

Spyros Voulgaris GRADES 2016 1 /32

Powerful and Efficient Bulk Shortest-Path Queries:

Cypher language extension & Giraph implementation

Peter Rutgers, Claudio Martella, Spyros Voulgaris, Peter Boncz

VU University Amsterdam

Spyros Voulgaris GRADES 2016 2 /32

Goal and Contributions

 Context: Shortest-path queries in Giraph

 Desired functionality
 Edge weights (monotonic cost function!)

 Multiple sources and destinations (“bulk” queries)

 Top-N shortest paths for each pair

 Filters on path edges and vertices

 Provide both paths and their costs

 Our contributions are twofold:
 Cypher language extension

 Efficient top-N shortest path algorithm design &
implementation on Giraph

Outline

Cypher Extension

Algorithms and Implementation

Evaluation

Conclusions

Spyros Voulgaris GRADES 2016 4 /32

Shortest Paths in Cypher [1/2]

 No weighted paths!

 No top-N shortest paths!

 Conditions in WHERE applied after finding path

 Could result in empty answer!

MATCH path=shortestPath((a) - [*] - >(b))

WHERE <condition>

RETURN path, length(path);

Spyros Voulgaris GRADES 2016 5 /32

Shortest Paths in Cypher [1/2]

 No weighted paths!

 No top-N shortest paths!

 Conditions in WHERE applied after finding path

 Could result in empty answer!

MATCH path=shortestPath((a) - [*] - >(b))

WHERE none(x in nodes(path) WHERE x.danger)

RETURN path, length(path);

Spyros Voulgaris GRADES 2016 6 /32

Shortest Paths in Cypher [2/2]

 Matches all paths! Expensive!

 Orders all paths that remain after the WHERE condition

 Complex query for humans

 Complex query for the query planner
 Hard to detect and optimize

MATCH path=(a) - [r*] - >(b)

WHERE none(x in nodes(path) WHERE x.danger)

RETURN path,

 reduce(sum=0, x IN r | sum=sum+x.dist* x.speed)

 AS len

ORDER BY len DESC

LIMIT 5

Spyros Voulgaris GRADES 2016 7 /32

Proposed language extension

 Selector applied before WHERE condition (optional)

 Multiple paths (top-N) for each pair

 Custom cost function

 AS keyword to bind cost to variable

 Supports bulk queries (multiple sources / multiple destinations)

MATCH path=(src) - [e* | sel (e)] - >(dst)

CHEAPEST n SUM cost(e) AS d

Spyros Voulgaris GRADES 2016 8 /32

Example

MATCH path=(a:Src) - [e* | not(endNode(e).danger)] - >(b.Dst)

CHEAPEST 3 SUM e.dist * e.speed AS len

RETURN a, b, path, len

 Suppose you are building a navigation system

 Some nodes are of type Src, some of type Dst

 Some nodes have the property danger

 The cost of each segment is the distance times the speed limit

 You can get the top-3 cheapest routes by the following simple
query:

Outline

Cypher Extension

Algorithms and Implementation

Evaluation

Conclusions

Spyros Voulgaris GRADES 2016 11 /32

The Lighthouse Project

 Cypher-based declarative language, query planning and
execution, for Apache Giraph.

 Parser

 Turns Cypher query into query graph

 Planner

 Builds query plan (tree of operators)

 Execution engine

 Runs query plan on Giraph`

Spyros Voulgaris GRADES 2016 12 /32

Top-N Shortest Path

 We need to compute both the cost and the path itself

 Basic algorithm

 Each node maintains the top-N paths (and costs) found so far

 In each step, each node propagates all its updates along all its
outgoing edges

 When a node has received no updates in a step, it votes to halt

 The algorithm terminates when they all vote to halt

Spyros Voulgaris GRADES 2016 13 /32

Top-N Shortest Path

B

G E

F C

D
A

0: A
1

1

1

1

2

2

1

3

3

3

7

1: AB

1: AC

7: AF

3: AD

N=5

Spyros Voulgaris GRADES 2016 14 /32

Top-N Shortest Path

B

1: AB

G E

F

7: AF

C

1: AC

D

3: AD

A

0: A
1

1

1

1

2

2

1

3

3

3

7

2: ABE

3: ACE

4: ACF

6: ADF

2: ABC

N=5

9: AFG

Spyros Voulgaris GRADES 2016 15 /32

Top-N Shortest Path

B

1: AB

G

9: AFG

E

2: ABE

F

4: ACF

6: ADF

7: AF

C

1: AC

2: ABC

D

3: AD

A

0: A
1

1

1

1

2

2

1

3

3

3

7

N=5

Spyros Voulgaris GRADES 2016 16 /32

Top-N Shortest Path

B

1: AB

G
3: AB EG

4: ACEG

5: ABCEG

6: ACFG

7:ABCFG

E

2: ABE

3: ACE

4: ABCE

F
4: ACF

5: ABCF

6: ADF

7: AF

C

1: AC

2: ABC

D

3: AD

A

0: A
1

1

1

1

2

2

1

3

3

3

7

N=5

Spyros Voulgaris GRADES 2016 17 /32

Can we do better?!

 One problem:

 Memory footprint is too high

 Paths passed around are too long

 The solution:

 No need to pass and store the entire path

 Store only predecessor node ID and cost to date per path

 Less communication, lower runtime!

 The price to pay?

 An extra phase for path reconstruction

Spyros Voulgaris GRADES 2016 18 /32

Top-N Shortest Path

B

1: AB

G
3: AB EG

4: ACEG

5: ABCEG

6: ACFG

7:ABCFG

E

2: ABE

3: ACE

4: ABCE

F
4: ACF

5: ABCF

6: ADF

7: AF

C

1: AC

2: ABC

D

3: AD

A

0: A
1

1

1

1

2

2

1

3

3

3

7

N=5

Spyros Voulgaris GRADES 2016 19 /32

Top-N Shortest Path

B

1: AB

G
3: AB EG

4: AC EG

5: ABC EG

6: AC FG

7:ABCFG

E

2: ABE

3: ACE

4: ABCE

F
4: ACF

5: ABCF

6: ADF

7: AF

C

1: AC

2: ABC

D

3: AD

A

0: A
1

1

1

1

2

2

1

3

3

3

7

N=5

Spyros Voulgaris GRADES 2016 20 /32

Top-N Shortest Path Reconstruction

B

1: A

G
3: E

4: E

5: E

6: F

7: F

E

2: B

3: C

4: C

F
4: C

5: C

6: D

7: A

C

1: A

2: B

D

3: A

A

0: A
1

1

1

1

2

2

1

3

3

3

7

G: 3,4,5 G: 6,7

Spyros Voulgaris GRADES 2016 21 /32

Top-N Shortest Path Reconstruction

B

1: A

G
3: E

4: E

5: E

6: F

7: F

E

2: B

3: C

4: C

F
4: C

5: C

6: D

7: A

C

1: A

2: B

D

3: A

A

0: A
1

1

1

1

2

2

1

3

3

3

7

EG: 4,5

EG: 3

FG: 6,7

Spyros Voulgaris GRADES 2016 22 /32

Top-N Shortest Path Reconstruction

B

1: A

G
3: E

4: E

5: E

6: F

7: F

E

2: B

3: C

4: C

F
4: C

5: C

6: D

7: A

C

1: A

2: B

D

3: A

A

0: A
1

1

1

1

2

2

1

3

3

3

7

CEG: 4
CFG: 6

CEG: 5
CFG: 7

BEG: 3

ABEG: 3
ACEG: 4
ACFG: 6

Spyros Voulgaris GRADES 2016 23 /32

Top-N Shortest Path Reconstruction

B

1: A

G
3: E

4: E

5: E

6: F

7: F

E

2: B

3: C

4: C

F
4: C

5: C

6: D

7: A

C

1: A

2: B

D

3: A

A

0: A
1

1

1

1

2

2

1

3

3

3

7

CEG: 5
CFG: 7

ABEG: 3
ACEG: 4
ACFG: 6

ABCEG: 5
ABCFG: 7

Spyros Voulgaris GRADES 2016 24 /32

Can we do even better???

 The problem:

 In the first few supersteps, some expensive, yet short, paths are
propagated aggressively.

 Unnecessary resource consumption

 Solution:

 Postpone exploration!

 Reduce the exponential growth of exploration in the first supersteps.

 Delay propagating paths that “appear” to be not-too-cheap.

 How?

 Place paths in buckets [0,Δ], [Δ,2Δ], … and suppress the propagation
of paths of bucket i until superstep i.

Spyros Voulgaris GRADES 2016 25 /32

Pruning via Landmarks

 To further confine unnecessary exploration, we prune based
on upper cost bounds.

 We use landmarks:

 Selected nodes Xi ,

 For each src/dst pair AB, we compute |AXi| and |XiB|.

 |AXi| + |XiB| forms an upper bound for |AB|.

Outline

Cypher Extension

Algorithms and Implementation

Evaluation

Conclusions

Spyros Voulgaris GRADES 2016 27 /32

Overall scalability

 LDBC - SF10 trace

 Scale factor 10, with 72,949 vertices and 4,641,430 edges

#workers 1 2 4 8 16 32

Runtime
(sec)

>1000 492 222 126 89 72

Spyros Voulgaris GRADES 2016 28 /32

 Rnd1K trace: Erdos-Renyi, 1000 vertices, 50K edges

 One-to-all, top-5 shortest paths

 Total runtime drops from 35sec to 25sec

 Total #bytes sent drops by 49%

Postponing Path Exploration
(Delta stepping)

Spyros Voulgaris GRADES 2016 29 /32

Effect of Multiphase Approach

 Rnd1K trace: 1K nodes, 50K edges

bytes messages supersteps time

Basic 182,204,626 402628 18 35.92 sec

Multiphase 83,926,097 402749 28 (18+10) 27.132 sec

Spyros Voulgaris GRADES 2016 30 /32

 LDBC - SF1 trace: 10,993 vertices, 451K edges
 25 random sources, all nodes as destinations
 Top-5 shortest paths
 2 landmarks (the highest degree nodes)

 Actual computation drops by ~40%
 Landmark estimation takes too long

Effect of Landmark Pruning

Outline

Cypher Extension

Algorithms and Implementation

Evaluation

Conclusions

Spyros Voulgaris GRADES 2016 32 /32

Conclusions

 We proposed new Cypher syntax that allows

 Flexible edge weights

 Flexible filter conditions over these

 Top-N queries

 This syntax is concise, and guarantees that efficient (pruning)
algorithms can be employed by the query planner

 We proposed efficient shortest path algorithms

 Number of messages and data transferred are substantially reduced

 Much improved memory footprint

 However, they do not necessarily reduce runtime

 Landmarks do not always improve runtime

