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Goal and Contributions

m Context: Shortest-path queries in Giraph

m Desired functionality
Edge weights (monotonic cost function!)
Multiple sources and destinations (“bulk” queries)
Top-N shortest paths for each pair
Filters on path edges and vertices
Provide both paths and their costs

m Our contributions are twofold:
Cypher language extension

Efficient top-N shortest path algorithm design &
implementation on Giraph %
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..
Shortest Paths in Cypher [1/2]

MATCH path=shortestPath(( a)-[*] ->(b))
WHERE <condition>
RETURN path, length(path);

m No weighted paths!
m No top-N shortest paths!

m Conditions in WHERE applied after finding path

1 Could result in empty answer!
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..
Shortest Paths in Cypher [1/2]

MATCH path=shortestPath(( a)-[*] ->(b))
WHERE none( x in nodes( path) WHERE x.danger)
RETURN path, length(path);

m No weighted paths!
m No top-N shortest paths!

m Conditions in WHERE applied after finding path

1 Could result in empty answer!
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Shortest Paths in Cypher [2/2]

MATCH path=(a)-[r* ->(b)

WHERE none( x in nodes(path) WHERE x.danger )

RETURN path,
reduce(sum=0, X IN r | sum=sum+x.dist*Xx.speed)
AS len

ORDER BY len DESC

LIMIT 5

Matches all paths! Expensive!
Orders all paths that remain after the WHERE condition
Complex query for humans

Complex query for the query planner

Hard to detect and optimize y
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Proposed language extension

MATCH path=(src)-[e*| sel (e)] ->(dst)
CHEAPEST n SUM cost( e) AS d

m Selector applied before WHERE condition (optional)
m  Multiple paths (top-N) for each pair

m Custom cost function

m AS keyword to bind cost to variable

m Supports bulk queries (multiple sources / multiple destinations) y
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Example

m Suppose you are building a navigation system
Some nodes are of type Src, some of type Dst
Some nodes have the property danger
The cost of each segment is the distance times the speed limit

® You can get the top-3 cheapest routes by the following simple
query:
MATCH path=(a:Src)-[e*| not(endNode(e).danger)] ->(b.Dst)

CHEAPEST 3 SUM e.dist * e.speed AS len
RETURN a, b, path, len
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The Lighthouse Project

m Cypher-based declarative language, query planning and
execution, for Apache Giraph.

m Parser
Turns Cypher query into query graph

m Planner

Builds query plan (tree of operators)

m Execution engine

Runs query plan on Giraph’ ; :
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Top-N Shortest Path

m We need to compute both the cost and the path itself

m Basic algorithm

Each node maintains the top-N paths (and costs) found so far

In each step, each node propagates all its updates along all its
outgoing edges

When a node has received no updates in a step, it votes to halt
The algorithm terminates when they all vote to halt
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Top-N Shortest Path
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Top-N Shortest Path
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Top-N Shortest Path
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Top-N Shortest Path
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Can we do better?!

m One problem:
Memory footprint is too high
Paths passed around are too long

m The solution:
No need to pass and store the entire path
Store only predecessor node ID and cost to date per path
Less communication, lower runtime!

m The price to pay?
An extra phase for path reconstruction z
m°
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Top-N Shortest Path
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Top-N Shortest Path
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Top-N Shortest Path Reconstruction
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Top-N Shortest Path Reconstruction
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Top-N Shortest Path Reconstruction
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Top-N Shortest Path Reconstruction
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Can we do even better???

m The problem:

In the first few supersteps, some expensive, yet short, paths are
propagated aggressively.

Unnecessary resource consumption

m Solution:
Postpone exploration!
Reduce the exponential growth of exploration in the first supersteps.
Delay propagating paths that “appear” to be not-too-cheap.

m How?
Place paths in buckets [0,A], [A,24], ... and suppress the propagation

of paths of bucket i until superstep i. y
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Pruning via Landmarks

m To further confine unnecessary exploration, we prune based
on upper cost bounds.

m We use landmarks:
Selected nodes X,
For each src/dst pair AB, we compute |AX.| and |XB].
|AX.| + | X.B| forms an upper bound for |AB].
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Overall scalability

m LDBC-SF10 trace
1 Scale factor 10, with 72,949 vertices and 4,641,430 edges

Runtime >1000
(sec)

N
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Postponing Path Exploration
(Delta stepping)
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Supersep

m Rndl1K trace: Erdos-Renyi, 1000 vertices, 50K edges
m One-to-all, top-5 shortest paths

m Total runtime drops from 35sec to 25sec
m Total #bytes sent drops by 49% k
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Effect of Multiphase Approach

m RndlK trace: 1K nodes, 50K edges

e oo L _ine

Basic 182,204,626 402628 35.92 sec
Multiphase 83,926,097 402749 28 (18+10) 27.132 sec
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Effect of Landmark Pruning

B Freparing
landmark
table
75000 B Computing
shones!
® paths
4 4 L} } 1 16 3 3
Number of workess
m LDBC - SF1 trace: 10,993 vertices, 451K edges
m 25 random sources, all nodes as destinations
m Top-5 shortest paths
m 2 landmarks (the highest degree nodes)
m Actual computation drops by ~40% k
m Landmark estimation takes too long
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Conclusions

m We proposed new Cypher syntax that allows
Flexible edge weights
Flexible filter conditions over these
Top-N queries

m This syntax is concise, and guarantees that efficient (pruning)
algorithms can be employed by the query planner

m We proposed efficient shortest path algorithms
Number of messages and data transferred are substantially reduced
Much improved memory footprint

However, they do not necessarily reduce runtime
Landmarks do not always improve runtime %
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