, likes, posts, etc.[5]. To analyze these

large graphs one needs a data structure to physically store the graph

.

0

x: 1.0

1

x: 3.0

2

x: 4.2

y:7

y:22

y:19
y:8

y:1

(a) Visual Representation

0

0

1

1

3

2

5

-

1 1 2 0 1

node directory

edge array

1.0 3.0 4.2x:

7 19 22 8 1y:

(b) Corresponding CSR.

Figure 1: Small sample graph with three nodes, a floating point

node property x and an integer edge property y

topology as well as associated properties of both vertices and edges.

Furthermore, it should exploit modern hardware trends, e.g. paral-

lel execution units and caches. Also, with today’s servers having

multiple terabytes of main memory, it is possible even for large

graphs to fit in the main memory of a single machine. While most

analysis today still focuses on static graphs, we predict that in the

future there will be demand to gain insights on temporal graphs

as most networks are not static[9]. People join a social network

and new connections both between them as well as between the

old members are established while some are removed again. Only

an abstraction that models this fact can represent the underlying

real-world application accurately. In the past the general trend when

handling large amounts of data has been to use separate systems

that are either optimized for updates or analytics. As a consequence,

data analysts never operated on live data. But relational databases

recently proved that both OLTP and OLAP on the same data can be

a reality when the workload fits in main memory[8]. We promote

the same approach for graph structured data by presenting a data

structure that can handle updates efficiently while still providing

high analytical performance. The state-of-the-art representation for

in-memory graph analysis is the Compressed Sparse Row (CSR) for-

mat. Figure 1 shows the visual representation (1a) of a sample graph

and the corresponding CSR (1b). The node directory stores offsets

into one large edge array. For each node, the number of neighbors

for a node n can be calculated as nodeDir[n+1]-nodeDir[n].

All edges are stored densely in memory. When iterating over

all neighbors of all nodes—a common task in graph algorithms—

memory accesses are sequential in both the node directory and the

edge array. This is a beneficial memory access pattern because it can

easily be predicted and automatically prefetched by the CPU, thus,

nearly all memory accesses hit the cache. In cases where nodes

are accessed in a non-sequential order such as in a breadth-first



search, CSR does not show cache-friendly behavior, but so will no

other data structure. This is an inherent problem of graph analysis

that comes down to efficient graph partitioning and is not further

covered here. As for most data structures, there are trade-offs that

need to be considered. For CSR the antagonistic goals are read-

optimized performance and update friendliness. It provides very

good performance for static graphs but inherently does not support

efficient updates. While single neighbors could theoretically be

exchanged in the edge array, arbitrary insertions or deletions are

not possible. A common solution for this is to gather a number

of updates in a delta store and apply them all in one batch[13].

However, this is still by no means optimal. The eventual update of

the CSR requires copying the whole edge array, which takes O(n)
time in the number of edges. Even if this operation is spread over

multiple updates, it is still very expensive for large graphs. Other

desired features such as support for streaming or versioning likewise

cannot be implemented in CSR.

Our proposed data structure ASGraph (Analytical Snapshot Graph)

solves this challenge by breaking up the edge list of CSR into mul-

tiple chunks which support efficient mutation and employing an

append-only scheme for updates. We combine these two well-

known concepts with a novel createSnapshot operation that

rearranges the edge list fragments for high analytical performance

while concurrent updates can still be applied without blocking.

Among other things, this allows for the following scenario: An

initial graph is loaded into memory. Then, a PageRank is calculated

on it. Simultaneously, updates are applied to the graph. When the

user wishes to include the latest changes, they can request a new

consistent snapshot and start the next query. Note that creating this

snapshot naively would involve building up a whole new CSR from

the old one and the delta, while for ASGraph this is an efficient

operation that can naturally be parallelized.

In the following, we compare existing approaches for graph con-

tainers which all support a different subset of our desired features

in Section 2. Then we go into the high level design choices of AS-

Graph in Section 3, followed by implementation details (Section 4)

and an evaluation (Section 5). We conclude our work with directions

for future work in Section 6.

2. RELATED WORK
STINGER[6] is a mutable graph container that can handle stream-

ing updates which can be inserted in parallel. It uses fixed-size

chained buckets to store edges. STINGER does not provide the

concepts of consistent snapshots or multi-versioning. In fact, due to

its loosely synchronized parallel updates that only maintain physical

consistency of the data structure, a query might see the graph in a

state that never existed. STINGER tightly integrates the concept of

different edge types as each bucket contains only edges of one type.

STINGER has a higher memory footprint than our approach as it

stores more additional information for each edge such as an edge

weight, a creation and a modification timestamp.

LLAMA[11] is a recent effort to extend CSR with version support.

It provides consistent views on the graph and allows concurrent

access to multiple snapshots. The graph including all snapshots can

be stored to disk. Single updates are first buffered in a changeset

and periodically applied as a new snapshot. The major drawback

is that LLAMA’s performance is deteriorating with the number of

existing snapshots. More specifically, the access to newer snapshots

gets more expensive. This is particularly severe as the most recent

snapshot is usually queried most often. Therefore, an expensive

compaction is regularly necessary. It merges old snapshots and

basically comes down to applying a delta to a CSR as described

above. Snapshot boundaries must be known at graph creation time.

Also, too many snapshots push up memory consumption since a

vertex indirection array is forked for each of them.

3. DESIGN CHOICES
Our goal is to design a graph container that provides analytical

performance close to CSR while offering additional functionality.

We want to be able to apply a continuous stream of updates to the

graph which, for example, comes from an RDBMS or from a sensor

network. The problem of synchronization is thereby reduced to a

single update writer, which enables us to run it completely lock-free

as we show later. Our intention is not to propose a whole new graph

analytics platform, but one low-level building block of a hypothetic

future system that allows for efficient temporal analysis of graphs.

In contrast to LLAMA, we want to provide higher analytical perfor-

mance while sacrificing the possibility to run queries on multiple

snapshots in parallel. The reason for this choice is that we found

that creating CSRs for a series of snapshots and running a PageRank

sequentially on all of them is still faster than running a PageRank

on each LLAMA snapshot in parallel. Furthermore, our graph algo-

rithms are already parallelized, so inter-query parallelization most

likely will not give better utilization, but rather hurts performance

because of worse cache locality and TLB use since we encountered

that most of the common graph algorithms we ran are not CPU-

bound but limited by memory.

Note that we explicitly support node delete operations, which

STINGER and LLAMA lack to do. We do not incorporate the con-

cept of different edge types in the graph representation as STINGER

does. If a user wants to distinguish between different edge types

they can use an edge property in ASGraph.

4. ASGRAPH
Our approach is coarsely based on the physical layout of STINGER

[6]. We use fixed-size buckets that can store a certain number of

entries and which are chained in a single-linked list if a bucket

overflows. There are four kinds of operations: node inserts (NINS),

node deletions (NDEL), edge insertions (EINS) and edge deletions

(EDEL). An operation consists of the triple

operation := (destination, timestamp, opType)

Note that we do not store the source of an edge explicitly, since a

chain of buckets contains only operations with the same source node.

New operations are always appended, since we need to preserve all

information in order to create a snapshot at an arbitrary point in time.

When a bucket is full, we allocate a new bucket and add it at the end

of the chain. Using this append-only scheme and atomic primitives,

we support multiple concurrent update operations even for the same

source node in a lock-free manner. Figure 2 shows how the graph

from Figure 1 is stored as an ASGraph. The bucket size of two is

only used for illustration purposes. In our tests we found a bucket

size of 12 to provide a good trade-off between a) memory overhead

from unused slots and b) runtime overhead introduced by iterating

over the list of buckets. Each bucket contains several header fields

(see Figure 3). There is a pointer to the next bucket in the list and

two counters currentSlot and endOfSnapshot which store

the current number of slots used in the bucket and the last valid

entry of the currently materialized snapshot. The latter is explained

in more detail in Section 4.1. The rest of the bucket stores the edge

destinations, timestamps and operation types. Physically, they are

stored in a columnar manner. This allows for good cache utilization

and thereby fast scans over neighbors during analytics.

In our implementation we combined two instances of ASGraph

together, one storing the outgoing edges and one storing the incom-



0

node directory

1

2

(-,t0,NINS)

(1,t0,EINS)

(-,t0,NINS)

(1,t0,EINS)
(2,t0,EINS)

(-,t0,NINS)

(0,t0,EINS)
(1,t0,EINS)

Figure 2: Overview of ASGraph with bucketSize=2. For the

initial graph, we assume all timestamps are zero.

0 15 31

next

curSlot endOfSnap PADDING











Header

to[0]

...

to[x-1]











Traversal Data

timestamp[0]

...

timestamp[x-1]

type[0] type[1] type[2] type[3]

...

type[x-4] type[x-3] type[x-2] type[x-1]















































Transactional

Data

Figure 3: Physical memory layout of one bucket with x entries

ing edges. For some algorithms and undirected graphs the latter can

be omitted, cutting the memory consumption in half.

4.1 Snapshot Creation
When a user requests to create a snapshot at a given timestamp t,

for every node in the node directory the edge entries are reordered

in a way that provides optimal performance for scans. We logically

partition all entries in two categories. For all valid edges in the

snapshot we put the corresponding EINS entry in the first partition.

All other entries, particularly the NINS,NDEL and EDEL as well as the

EINS entries that have a later timestamp or have been removed by

EDEL are put in the second partition. The partitions are separated by

a special [EOS] marker. Analytical queries never read past it. Con-

cretely, a call to createSnapshot(t) performs the following

steps for each neighbor list:

1. Scan through all operations and copy EINS operations to a

list CAND, all other operations to another list REST. When

an EDEL entry with a timestamp t′ ≤ t is encountered, set

DELETIONS[dest] = t
′ where DEL is a map from node-ids to

timestamps (Lines 6-11).1

2. Iterate over each entry e in CAND. If DEL[e.to] >

e.timestamp, this edge is already deleted at t and is moved

to REST.
3. Rewrite the bucket entries with the concatenated lists CAND

and REST. Put a [EOS] marker after the entries from CAND.

1Since this process never changes the relative order of edge deletion
entries, after the scan the map will contain the highest deletion
timestamp for that node.

0

1

2

(-,t0,NINS)

(1,t0,EINS)
(2,t7,EINS)

(-,t0,NINS)

(1,t0,EINS)

(2,t0,EINS)

(1,t4,EDEL)

(-,t0,NINS)

(0,t0,EINS)
(1,t0,EINS)

(a) Before any snapshot was ever applied, timestamps in each bucket are in
increasing order. Analytics is not possible until the first snapshot is created

0

1

2

(1,t0,EINS)[EOS]

(-,t0,NINS)
(2,t7,EINS)

(2,t0,EINS)[EOS]

(-,t0,NINS)

(1,t4,EDEL)

(1,t0,EINS)

(0,t0,EINS)

(1,t0,EINS)[EOS]

(-,t0,NINS)

(b) After the reordering, only operations up to the [EOS] marker can be seen
by analytics.

Figure 4: Snapshot creation in ASGraph for timestamp t5.

During these steps a flag keeps track if the node is deleted at t. If

so, steps 2 and 3 are skipped and a node deletion marker [ND] is

put at the beginning of the first bucket in the chain. Note that steps

1 and 2 operate on temporary data structures while step 3 never

writes operations to memory that is touched by the update stream.

Thus, snapshot creation can run concurrently while operations are

applied to ASGraph. We exploit parallelism in the snapshot creation

phase by processing multiple entries in the node directory at once.

An additional flag per node tracks if there have been changes since

the last call to createSnapshot which enables us to skip these

nodes. The complete procedure is shown (without the node deletion

logic) in Listing 1.

1 for n : nodes

2 var CAND := List[operation] //edge candidates

3 var REST := List[operation] //remaining operations

4 var DEL := Map[nodeId->timestamp]

5 for op : n.operations

6 if(op.type == EINS && op.timestamp <= t)

7 CAND.append(op)

8 else

9 REST.append(op)

10 if(op.type == EDEL)

11 DEL[op.to] = op.timestamp

12 for c : CAND

13 if(c.timestamp <= DEL[c.to])

14 //move c to REST

15 var tmp = CAND.remove(c)

16 REST.append(tmp)

17 //OPTIONALLY: sort CAND at this point

18 //Replace bucket content with reordered operations

19 n.operations <- concat(CAND,[EOS],REST)

Listing 1: The createSnapshot(t) method

To illustrate snapshot creation with an example, we first apply the

following two operations to our example graph: The edge from

node 1 to itself is removed at t4 and an edge from node 0 to 2 is

inserted at t7. This gives us the ASGraph shown in Figure 4a. Call-

ing createSnapshot(t5) transforms it to the state shown in

Figure 4b which now can be used to run analytical queries.



An alternative to this approach would be to materialize valid neigh-

bors on-the-fly during each neighbor iteration. However, since most

algorithms iterate multiple times over a neighbor list and more than

one analysis might run on a snapshot this is potentially slower. How-

ever, slow path access is possible as outlined at the end of the next

section.

4.2 Analytics
Analytical algorithms access ASGraph through a simple API. It is

very similar to that of CSR and is oblivious to the temporal character

of the stored graph as it always sees a consistent view of the graph

at a certain timestamp. There are the usual operations to get the

total number of nodes and edges for the current snapshot, getting

the number of outgoing edges for an individual node and getting

the neighbors of a node. The last one is where algorithms usually

spend most of their time and thus it needs special attention. While

CSR supports random access to all neighbors of a node, ASGraph

cannot implement this efficiently, because for each access it needs

to traverse the whole bucket list. We found however that most

algorithms do not need random access. Thus, we implemented an

iterateNeighbors() method that takes a callback which is called

for each neighbor. Note that due to the columnar layout of the

bucket entries this iterator never needs to load memory into cache

that contains the timestamps or opTypes. Furthermore, we can

prefetch the next bucket in the chain before processing the current

one. Both techniques combined bring us close to the cache efficiency

of CSR which is crucial for ASGraph’s performance.

For point queries it might be too expensive to create a snapshot for

the whole graph in order to access only a few buckets lists. Therefore

we propose a slow path that materializes valid neighbors on-the-

fly in temporary data structures. This also allows fully concurrent

analyses of different snapshots with the restriction that only one

of them can be accessed with high performance. We leave the

investigation of the slow path for future work.

4.3 Node Array
In our current implementation we use a fixed-size array of bucket

pointers, one for each node. This has the drawback that at creation

time of the ASGraph data structure, the user has to specify the

maximum number of nodes that can be stored. In many scenarios

the growth rate of the graph can be estimated, thus allowing to

choose a proper upper bound of nodes for the required timeframe.

However if this cannot be anticipated, ASGraph can be extended

to use a dynamic array that can grow. For large graphs one might

not want to copy the whole array on resizing, so an alternative is

to use an extendable array, either with fixed-size or exponentially

growing segments. This introduces the cost of an additional level of

indirection for each node access which results in additional cache

misses. However since the first level indirection array is generally

small, it should fit into the cache of modern CPUs.

4.4 Properties
ASGraph supports mutable node and edge properties. While for

immutable graphs both can be implemented as arrays, in our multi-

versioned use case they behave differently, as described below. Our

basic approach for both is the same as for storing the graph topol-

ogy, which is having a node directory where each entry points to a

chain of buckets. Node property buckets contain entries of the type

nodePropOp := (value, timestamp). The createSnapshot(t)

operation for a node property consists of looking for the entry with

the highest timestamp less or equal to t and copying that into a

backing array at the index that corresponds to this vertex in the node

directory. That way, entries in the buckets never have to be reordered

Graph # vertices # edges Source

SanFrancisco 59.813 149.715 subset of [10]

LiveJournal 4.847.571 68.993.773 [1]

LDBC-300 1.253.978 136.219.368 [7, 4]

Twitter 41.652.230 1.468.365.182 [2, 3]

WebGraph 77.741.046 2.965.197.340 [2, 3]

Table 1: Datasets used in our benchmarks

and the access time for a property is O(1). We again exploit the

advantages of columnar layout to maximize cache utilization during

snapshot creation. While scanning for the correct timestamp, we

do not have to load memory that corresponds to property values. In

the CSR representation, the layout of an edge property can mirror

that of the edge list. In the mutable case, property updates can occur

independent of topology updates, so the entries for a property do in

general not correspond to the entries for the edges. Therefore, we

must associate an edge property update with its corresponding edge.

We do so by including the destination edge in the edge property entry,

as follows: edgePropOp := (destination, value, timestamp).
To access a property for a given edge e :=(from,to), we skip

through the bucket list of from until we find the correct bucket and

search it for an entry with destination to. This leads to worst case

access times in the order of the number of neighbors a node has,

which can become very large, especially for graphs with skewed

degree distribution. Therefore we adapt our algorithms to use an

optimization if possible: Instead of iterating the neighbors in the

ASGraph itself and access the property for each neighbor it can

iterate the property directly if the algorithm only needs to access

one property. If it needs to access multiple properties, at least one

of them can be accessed with this optimization. In Section 5.1 we

compare the performance for running the Bellman-Ford algorithm

once with this optimization and once without it.

5. EVALUATION
We ran our benchmarks on datasets with different characteristics and

sizes (Table 1). Our test machine is a dual socket server computer

equipped with Intel Xeon E5-2699 v3 18-core CPUs and 378 GB

of main memory. Each core has two Hyper-Threads, resulting in a

total of 72 hardware threads.

5.1 Algorithm Comparison
To get a feeling of the performance of ASGraph compared to CSR

we evaluate four different algorithms that cover a broad spectrum of

graph access patterns (see Figure 5).

PageRank

PageRank is a friendly algorithm in terms of memory access. On

the other hand, its low computational complexity means that per-

formance is mostly restrained by memory accesses. Depending on

the dataset, ASGraph performs 7% to 98% slower than CSR which

stems from the additional instructions in its iterator and the cache

miss when a new bucket is accessed.

Bellman-Ford

Our Bellman-Ford experiments use an edge property of double type

that is used as the distance weight. For all datasets we achieve equal

or better performance than CSR. This is due to the optimization

discussed in 4.4 where we iterate over the property directly, since

it already stores the information about edge destinations alongside

the actual property values. Since the algorithm always accesses

the property together with the edge information it has high cache



93%

419%

107%

67%

115%

105%

98%

183%

107%

198%

142% 167%

248%

50%

208%

135%

98%

239%

98%
263%

BellmanFord (unoptimized) BellmanFord Pagerank Triangle Counting Weakly Connected Comp.

0.001

0.01

0.1

1

10

100

SanFra
n

Live
J

Tw
itte

r

W
ebgra

ph

SanFra
n

Live
J

Tw
itte

r

W
ebgra

ph

ldbc−
300

SanFra
n

Live
J

Tw
itte

r

W
ebgra

ph

ldbc−
300

SanFra
n

Live
J

Tw
itte

r

W
ebgra

ph

ldbc−
300

SanFra
n

Live
J

Tw
itte

r

W
ebgra

ph

ti
m

e
[s

]

ASGraph

CSR

Figure 5: Comparison of different algorithms between ASGraph and CSR. Missing bars are runs that did not finish in a reasonable time

utilization. This optimization could also be applied to CSR by

storing the property value next to each edge entry. Compared to the

other algorithms, Bellman-Ford’s inner loop is also more complex

which alleviates the overhead of our iterator.

At the other end of the scale is the Bellman-Ford algorithm without

that optimization. There ASGraph has to do a normal lookup of

each property value for each edge, which involves traversing the

property bucket chain and searching for the correct entry in the

qualifying bucket. For skewed datasets with a long tail such as LiveJ

and Twitter, this effect leads to an explosion in runtime (419% for

LiveJ, Twitter did not finish in a reasonable timeframe).

Weakly Connected Components

Computing the number and affinity of weakly connected compo-

nents shows no special access pattern that is worth mentioning. It

behaves comparable to PageRank and likewise demonstrates the

overhead of the iterator and the cache misses which results in run-

times up to 139% slower than CSR, while for some datasets it is as

fast as CSR.

Triangle Counting

Our CSR implementation of triangle counting is highly tuned as

described in [12]. Therefore we expect relative low performance

for ASGraph compared to CSR as most of the optimizations are not

applicable to ASGraph since they require random accesses to the

neighbor list of a node.The benchmarks confirm this assumption.

We leave tuning ASGraph’s common neighbor iterator for future

work, but believe that it inherently performs bad in this algorithm

because ASGraph cannot do random access to neighbors due to its

bucket layout, so we have a O(n) runtime compared to O(log n)
for finding the first eligible entry in a neighbor list. For this reason,

triangle counting marks off another corner case for which ASGraph

performs particularly bad. We didn’t obtain runtimes for Twitter

and Webgraph as, due to the long tail and the graph size, they did

not finish in time.

5.2 Scaling
We found no significant difference between the scaling behavior

between ASGraph and CSR, which is not surprising as both employ

no synchronization for reading the graph.

5.3 Complex Scenario
While ASGraph is slower most of the time if we look at a single

analytical query run in isolation (Section 5.1), it beats CSR for a sce-

nario that is even a bit more complex and which comes much closer

SanFran LiveJ ldbc−300 Twitter Webgraph

0

0.2

0.4

0.6

0.8

0

5

10

15

20

25

0

10

20

30

40

0

100

200

300

400

500

0

500

1000

ASGraph CSR ASGraph CSR ASGraph CSR ASGraph CSR ASGraph CSR

ru
n

ti
m

e
[s

e
c
]

loadInitialGraph firstAnalytics generateChanges applyChanges secondAnalytics

Figure 6: Runtime for a more complex scenario including break-

down in the different phases

to a real use-case. We look at the total runtime for 1) loading a graph,

2) running an analysis on it (PageRank), 3) generating changes, 4)

applying those changes and finally 5) running a second analysis

on the changed graph. The changeset we use in this benchmark

randomly adds 10% of the original graph’s nodes and 10% of the

edges. Figure 6 shows our results for this scenario and also breaks

up each run into its single steps. While for smaller graphs runtime

is dominated by the loading and the time to run the algorithm, for

the larger graphs generating and applying the changes dominates

overall runtime. Generating the changes for CSR means collecting

them in a delta structure while for ASGraph they are appended to the

bucket list directly as explained in Section 4. Applying the changes

for CSR involves generating a whole new CSR while for ASGraph

it comes down to the createSnapshot() method explained in

Section 4.1. As Figure 6 shows, ASGraph is faster than CSR for

this scenario for large graphs with the size of Twitter or Webgraph.

The lead increases if steps 3) to 5) are executed repeatedly which

mitigates the role of the initial loading time and makes ASGraph

also the faster alternative on the long run.

5.4 Memory Consumption
Since ASGraph keeps track of the complete operation history, it

has to store the timestamps and opTypes for each operation which



Graph Topology Property Total

ASGraph Twitter 34 GB 29 GB 63 GB

CSR Twitter 23 GB 11 GB 34 GB

ASGraph Webgraph 68 GB 57 GB 125 GB

CSR Webgraph 47 GB 22 GB 69 GB

Table 2: Memory consumption of ASGraph vs. CSR

introduces a non-negligible memory overhead. Table 2 quantifies

this. But as soon as we look at a scenario like the one from Sec-

tion 5.3, the tide turns in favor of ASGraph. For CSR, we need to

materialize the whole graph multiple times, or at least twice during

the merge of the old CSR with the change set. ASGraph on the

other hand inherently stores all the necessary information for all

different versions, thus it has a smaller memory consumption when

the mutations to the graph do not exceed a certain percentage of the

original graph.

6. CONCLUSIONS
We presented ASGraph, a mutable graph container that shows perfor-

mance comparable to CSR for running single analytical queries and

beats it in overall runtime for more complex scenarios. ASGraph’s

performance is independent of the number of stored snapshots, thus

performance does not deteriorate even when ASGraph is used to

store thousands of snapshots. Furthermore, it offers support for a

concurrent update stream and a slow path access to arbitrary ver-

sions which do not have to be materialized. ASGraph supports node

and edge properties. While node properties can be accessed with-

out a performance penalty, lookup of edge properties can become

expensive in the current scheme.

6.1 Future Work
Our next steps include evaluating the slow path access to neighbor

lists. For a practical implementation we further need to investigate

mapping of vertex keys to internal ids. This is a non-trivial task as

most algorithm implementations expect a dense range of indices,

but for ASGraph the internal representation can contain deleted

nodes, so we need a second level of mapping to fill these holes. Our

property design currently only allows fixed-width values, but there

are use-cases where one would like to densely store variable-length

properties. To store these in fixed-size buckets we need to adopt

an approach similar to slotted pages from a RDBMS. While our

current implementation can handle more than 1 million operations

per second, eventually its performance will deteriorate because each

operation has to traverse the whole bucket chain to find the correct

slot. By reversing the chain we could solve that problem at the

cost of a more complex iterator and snapshot logic. This would

also introduce the possibility to optimize snapshot creation for the

common case where a user wants to incorporate the latest changes.

Another challenge is that the average length of the bucket chain and

thereby the memory consumption grows with the number of updates.

So a user may wish to compact the graph by removing older entries,

sacrificing the possibility to restore the graph to older snapshots.

Repeated insert and delete operations and property update operations

up to that time are thereby collapsed into one.

Once our system is mature enough, we want to compare it against

others in the Graphalytics Benchmark [4]. We claimed before, that

for most workloads a single shared memory machine is sufficient,

but there are graphs in the size of multiple terabytes for which we

need to develop a distributed version of ASGraph. We expect the

same challenges for this as there are for distributed CSR.

7. REFERENCES
[1] L. Backstrom, D. P. Huttenlocher, J. M. Kleinberg, and

X. Lan. Group formation in large social networks:

membership, growth, and evolution. In Proceedings of the

Twelfth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, Philadelphia, PA,

USA, August 20-23, 2006, pages 44–54, 2006.

[2] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered label

propagation: a multiresolution coordinate-free ordering for

compressing social networks. In Proceedings of the 20th

International Conference on World Wide Web, WWW 2011,

Hyderabad, India, March 28 - April 1, 2011, pages 587–596.

[3] P. Boldi and S. Vigna. The webgraph framework I:

compression techniques. In Proceedings of the 13th

international conference on World Wide Web, WWW 2004,

New York, NY, USA, May 17-20, 2004, pages 595–602, 2004.

[4] M. Capota, T. Hegeman, A. Iosup, A. Prat-Pérez, O. Erling,

and P. A. Boncz. Graphalytics: A big data benchmark for

graph-processing platforms. In Proceedings of the Third

International Workshop on Graph Data Management

Experiences and Systems, GRADES 2015, Melbourne, VIC,

Australia, May 31 - June 4, 2015, pages 7:1–7:6, 2015.

[5] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and

S. Muthukrishnan. One trillion edges: Graph processing at

facebook-scale. PVLDB, 8(12):1804–1815, 2015.

[6] D. Ediger, R. McColl, E. J. Riedy, and D. A. Bader.

STINGER: high performance data structure for streaming

graphs. In IEEE Conference on High Performance Extreme

Computing, HPEC 2012, Waltham, MA, USA, September

10-12, 2012, pages 1–5, 2012.

[7] O. Erling, A. Averbuch, J. Larriba-Pey, H. Chafi, A. Gubichev,

A. Prat-Pérez, M. Pham, and P. A. Boncz. The LDBC social

network benchmark: Interactive workload. In Proceedings of

the 2015 ACM SIGMOD International Conference on

Management of Data, Melbourne, Victoria, Australia, May 31

- June 4, 2015, pages 619–630, 2015.

[8] A. Kemper, T. Neumann, J. Finis, F. Funke, V. Leis, H. Mühe,

T. Mühlbauer, and W. Rödiger. Processing in the hybrid OLTP

& OLAP main-memory database system hyper. IEEE Data

Eng. Bull., 36(2):41–47, 2013.

[9] J. Leskovec, J. M. Kleinberg, and C. Faloutsos. Graphs over

time: densification laws, shrinking diameters and possible

explanations. In Proceedings of the Eleventh ACM SIGKDD

International Conference on Knowledge Discovery and Data

Mining, Chicago, Illinois, USA, August 21-24, 2005, pages

177–187, 2005.

[10] F. Li. www.cs.utah.edu/~lifeifei/SpatialDataset.htm, 2005.

[11] P. Macko, V. J. Marathe, D. W. Margo, and M. I. Seltzer.

LLAMA: efficient graph analytics using large multiversioned

arrays. In 31st IEEE International Conference on Data

Engineering, ICDE 2015, Seoul, South Korea, April 13-17,

2015, pages 363–374, 2015.

[12] M. Sevenich, S. Hong, A. Welc, and H. Chafi. Fast in-memory

triangle listing for large real-world graphs. In Proceedings of

the 8th Workshop on Social Network Mining and Analysis,

New York, NY, USA, August 24, 2014, pages 2:1–2:9, 2014.

[13] V. Sikka, F. Färber, W. Lehner, S. K. Cha, T. Peh, and

C. Bornhövd. Efficient transaction processing in SAP HANA

database: the end of a column store myth. In Proceedings of

the ACM SIGMOD International Conference on Management

of Data, SIGMOD 2012, Scottsdale, AZ, USA, May 20-24,

2012, pages 731–742, 2012.


