
PGQL: a Property Graph Query Language

Oskar van Rest
Oracle Labs

oskar.van.rest@oracle.com

Sungpack Hong
Oracle Labs

sungpack.hong@oracle.com

Jinha Kim
Oracle Labs

jinha.kim@oracle.com

Xuming Meng
Oracle Labs

xuming.meng@oracle.com

Hassan Chafi
Oracle Labs

hassan.chafi@oracle.com

ABSTRACT
Graph-based approaches to data analysis have become more
widespread, which has given need for a query language for
graphs. Such a graph query language needs not only SQL-like
functionality for querying structured data, but also intrinsic
support for typical graph-style applications: reachability anal-
ysis, path finding and graph construction.

We propose a new query language for the popular Property
Graph (PG) data model: the Property Graph Query Language
(PGQL). PGQL is based on the paradigm of graph pattern
matching, closely follows syntactic structures of SQL, and pro-
vides regular path queries with conditions on labels and prop-
erties to allow for reachability and path finding queries. Be-
sides intrinsic vertex, edge and path types, PGQL also has the
graph as intrinsic type and allows for graph construction and
query composition.

CCS Concepts
•Information systems → Query languages for non-relational
engines;

Keywords
Graph query languages, graph-structured data, property graphs

1. INTRODUCTION
In recent years, both the data management community and the

data mining community have been paying a lot of attention to the
graph-based approaches in which graphs are used as fundamental
representation for data analysis. The graph data model allows for
promising analyses over topology, in addition to analyses over data
stored in topology, which can be performed by standard relational
mechanisms.

Essential for typical data analyses is a query language to query
data in a high-level and productive manner. SQL, having been
widely adopted as the query language for relational databases, il-
lustrates very well the importance of query languages in data man-
agement. Now graph technology has become more widespread, the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior special
permission and/or a fee.
Proceedings of the Fourth International Workshop on Graph Data Manage-
ment Experience and Systems (GRADES 2016), June 24, 2016, Redwood
Shores, USA
Copyright 2016 ACM XXXXXXXXXXXX ...$15.00.

need has arisen for a well-designed query language for graphs that
supports not only typical SQL-like queries over structured data, but
also graph-style queries for reachability analysis, path finding, and
graph construction. It is important that such a query language is
general enough, but also has a right level between expressive power
and ability to process queries efficiently on large-scale data.

Various graph query languages have been proposed in the past.
Most notably, there is SPARQL, which is the standard query lan-
guage for the RDF (Resource Description Framework) graph data
model, and which has been adopted by several graph databases [1,
7, 12]. However, the RDF data model regularizes the graph repre-
sentation as set of triples (or edges), which means that even con-
stant literals are encoded as graph vertices. Such artificial vertices
make it hard to express graph queries in a natural way. A more nat-
ural data model is the Property Graph (PG) data model, in which
vertices and edges in a graph can be associated with arbitrary prop-
erties as key-value pairs. The PG data model has been adopted by
various graph databases [5, 8, 11, 4] and graph processing frame-
works [6, 2], and has formed the basis of recently proposed lan-
guages for graph algorithms [22, 10, 23] and graph queries [3, 21].

A notable query language for the PG data model is Cypher [3],
which is, just like SPARQL, based on graph pattern matching, an
elegant way of defining patterns in graphs. However, Cypher is
missing some fundamental graph querying functionalities, namely,
regular path queries and graph construction.

To overcome the limitations of existing graph query languages,
we designed a new query language for the PG data model: the
Property Graph Query Language (PGQL). PGQL combines graph
pattern matching with SQL-like syntax and functionality and has
full-blown support for regular path queries and graph construction.
Because its syntax is SQL-like, the language is intuitive to use for
existing SQL users. Furthermore, PGQL queries return a “result
set” with variables and bindings, just like in SQL. This means that
queries can be naturally nested inside SQL queries. In PGQL, a
graph pattern is not only composed of vertices and edges, but also
of paths, such that users can perform reachability analyses or find
paths in a graph. Supported is the well-studied class of regular path
queries, but not just with conditions on labels of edges, but with
conditions on labels as well as properties of vertices and edges
along paths. PGQL also has an intrinsic graph type to support
graph transformation applications, allowing one or more graphs to
be constructed and returned from a query.

Specifically, our contributions are as follows: (i) the design of
PGQL, an intuitive high-level pattern-matching query language for
the PG data model, which closely follows SQL’s syntactic struc-
tures and provides SQL-like functionality as part of the solution
(Section 3), (ii) the design of a syntax for regular path queries for
PG graphs with conditions on labels and properties of vertices and

edges along paths (Section 4), (iii) an elegant solution to graph
construction inside a query language, allowing for graphs to be re-
turned from a query and for graph queries to be composed (Sec-
tion 5).

2. RELATED WORK
There are two types of languages for graphs. First, there are the

graph pattern-matching query languages that are similar to PGQL.
Most notably, SPARQL [9] is the standard query language for the
RDF model. While SPARQL supports reachability by means of
regular path queries (RPQs), actual paths that satisfy an RPQ can-
not be returned from a query. Furthermore, conditions that compare
vertices and edges along paths cannot be specified. Earlier propos-
als [17, 16, 19, 27], which were also based on a labeled graph,
suffered from similar limitations. Cypher [3], the query language
of the graph database Neo4j, was the first pattern-matching query
language to target the PG model. While it has an intrinsic path type,
path query support is based on finding all simple trails (i.e. paths
with non-repeating edges). However, evaluation of such queries
often requires iteration over the entire set of trails, which is an op-
eration that is exponential in the size of the graph and therefore
unsuitable for large graphs. Furthermore, Cypher does not have
an intrinsic graph type to support graph construction applications.
GraphQL [21] is a pattern-matching query language based on a PG-
like model. It supports recursion in such a way that not only paths
but even entire graph patterns can be the unit of repetition. How-
ever, the output of a GraphQL query is a set of graphs rather than
a result set with variables and bindings. In practice we are often
interested in the data (i.e. properties) inside vertices and edges and
such a lanugage does not allow you to extract such information.
PQL [24] is a pattern-matching query language for biological net-
works with SQL-like syntax. Its WHERE clause supports reachability
patterns, while actual paths are constructed in the SELECT clause
using pairs of bound variables from the WHERE clause.

Second, there are the more general purpose imperative graph
languages. Green-Marl [22] is a language specifically designed to
express graph analysis algorithms for the PG data model. The lan-
guage has graph-specific data entities like graph, vertex and edge
as intrinsic types and furthermore provides constructs for differ-
ent graph traversals and iterations, such as Breadth-First Search
(BFS), Depth-First Search (DFS), incoming neighbor iteration, out-
going neighbor iteration, etc. GRAPHiQL [23] is a graph language
for relational databases, based on Pregel-style vertex-centric pro-
gramming. The language introduces the Graph Tables data model,
which is a representation of a graph that can be compiled easily
into a set of relational tables. Gremlin [10] is a graph traversal lan-
guage for the PG data model. It uses JVM-based languages such as
Java and Groovy as host language. While Green-Marl, Gremlin and
GRAPHiQL can be used to implement graph queries, their impera-
tive nature makes them more suitable for expressing graph analysis
algorithms such as PageRank, Betweenness Centrality, etc.

Apart from languages specifically designed for graph querying,
there are a number of existing query languages being considered for
reuse, possibly by means of language extension. These languages
include: SQL, the query language for relational databases, Datalog,
a declarative logic programming language that has natural support
for recursion, XPath, a query language for XML data, and, OCL,
a constraint and query languages for the UML model. However,
the problem with repurposing such languages for graph querying
is the mismatch between data models, which burdens the user by
requiring them to translate between models.

1 SELECT friend.name, friend.age
2 // 'Andy' 12 (query solutions in comment)
3 FROM snGraph
4 WHERE
5 (x WITH name = 'Paul') -[:likes]-> (friend),
6 (y WITH name = 'Amber') -/:likes*1..2/-> (friend),
7 x.age >= 2 * friend.age
8 ORDER BY friend.name

Figure 1: Example PGQL query, returning the friends of Paul that
are also friends, or friends of friends, of Amber. Only friends that
are at least twice as young are returned.

3. PATTERN MATCHING QUERIES
PGQL is based on the paradigm of graph pattern matching, which

is an elegant way of defining pattern in graphs (Section 3.1). It
combines this with SQL-like syntax and also provides SQL-like
functionality as part of the solution (Section 3.2).

3.1 Graph Pattern Matching
A PGQL query is composed of the three clauses SELECT, FROM

and WHERE, which are followed by optional solution modifier clauses
such as ORDER BY, GROUP BY, and LIMIT. The FROM clause can also
be omitted when there is only one graph instance. Additionally,
PGQL includes special operators for graph pattern matching: ver-
tex matching, edge matching and path matching. These matching
operators are placed in the WHERE clause along with predicates over
vertices and edges.

Figure 1 shows an example PGQL query which finds patterns
from a data graph named snGraph (line 3). In the WHERE clause,
the query matches a vertex x that has a property name with value
’Paul’. The vertex x has an edge with the label ’likes’. The
destination vertex of this edge is referred to as vertex friend (line
5). Similarly, the query matches another vertex y with its name be-
ing ’Amber’. The vertex y is also connected to the vertex friend

but through a path; the path is composed only of edges with label
’likes’ and the (hop-)length of the path is between 1 and 2 in-
clusively (line 6). Line 7 dictates that the value of property age in
vertex x is at least twice as large to that of vertex friend. All the
instances that match with this pattern are first sorted by name val-
ues of friend vertices (line 7), before the name and age property
values of the friend vertex are returned (line 1).

Just like in SQL, the result of a PGQL query forms a tabular
“result set” with variables and their bindings. This allows PGQL
queries to be naturally nested inside SQL queries. PGQL also has
intrinsic data types for graph-specific entities: vertex, edge, path
and graph – the result set bindings can be any of these graph-
specific types. Graph-specific entities can be returned or operated
on, for example, using built-in functions such as id() for access-
ing the identifier of a vertex or edges, label() for accessing the
label of an edge, labels() for accessing the labels of a vertex, and
length() and weight() for accessing length and weights of paths.

In the PG data model, a graph has vertices and directed edges
that have unique identifiers and properties, which are arbitrary key-
value pairs. Properties may also be sets, but this is not further dis-
cussed in the paper. Edges have a single label, while vertices have
a set of labels that are typically used to encode types when there
are multiple classes of vertices. Figure 2 shows an example PG
graph named snGraph. This graph will function as the input graph
to most of the example queries in this paper. In the graph, the ver-
tex with identifier 100 has the label Person, a property name with
the value ’Amber’, a property age with the value 29, and a property
eyeColor with the value ’Brown’ The edge with identifier 0 going
from vertex 100 to vertex 400 has the label likes and a property
since with the value ’2016-04-03’. If we evaluate the example

query from Figure 1 on top of the graph, we obtain a single result
that has friend.name bound to ’Andy’ and friend.age bound
to value 12. Note that for example queries in the paper, we place
query solutions inside code comments (see line 2 in Figure 1).

PGQL supports two different pattern matching semantics: iso-
morphism and homomorphism. Under isomorphic semantic, two
different query vertices or edges are not allowed to map to the same
data vertex or edge. There is no such a restriction under homomor-
phic semantic. In PGQL, the default semantic is isomorphism, but
homomorphism can be used by specifying WHERE ALL instead of
WHERE. For example, in Figure 3, we query a graph that represents
a code base with functions and function calls. The query finds all
functions that are called by the function ’init_pci’. Since we
use homomorphic semantic (i.e. WHERE ALL), the recursive func-
tion call for which both the vertices f1 and f2 bind to the same
data vertex 10, also matches the pattern and thus becomes an out-
put solution. However, the recursive function call does not match,
had we chosen for isomorphism, since vertices f1 and f2 would not
be allowed to bind to the same data vertex. With WHERE ALL, it is
also possible to specify more finegrained mappings between query
pattern and data graph, by specifying nonequality constraints such
as f1 != f2.

Finally, it is possible to specify two or more disconnected graph
patterns inside the WHERE clause. This results in a cartesian product
of the matches for the different patterns.

:Person
name = 'Amber'
age = 29
eyeColor ='Brown'

:Person
name = 'Retta'
age = 43
eyeColor = 'Blue'

:Person
name = 'Paul'
age = 64
eyeColor = 'Brown'

:Person
name = 'Andy'
age = 12
eyeColor = 'Brown'

:Person
name = 'Dwight'
age = 15
eyeColor = 'Green'

100

400

500

300

:has_father

3

200

:has_mother :has_mother

4

5

6

:likes
since = '2013-02-14'

:likes
since = '2016-04-04'

:likes
since = '2016-04-03'

0 1

snGraph

2

7

:likes
since = '2015-11-08'

:has_father

Figure 2: Example Property Graph. Here, 100-500 are vertex
identifiers, Person is a vertex label, name, age, and eyeColor are
vertex properties, 0-7 are edge identifiers, likes, has_father and
has_mother are edge labels, and since is an edge property.

1 SELECT f2.name
2 // 'init_pci'
3 // 'dep_pgb'
4 FROM CodeBaseGraph
5 WHERE ALL
6 f1 -[e:calls]-> f2,
7 f1.name = 'init_pci'

:Function
name = 'init_pci'

:Function
name = 'dep_pgb'

2010
:calls

:calls
1

0

CodeBaseGraph

Figure 3: A query that uses subgraph homomorphic semantic
rather than PGQL’s default subgraph isomorphic semantic. In the
query, we find all functions that are called by function ’init_pci’.
Because we use homomorphic semantic (WHERE ALL instead of
WHERE), the recursive functional call is also a solution, even though
it binds both f1 and f2 bind to the same vertex (i.e. vertex 10).

1 SELECT person.eyeColor, COUNT(*), MAX(person.age)
2 // 'Brown' 1 29
3 // 'Blue' 1 43
4 FROM snGraph
5 WHERE
6 (person:Person),
7 NOT EXISTS {
8 person -[:has_father|:has_mother]-> parent,
9 parent.eyeColor = 'Blue'

10 }
11 GROUP BY person.eyeColor
12 HAVING COUNT(*) < 4
13 ORDER BY COUNT(*) DESC

Figure 4: Overview of SQL-like constructs in PGQL: COUNT, MAX,
and AVG are aggregates, NOT EXISTS tests for nonexistence of a
graph pattern (i.e. person does not have a child with green eyes);
GROUP BY groups pattern matches based on outcome values for one
or more expressions (i.e. make groups such that persons in a group
have the same eyeColor); HAVING filters whole groups from the
result (i.e. only keep groups with a size smaller than 4); ORDER BY

orders solutions (i.e. order by group size in descending manner).

3.2 SQL-Like Functionality
On top of graph pattern matching, PGQL provides SQL-like

querying functionality. It also closely follows SQL’s syntactic struc-
tures.

3.2.1 Grouping and Aggregation
Pattern matches can be grouped using GROUP BY, which is typi-

cally used in combination with aggregates like MIN, MAX, AVG, SUM
to aggregate over the solutions in a group. The HAVING construct
can be used in addition to GROUP BY, to filter out whole groups from
the solution. For example, in Figure 4, the pattern matches are
grouped by a vertex property person.eyeColor (line 11). Then,
groups are filtered out that have more than three elements (line 12).

3.2.2 Order By, Offset, Limit
Solutions can be sorted using ORDER BY (see Figure 4, line 13).

Like in SQL, the construct takes one or more order expressions
that each can have an optional order modifier (ASC or DESC). Fur-
thermore, OFFSET and LIMIT can be used to select different sub-
sets from the query solutions, for example, only results 5 to 10.
Note that normally, this is only meaningful if the order is made
predictable by means of ORDER BY.

3.2.3 Union
Using the UNION construct, one can match alternative patterns

and combine their solutions. Although we do not provide an exam-
ple here, the functionality is similar to the UNION in SQL. UNION re-
moves duplicate rows, while UNION ALL maintains duplicate rows.
Besides the UNION for alternative matching, PGQL also introduces
a UNION aggregate (Section 5), which is used inside the SELECT to
take the union of a set of graphs in order to construct a larger graph.

3.2.4 Negation
The NOT EXISTS construct tests for the nonexistence of a graph

pattern, given a set of bound variables from the outer scope. This
is similar to the NOT EXISTS in SPARQL. For example, in Fig-
ure 4, we filter out pattern matches that have a binding for the
vertex person that has an incoming has_father or has_mother
edge from a vertex child that has a property eyeColor with value
Green. The NOT EXISTS, as well as the non-negating form EXISTS,
are part of the expression system and can be used anywhere where
expressions are allowed, for example in the SELECT, ORDER BY and
GROUP BY clauses.

3.2.5 Subqueries
Subqueries provide a means to compose queries and allow users

to specify more complex search patterns. Subqueries in PGQL
can be specified in the FROM and WHERE clauses and they are pro-
cessed in a bottom-up fashion. Examples of subqueries are pro-
vided in Section 5.3. PGQL does not have a concept of correlated
subqueries like in SQL, but EXISTS and NOT EXISTS (see above)
provide similar but more limited functionality. In a future version
of PGQL, we may support correlated subqueries to overcome this
limitation. This has also been suggested [14] for SPARQL.

4. PATH QUERIES
Path queries, a fundamental graph query paradigm, allow for

testing of the existance of a path between pairs of vertices and also
for obtaining such paths to return them from queries. This inher-
ently recursive functionality reveals the power of graph technology:
the traditional relational database has only weak support for recur-
sion. The applications are too numerous to describe here, but ex-
amples include static code analysis [20], fraud detection, network
routing and road navigation.

A well-studied class of path query is the so-called Regular Path
Query (RPQ) [27, 15, 26, 25], which finds vertices connected by
a path such that the labels of the edges along the path satisfy a
certain regular expression. RPQs form an integral part of many
graph query languages [17, 16, 19, 27], including SPARQL [9],
the standard RDF graph query language. However, while such reg-
ular expressions over edge labels make sense for labelled graphs,
the functionality is too limited for PG graphs that store informa-
tion needed for certain analysis inside vertex and edge properties
rather than labels. Therefore, PGQL extends the class of RPQs
with general expressions over vertices and edges along paths. Fur-
thermore, PGQL allows for comparing vertices and edges along
paths while still maintaining the same query evaluation complexity
as usual RPQs. Reachability queries are discussed in Section 4.1,
while path finding queries are discussed in Section 4.2.

4.1 Reachability Queries
Reachability queries test for the existence of paths between pairs

of vertices. In PGQL, such queries take the form of a graph pattern
that not only consists of vertices and edge, but is also composed of
one or more regular paths. Such a regular path is a pattern that is
declared at the beginning of the query by means of the PATH con-
struct. Once it is declared, a path pattern is embedded in the graph
pattern by referring the path pattern from the WHERE clause. Not
only graph patterns are composed by path patterns in this way, but
path patterns themselves can also be composed of other path pat-
tern. This allows for expressing more complex regular path queries.

Figure 5 is an example reachability query. It describes a path
pattern has_new_friend that has a source vertex s and an outgo-
ing edge to a destination vertex t with the label Person. The edge
has the label likes and also a property since with a value greater
than or equal to 2016-01-01 (lines 1-2). In the WHERE clause, the
path query connectors -/ and /-> describe that vertices x and y

are connected via a regular path pattern, rather than an edge. Here,
they are connected by 1 to 2 applications of the has_new_friend

pattern (line 7). In the first application, vertex s will bind to the
data vertex that vertex x is bound to, but in a follow-up application,
s will bind to the data vertex that t was bound to in the previ-
ous application. Figure 6 shows another reachability query with a
path pattern has_parent that has a WHERE clause with additional
predicates (lines 3-7). The first predicate (line 3) dictates that at
least one of the vertices c or p has a property eyeColor with the
value ’Brown’, while the second predicate (line 4-7) dictates that

the vertex p does not have an incoming has_father or has_mother
edge from a vertex c2 that has a property eyeColor with the value
’Brown’. A second path pattern is composed of the has_parent

pattern by unbounded repetition, such that a has_ancestor rela-
tion is described (line 8). Then, in the WHERE clause (line 14), the
graph pattern is composed of the has_ancestor path pattern. Fig-
ure 7 presents an overview of the various path pattern constructs.

1 PATH has_new_friend :=
2 (s) -[:likes WITH since >= '2016-01-01']-> (t:Person)
3 SELECT y.name
4 // 'Dwight'
5 FROM snGraph
6 WHERE
7 (x:Person) -/has_new_friend*1..2/-> (y),
8 x.name = 'Amber'

Figure 5: An example reachability query that find friends, or
friends of friends, of Amber, by only following likes edges cre-
ated on or after 2016-01-01.

1 PATH has_parent :=
2 (c:Person) -[:has_father|:has_mother]-> (p:Person)
3 WHERE c.eyeColor = 'Brown' OR p.eyeColor = 'Brown',
4 NOT EXISTS {
5 (c2:Person) -[:has_father|:has_mother]-> p,
6 c2.eyeColor = 'Brown'
7 }
8 PATH has_ancestor := () -/has_parent*/-> ()
9 SELECT y.name, ancestor.name

10 // 'Dwight' 'Paul'
11 FROM snGraph
12 WHERE
13 (x:Person) -[:likes]-> (y:Person), x.name = 'Amber',
14 x -/has_ancestor/-> ancestor <-/has_ancestor/- y

Figure 6: Find the persons that Amber likes and who have a com-
mon ancestor. For each child and their parent on a path to an ances-
tor, it holds that either the child or the parent has brown eyes (line
3), and, that the parent does not have another child with brown eyes
(lines 4-7).

1 PATH forwardEdge := () -[e]-> ()
2 PATH reverseEdge := () <-[e]- ()
3 PATH sequencePath := () -[e1]-> () -[e2]-> ()
4 PATH compositePath := () -/sequencePath/-> ()
5 PATH labelRepetition := () -/:lbl*1..4/-> ()
6 PATH alternativeLabel := () -/:lbl1|:lbl2/-> ()
7 PATH pathRepetition := () -/path*1..4/-> ()
8 PATH alternativePath := () -/path1|path2/-> ()
9 SELECT x, y, p1, p2, $kShortest(myGraph, x, y, 20) AS p3

10 FROM myGraph
11 WHERE
12 x -/sequencePath*/-> y, // reachability
13 x -/p1:lbl*/-> y, // min-hop shortest
14 x -/p2^'weight_prop':lbl*/-> y // weighted shortest

Figure 7: An overview of path query syntax in PGQL. Note: this
query does not implement a meaningful analysis.

4.2 Path Finding Queries
Path finding queries are queries that find paths between pairs of

vertices such that they can be returned, compared, or operated on.
Different use cases demand for different kinds of paths to be found.
Sometimes, we only want to find a single shortest path (per source-
destination pair) with a minimal hop distance or a minimal weight.
For other use cases it migh be required to obtain multiple paths, for
example, k shortest paths [18] or k dissimilar paths [13]. Although
these different path finding semantics are all very useful, a query
language can’t have all of them “built-in” without significantly in-
creasing the complexity of the language. Therefore, because sin-
gle shortest path finding is the most common case, it is choses as

the built-in path finding semantic for PGQL. However, path find-
ing algorithms with different semantics can be used with PGQL by
means of user-defined functions that implement such algorithms.
Such functions take a graph, a source vertex, a destination vertex
and other parameters as input and return a path or a set of paths as
output. These functions could be provided by the graph database
or framework, or they may be implemented by users that need very
specific path finding semantics.

The overview in Figure 7 includes the path finding functionality
(lines 9, 13-14). Path p1 binds to a single minimal hop shortest path
(per source-destination pair). Path p2 binds to a single minimal
weight shortest path. The weight is computed by summing over
the nonnegative values for property ’weight_prop’ of the edges
along the path. In the less common case that a specialized weight
function is required — for example one that includes two edges
properties rather than one — it is possible to construct a graph (see
Section 5) with a new edge property that holds the result of the
weight function. Finally, path p3 binds to the 20 shortest paths,
provided that kShortest is a user-defined function that implements
k shortest path finding.

5. GRAPH CONSTRUCTION
Graph construction queries extract entities from an input graph

and possibly enhance them with additional vertices, edges, or prop-
erties, in order to produce one or more output graphs. Such func-
tionality is essential for query compositionality, such that complex
queries can be decomposed into simpler ones, queries can be ex-
ecuted in sequence, and, user-specific views — which is a typical
database functionality — can be implemented.

In SPARQL, graph construction is supported by means of the
CONSTRUCT query form. This form has not only a graph pattern
for matching a subgraph, but also a pattern for producing a new
graph. While the SELECT query returns a tabular “result set”, the
CONSTRUCT query returns the output graph as a special kind of re-
sult. However, the limitation of the CONSTRUCT query is that it
only allows for returning a single graph that is the union of all the
subgraphs obtained by the query. SPARQL does not allow for re-
turning individual subgraphs or for using GROUP BY in combination
with CONSTRUCT to allow subgraphs to be grouped such that a graph
can be returned for each of the groups. To overcome these limiti-
ations, PGQL allows graph construction patterns to be specified in
the SELECT clause such that multiple graphs can be constructed and
returned as part of the result set, unifying the way in which data is
returned from queries: as a result set (Section 5.1). Using a new ag-
gregate UNION, PGQL allows groups of solutions to be aggregated
into one or more larger graphs (Section 5.2). Furthermore, queries
can be composed by allowing a query to extract a graph from a
result set that is returned by another query (Section 5.3).

5.1 Graph Construction in SELECT
New graphs can be constructed by specifying one or more graph

construction patterns inside the SELECT clause. These patterns con-
sist of entities from the WHERE clause, but may also introduce new
vertices, edges and properties. The graphs patterns are optionally
assigned a variable name and are returned as part of the result set.

Figure 8 shows an example in which we first match all the child-
father relations in the snGraph (line 7) and then construct a graph
(lines 1-5) that consists of the original child vertex, has_father
edge and father vertex (line 2), a new has_child edge from father
to child (line 3), and a new property gender for the vertex father

with the value set to ’MALE’ (line 4). The graph is assigned a vari-
able name childFatherGraph. Since the pattern is matched twice,
the result set contains two rows, each holding one graph.

1 SELECT GRAPH{
2 child -[e1]-> father,
3 father -[:has_child]-> child,
4 father.gender := 'MALE'
5 } AS childFatherGraph
6 FROM snGraph
7 WHERE (child) -[e1:has_father]-> (father)

childFatherGraph

:Person
name = 'Amber'
age = 29
eyeColor = 'Brown'

:Person
name = 'Paul'
age = 64
eyeColor = 'Brown'
gender = 'MALE'

100 200

2

:has_child

:has_father

8

:Person
name = 'Retta'
age = 43
eyeColor = 'Blue'

:Person
name = 'Paul'
age = 64
eyeColor = 'Brown'
gender = 'MALE'

300 200

3
:has_father

:has_child

9

Figure 8: Query (top) and result set (bottom) demonstrating how
graphs are constructed by specifying a graph construction pattern
in the SELECT and how graphs are returned as part of the result set.

1 SELECT UNION(GRAPH{x -[e]-> y}) AS parentChildrenGraph
2 FROM snGraph
3 WHERE
4 x -[e:has_father|:has_mother]-> y
5 GROUP BY e.label()

parentChildrenGraph

:Person
name := 'Amber'
age := 29
eyeColor := 'Brown'

:Person
name := 'Retta'
age := 43
eyeColor := 'Blue'

:Person
name := 'Paul'
age := 64
eyeColor := 'Brown'

100
300

200

2 3

:has_father

:has_father

:Person
name = 'Retta'
age = 43
eyeColor = 'Blue'

:Person
name = 'Andy'
age = 12
eyeColor = 'Green'

:Person
name = 'Dwight'
age = 15
eyeColor = 'Brown'

400 500

300

:has_mother
:has_mother

4

5

Figure 9: Query (top) and result set (bottom) demonstrating the
UNION aggregate, which takes a set of graphs as input and returns
a single graph as output.

5.2 Union of Graphs
We introduce a new UNION aggregate that takes a set of graphs as

input and produces a single output graph. Vertices and edges that
occur repeatedly in different input graphs are mapped into the same
vertex or edge in the output graph. Just like other aggregates such
as MIN, MAX and AVG, UNION aggregates over a group of solutions,
such that when a grouping is specified using GROUP BY, multiple
graphs may be returned. For example, in Figure 9, we first find all
has_father and has_mother relations (line 4) and then group the
relations by their type (line 5) and construct a graph for each group
using the UNION aggregate (line 1).

1 SELECT p.name, p.age
2 // 'Amber' 29
3 FROM likesGraph IN {
4 SELECT UNION(GRAPH{x -[e]-> y}) AS likesGraph
5 FROM snGraph
6 WHERE (x) -[e:likes]-> (y),
7 e.since > '2016-01-01'
8 }
9 WHERE

10 (p:Person), p.age = maxAge,
11 { SELECT MAX(v.age) AS maxAge WHERE (v) }

Figure 10: Query composition is supported by means of sub-
queries in the FROM and WHERE clauses.

5.3 Query Composition
Query composition in PGQL is just like in SQL based on sub-

queries. Subqueries in PGQL can be specified in the WHERE and
FROM clauses and they are processed in a bottom-up fashion: in-
nermost subqueries provide bindings to outer queries. Figure 10
shows an example query with a subquery in the WHERE clause. The
subquery matches all vertices and returns the maximal value for
the property age of the vertices in the graph (line 11). In the outer
query, we match all the persons in the graph that have the maxi-
mum age (line 10). Subqueries may also return vertices and edges
that can become part of the outer query’s graph pattern.

A subquery in the FROM clause, however, has to return at least one
graph that can be used as input to the outer query. For example, in
Figure 10, we first match all the likes edges that were created after
’20016-01-01’ (lines 6-7) and combine them into a graph named
likesGraph (line 4). Then, we extract the likesGraph from the
result set to make it the input graph of the outer query (line 3).
With the graph snGraph as input to the subquery, the outer query
returns a single result in which p.name is bound to ’Amber’ and
p.age is bound to 29.

6. CONCLUSION
We introduced PGQL, an intuitive SQL-like pattern-matching

query language for the Property Graph (PG) data model. We be-
lieve that PGQL has the essential graph query language ingredi-
ents, namely, SQL-like functionality, graph entities (i.e. vertex,
edge, path, graph) as intrinsic types, and support for regular path
queries, path finding and graph construction. PGQL’s SQL-like
syntax provides familiarity for existing SQL users and its tabular
“result set” provide a uniform interface for accessing returned en-
tities, including vertices, edges, paths and graphs. The tabular out-
put also allows PGQL queries to be naturally nested inside SQL
queries such that the language can be easily integrated into existing
database technology.

7. ACKNOWLEDGMENTS
We thank our team members from Oracle Labs Parallel Graph

Analytics (PGX) as well as the teams behind Oracle Big Data Spa-
tial and Graph, Oracle Labs Frappé, Sparsity Technologies and
LDBC’s Graph Query Language Task Work Force, for their valu-
able ideas, insights and contributions.

8. REFERENCES
[1] AllegroGraph. http://franz.com/agraph/allegrograph/.
[2] Apache TinkerPop. http://tinkerpop.incubator.apache.org.
[3] Cypher - the Neo4j query Language.

http://www.neo4j.org/learn/cypher.
[4] InfiniteGraph. http://www.objectivity.com/infinitegraph.
[5] Neo4j graph database. http://www.neo4j.org/.

[6] Oracle Parallel Graph Analytics (PGX).
http://www.oracle.com/technetwork/oracle-labs/parallel-
graph-analytics.

[7] Oracle Spatial and Graph, RDF Semantic Graph,.
http://www.oracle.com/technetwork/database/
options/spatialandgraph/overview/rdfsemantic-graph-
1902016.html.

[8] Sparksee by Sparsity Technologies.
http://sparsity-technologies.com/.

[9] SPARQL Query Language for RDF.
http://www.w3.org/TR/rdf-sparql-query/.

[10] Tinkerpop, Gremlin.
https://github.com/tinkerpop/gremlin/wiki.

[11] Titan Distributed Graph Database.
http://thinkaurelius.github.io/titan/.

[12] Virtuoso Universal Server. http://virtuoso.openlinksw.com/.
[13] V. Akgün, E. Erkut, and R. Batta. On finding dissimilar

paths. European Journal of Operational Research,
121(2):232–246, 2000.

[14] R. Angles and C. Gutierrez. Subqueries in sparql. In AMW.
Citeseer, 2011.

[15] P. Barceló, L. Libkin, A. W. Lin, and P. T. Wood. Expressive
languages for path queries over graph-structured data. ACM
Transactions on Database Systems (TODS), 37(4):31, 2012.

[16] M. P. Consens and A. O. Mendelzon. Expressing structural
hypertext queries in graphlog. In Proceedings of the second
annual ACM conference on Hypertext, pages 269–292.
ACM, 1989.

[17] I. F. Cruz, A. O. Mendelzon, and P. T. Wood. A graphical
query language supporting recursion. In ACM SIGMOD
Record, volume 16, pages 323–330. ACM, 1987.

[18] D. Eppstein. Finding the k shortest paths. SIAM Journal on
computing, 28(2):652–673, 1998.

[19] R. H. Güting. Graphdb: Modeling and querying graphs in
databases. In VLDB, volume 94, pages 12–15. Citeseer, 1994.

[20] N. Hawes, B. Barham, and C. Cifuentes. Frappé: Querying
the linux kernel dependency graph. In Proceedings of the
GRADES’15, page 4. ACM, 2015.

[21] H. He and A. K. Singh. Graphs-at-a-time: query language
and access methods for graph databases. In Proceedings of
the 2008 ACM SIGMOD international conference on
Management of data, pages 405–418. ACM, 2008.

[22] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun. Green-Marl:
A DSL for Easy and Efficient Graph Analysis. In ASPLOS,
pages 349–362. ACM, 2012.

[23] A. Jindal and S. Madden. Graphiql: A graph intuitive query
language for relational databases. In Big Data (Big Data),
2014 IEEE International Conference on, pages 441–450.
IEEE, 2014.

[24] U. Leser. A query language for biological networks.
Bioinformatics, 21(suppl 2):ii33–ii39, 2005.

[25] L. Libkin, T. Tan, and D. Vrgoč. Regular expressions for data
words. Journal of Computer and System Sciences,
81(7):1278–1297, 2015.

[26] L. Libkin and D. Vrgoč. Regular path queries on graphs with
data. In Proceedings of the 15th International Conference on
Database Theory, pages 74–85. ACM, 2012.

[27] A. O. Mendelzon and P. T. Wood. Finding regular simple
paths in graph databases. SIAM Journal on Computing,
24(6):1235–1258, 1995.

