

Spyros Voulgaris GRADES 2016 1 /32

Powerful and Efficient Bulk Shortest-Path Queries:

Cypher language extension & Giraph implementation

Peter Rutgers, Claudio Martella, Spyros Voulgaris, Peter Boncz

VU University Amsterdam

Spyros Voulgaris GRADES 2016 2 /32

Goal and Contributions

 Context: Shortest-path queries in Giraph

 Desired functionality
 Edge weights (monotonic cost function!)

 Multiple sources and destinations (“bulk” queries)

 Top-N shortest paths for each pair

 Filters on path edges and vertices

 Provide both paths and their costs

 Our contributions are twofold:
 Cypher language extension

 Efficient top-N shortest path algorithm design &
implementation on Giraph

Outline

Cypher Extension

Algorithms and Implementation

Evaluation

Conclusions

Spyros Voulgaris GRADES 2016 4 /32

Shortest Paths in Cypher [1/2]

 No weighted paths!

 No top-N shortest paths!

 Conditions in WHERE applied after finding path

 Could result in empty answer!

MATCH path=shortestPath((a) - [*] - >(b))

WHERE <condition>

RETURN path, length(path);

Spyros Voulgaris GRADES 2016 5 /32

Shortest Paths in Cypher [1/2]

 No weighted paths!

 No top-N shortest paths!

 Conditions in WHERE applied after finding path

 Could result in empty answer!

MATCH path=shortestPath((a) - [*] - >(b))

WHERE none(x in nodes(path) WHERE x.danger)

RETURN path, length(path);

Spyros Voulgaris GRADES 2016 6 /32

Shortest Paths in Cypher [2/2]

 Matches all paths! Expensive!

 Orders all paths that remain after the WHERE condition

 Complex query for humans

 Complex query for the query planner
 Hard to detect and optimize

MATCH path=(a) - [r*] - >(b)

WHERE none(x in nodes(path) WHERE x.danger)

RETURN path,

 reduce(sum=0, x IN r | sum=sum+x.dist* x.speed)

 AS len

ORDER BY len DESC

LIMIT 5

Spyros Voulgaris GRADES 2016 7 /32

Proposed language extension

 Selector applied before WHERE condition (optional)

 Multiple paths (top-N) for each pair

 Custom cost function

 AS keyword to bind cost to variable

 Supports bulk queries (multiple sources / multiple destinations)

MATCH path=(src) - [e* | sel (e)] - >(dst)

CHEAPEST n SUM cost(e) AS d

Spyros Voulgaris GRADES 2016 8 /32

Example

MATCH path=(a:Src) - [e* | not(endNode(e).danger)] - >(b.Dst)

CHEAPEST 3 SUM e.dist * e.speed AS len

RETURN a, b, path, len

 Suppose you are building a navigation system

 Some nodes are of type Src, some of type Dst

 Some nodes have the property danger

 The cost of each segment is the distance times the speed limit

 You can get the top-3 cheapest routes by the following simple
query:

Outline

Cypher Extension

Algorithms and Implementation

Evaluation

Conclusions

Spyros Voulgaris GRADES 2016 11 /32

The Lighthouse Project

 Cypher-based declarative language, query planning and
execution, for Apache Giraph.

 Parser

 Turns Cypher query into query graph

 Planner

 Builds query plan (tree of operators)

 Execution engine

 Runs query plan on Giraph`

Spyros Voulgaris GRADES 2016 12 /32

Top-N Shortest Path

 We need to compute both the cost and the path itself

 Basic algorithm

 Each node maintains the top-N paths (and costs) found so far

 In each step, each node propagates all its updates along all its
outgoing edges

 When a node has received no updates in a step, it votes to halt

 The algorithm terminates when they all vote to halt

Spyros Voulgaris GRADES 2016 13 /32

Top-N Shortest Path

B

G E

F C

D
A

0: A
1

1

1

1

2

2

1

3

3

3

7

1: AB

1: AC

7: AF

3: AD

N=5

Spyros Voulgaris GRADES 2016 14 /32

Top-N Shortest Path

B

1: AB

G E

F

7: AF

C

1: AC

D

3: AD

A

0: A
1

1

1

1

2

2

1

3

3

3

7

2: ABE

3: ACE

4: ACF

6: ADF

2: ABC

N=5

9: AFG

Spyros Voulgaris GRADES 2016 15 /32

Top-N Shortest Path

B

1: AB

G

9: AFG

E

2: ABE

F

4: ACF

6: ADF

7: AF

C

1: AC

2: ABC

D

3: AD

A

0: A
1

1

1

1

2

2

1

3

3

3

7

N=5

Spyros Voulgaris GRADES 2016 16 /32

Top-N Shortest Path

B

1: AB

G
3: AB EG

4: ACEG

5: ABCEG

6: ACFG

7:ABCFG

E

2: ABE

3: ACE

4: ABCE

F
4: ACF

5: ABCF

6: ADF

7: AF

C

1: AC

2: ABC

D

3: AD

A

0: A
1

1

1

1

2

2

1

3

3

3

7

N=5

Spyros Voulgaris GRADES 2016 17 /32

Can we do better?!

 One problem:

 Memory footprint is too high

 Paths passed around are too long

 The solution:

 No need to pass and store the entire path

 Store only predecessor node ID and cost to date per path

 Less communication, lower runtime!

 The price to pay?

 An extra phase for path reconstruction

Spyros Voulgaris GRADES 2016 18 /32

Top-N Shortest Path

B

1: AB

G
3: AB EG

4: ACEG

5: ABCEG

6: ACFG

7:ABCFG

E

2: ABE

3: ACE

4: ABCE

F
4: ACF

5: ABCF

6: ADF

7: AF

C

1: AC

2: ABC

D

3: AD

A

0: A
1

1

1

1

2

2

1

3

3

3

7

N=5

Spyros Voulgaris GRADES 2016 19 /32

Top-N Shortest Path

B

1: AB

G
3: AB EG

4: AC EG

5: ABC EG

6: AC FG

7:ABCFG

E

2: ABE

3: ACE

4: ABCE

F
4: ACF

5: ABCF

6: ADF

7: AF

C

1: AC

2: ABC

D

3: AD

A

0: A
1

1

1

1

2

2

1

3

3

3

7

N=5

Spyros Voulgaris GRADES 2016 20 /32

Top-N Shortest Path Reconstruction

B

1: A

G
3: E

4: E

5: E

6: F

7: F

E

2: B

3: C

4: C

F
4: C

5: C

6: D

7: A

C

1: A

2: B

D

3: A

A

0: A
1

1

1

1

2

2

1

3

3

3

7

G: 3,4,5 G: 6,7

Spyros Voulgaris GRADES 2016 21 /32

Top-N Shortest Path Reconstruction

B

1: A

G
3: E

4: E

5: E

6: F

7: F

E

2: B

3: C

4: C

F
4: C

5: C

6: D

7: A

C

1: A

2: B

D

3: A

A

0: A
1

1

1

1

2

2

1

3

3

3

7

EG: 4,5

EG: 3

FG: 6,7

Spyros Voulgaris GRADES 2016 22 /32

Top-N Shortest Path Reconstruction

B

1: A

G
3: E

4: E

5: E

6: F

7: F

E

2: B

3: C

4: C

F
4: C

5: C

6: D

7: A

C

1: A

2: B

D

3: A

A

0: A
1

1

1

1

2

2

1

3

3

3

7

CEG: 4
CFG: 6

CEG: 5
CFG: 7

BEG: 3

ABEG: 3
ACEG: 4
ACFG: 6

Spyros Voulgaris GRADES 2016 23 /32

Top-N Shortest Path Reconstruction

B

1: A

G
3: E

4: E

5: E

6: F

7: F

E

2: B

3: C

4: C

F
4: C

5: C

6: D

7: A

C

1: A

2: B

D

3: A

A

0: A
1

1

1

1

2

2

1

3

3

3

7

CEG: 5
CFG: 7

ABEG: 3
ACEG: 4
ACFG: 6

ABCEG: 5
ABCFG: 7

Spyros Voulgaris GRADES 2016 24 /32

Can we do even better???

 The problem:

 In the first few supersteps, some expensive, yet short, paths are
propagated aggressively.

 Unnecessary resource consumption

 Solution:

 Postpone exploration!

 Reduce the exponential growth of exploration in the first supersteps.

 Delay propagating paths that “appear” to be not-too-cheap.

 How?

 Place paths in buckets [0,Δ], [Δ,2Δ], … and suppress the propagation
of paths of bucket i until superstep i.

Spyros Voulgaris GRADES 2016 25 /32

Pruning via Landmarks

 To further confine unnecessary exploration, we prune based
on upper cost bounds.

 We use landmarks:

 Selected nodes Xi ,

 For each src/dst pair AB, we compute |AXi| and |XiB|.

 |AXi| + |XiB| forms an upper bound for |AB|.

Outline

Cypher Extension

Algorithms and Implementation

Evaluation

Conclusions

Spyros Voulgaris GRADES 2016 27 /32

Overall scalability

 LDBC - SF10 trace

 Scale factor 10, with 72,949 vertices and 4,641,430 edges

#workers 1 2 4 8 16 32

Runtime
(sec)

>1000 492 222 126 89 72

Spyros Voulgaris GRADES 2016 28 /32

 Rnd1K trace: Erdos-Renyi, 1000 vertices, 50K edges

 One-to-all, top-5 shortest paths

 Total runtime drops from 35sec to 25sec

 Total #bytes sent drops by 49%

Postponing Path Exploration
(Delta stepping)

Spyros Voulgaris GRADES 2016 29 /32

Effect of Multiphase Approach

 Rnd1K trace: 1K nodes, 50K edges

bytes messages supersteps time

Basic 182,204,626 402628 18 35.92 sec

Multiphase 83,926,097 402749 28 (18+10) 27.132 sec

Spyros Voulgaris GRADES 2016 30 /32

 LDBC - SF1 trace: 10,993 vertices, 451K edges
 25 random sources, all nodes as destinations
 Top-5 shortest paths
 2 landmarks (the highest degree nodes)

 Actual computation drops by ~40%
 Landmark estimation takes too long

Effect of Landmark Pruning

Outline

Cypher Extension

Algorithms and Implementation

Evaluation

Conclusions

Spyros Voulgaris GRADES 2016 32 /32

Conclusions

 We proposed new Cypher syntax that allows

 Flexible edge weights

 Flexible filter conditions over these

 Top-N queries

 This syntax is concise, and guarantees that efficient (pruning)
algorithms can be employed by the query planner

 We proposed efficient shortest path algorithms

 Number of messages and data transferred are substantially reduced

 Much improved memory footprint

 However, they do not necessarily reduce runtime

 Landmarks do not always improve runtime

