
Evaluation of Parallel Graph Loading Techniques

Manuel Then
then@in.tum.de

Moritz Kaufmann
kaufmanm@in.tum.de

Alfons Kemper
kemper@in.tum.de

Thomas Neumann
neumann@in.tum.de

Technical University of Munich

ABSTRACT

For many exploratory graph workloads, the initial loading
and construction of the graph data structures makes up a
significant part of the total runtime. Still, this topic is hardly
analyzed in literature and often neglected in systems and
their evaluations. In this paper we analyze the whole graph
loading process, including parsing, dense vertex identifier
relabeling, and writing the final in-memory data structures.
We present various loading strategies that take into consid-
eration the properties of the input graph, e.g., partitioning,
and evaluate them through extensive experiments.

CCS Concepts

•Information systems → Network data models; Ex-
traction, transformation and loading; •Networks → Online
social networks;

1. INTRODUCTION
Graphs are a natural way of representing many types of

real-world data, e.g., relationships in social networks, links
on the Web, and traversable paths in road networks. As
a result, there is growing interest from both industry and
academia in analyzing existing graphs to gain insights. This
interest lead to the creation of many specialized systems
including high-performance main memory graph analytics
systems like GraphMat [14] and PGX [3, 4].

On a system level, most focus is usually put into a user-
friendly query layer, and into providing an efficient runtime
system for a wide variety of algorithms. This is comple-
mented by algorithmic research on enabling more advanced
graph analytics as well as on improving established algo-
rithms by optimizing their parallelization, data structures,
and data access patterns. The main metric for these im-
provements is the runtime of the actual algorithm.

In this paper we put the spotlight on a topic that is often
neglected in system design, implementation and evaluation:
graph loading. We show in our measurements that for many
graph workloads, loading times are actually the dominant

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GRADES 2016 , June 24, 2016, Redwood Shores, USA.

c© 2016 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

cost factor. Hence, for such workloads efficient loading is
very important to minimize overall execution times.

This is the first paper that provides a systematic overview
of how graph datasets in the commonly-used edge list format
can be efficiently loaded into analytical in-memory graph
data structures. We describe two distinct graph loading pro-
cesses that optimize loading time or memory consumption,
respectively (Section 2), and analyze the building blocks of
these processes: parsing identifiers in the input data (Sec-
tion 3), assigning dense vertex ids when required (Section 4),
and generating the final graph data structure (Section 5).
For this, we take into consideration properties of the in-
put dataset, such as the existence of explicit vertex lists, or
partitioning of the edge list, to improve the loading time.
In addition, we apply optimizations to the final graph data
structure, e.g., sorting of the neighbor lists, or degree-based
vertex identifiers assignment, and measure how they affect
the loading and analytics runtimes.

We provide an extensive experimental evaluation in which
we measure the runtimes for various specialized graph load-
ing processes for two well-known datasets, and show how
each of the building blocks contributes to the respective
loading time. Also, we compare against the loading times
of two existing systems and show that our optimized load-
ing process is more than an order of magnitude faster. Our
paper shows that there is no one size that fits all, and as a
consequence that systems should be adaptive to the proper-
ties of the input data as well as the analytics algorithm that
should be run.

2. GRAPH LOADING PROCESS
Depending on the source and data format of the input

graph, as well as on the properties of the created in-memory
graph representation, the graph loading process comprises
several stages. Graph datasets that are not in a system-
specific binary format must first be parsed to extract the
actual graph data, i.e., vertices, edges, and, if necessary,
properties that are attached to them. Many systems then
relabel the original vertex identifiers from the dataset to
numbers in a dense range. This relabeling enables direct
addressing in the internal graph representation as well as
in temporary properties used by analytical algorithms. The
relabeled graph data is then used to construct the final in-
memory representation of the graph.

In each stage of the loading process, there are several pos-
sible approaches with different tradeoffs. Most approaches
can be combined to compose a tailored graph loading pro-
cess for a specific scenario. Besides minimizing the graph

loading time, other factors can also influence the choice of
an optimal approach in each stage. For example, in case
of strict limits on the amount of available main memory,
large graphs can only be loaded with approaches that have
low memory overhead. Also, some approaches require read-
ing the input data multiple times. While multiple iterations
over the input are possible when the graph is loaded from
a file, repeating a database query that generates the graph
is potentially expensive. In this paper we distinguish two
general graph loading processes which we describe in the
following. They explore the tradeoffs between low loading
times, memory consumption, and multiple data reads. In
all variants we make full use of all processors in the system.

2.1 Single-Pass Process
The single-pass graph loading process reads the input graph

data and stores it in a temporary in-memory data structure
from which the final graph is created. Since this tempo-
rary structure contains all information about the graph, the
input data need only be read once. However, sufficient mem-
ory must be available.

In case the input graph contains an explicit list of all ver-
tices, the first step of the loading process is to parse this
list and create a dense vertex relabeling from it. Should no
vertex list be available, the relabeling is created when the ac-
tual graph edges are read. In the process’s second step, the
graph edges are parsed and stored in thread-local neighbor
lists that are partitioned by source vertex. For many of the
relabeling approaches described in this paper it is possible to
apply an initial relabeling at this point to reduce the neigh-
bor lists’ memory footprint. For example, if a dataset uses
64-bit identifiers but has less than 4 billion unique vertices,
they could be densely mapped to 32-bit identifiers during
the initial relabeling. After all input edges are written to
the neighbor lists, the lists’ sizes are aggregated to count
the number of neighbors per vertex. This aggregation is
especially efficient when the input edges are known to be
partitioned such that all neighbors of a vertex appear con-
secutively. The reason for this is that for partitioned edge
lists it can be ensured that all of a vertex’s neighbors ex-
ist in the same thread-local list. Afterward, if necessary,
the vertex relabeling is finalized and used to write the final
graph data structure. We depict the single-pass process in
the upper half of Figure 1.

2.2 Two-Pass Process
In contrast to the single-pass process, the two-pass graph

loading process does not require storing all graph edges in
a temporary data structure. The general loading process
is similar but requires that the input data is read twice.
During the first iteration, the two-pass process counts each
vertex’s neighbors and creates the final relabeling. When the
input data is read for the second time, the edges are directly
relabeled and written to the final graph data structure. We
show the two-pass process in the lower half of Figure 1.

As in the single-pass process, an explicit list of all vertices
as well as knowledge about partitioning of the edge list can
be used to speed-up the graph loading.

3. PARSING
The graph data parsing step transforms external graph

representations, e.g., edge list files, into a system-specific
binary format from which the graph data structures can

be generated. While graphs can be created from arbitrary
data, they are usually specified as pairs of numbers (x, y).
The numbers x and y identify vertices in the graph, and
the pairs themselves denote edges from x to y in a directed
graph, or between the entities in an undirected graph. Other
graph representations can easily be translated into this for-
mat. The parsing step then comprises finding the tokens
that form the graph’s edges and loading their identifiers into
the system-specific binary format. Finding the identifiers of
interest is especially challenging when the input data is split
into chunks that are processed in parallel.

In this paper we evaluate two common edge list formats.
Vertex lists or additional data, for example properties, can
be parsed similarly.

3.1 Binary Edge Lists
Graph generators, like the Kronecker generator used by

the Graph500 benchmark [1], frequently write binary edge
lists that contain fixed-size vertex identifiers. In contrast to
proprietary formats, they are simply a binary serialization of
the common edge list format. Because all identifiers have a
fixed width, this format is space-efficient, as identifier com-
monly fit 32-bit numbers, efficient to read, and easily split
into chunks for parallel processing.

During parsing we directly copy each edge into our system-
specific format.1 As a result, reading from binary edge lists
has only negligible parsing cost. We, thus, use it as the
baseline in our evaluation.

3.2 Decimal Edge Lists
More common than binary edge lists are character-encoded

decimal edge lists which can be found in many dataset repos-
itories like SNAP [8] or KONECT [6]. Because decimal-
serialized vertex identifiers have varying lengths and must
first be transformed to an internal binary representations,
human-readable edge lists are harder to parse. In the fol-
lowing we describe three variants of doing so.

3.2.1 General Number Input Operations

Most programming languages that are widely used pro-
vide functionality to parse decimal numbers in files or char-
acter strings. In our evaluation we chose to measure the
performance of parsing numbers from input streams using
the C++ standard library. The standard library’s number
parsing is designed in a very general way and covers many
special cases like reading numbers in scientific notation. As
we show in our evaluation, its performance characteristics
are not desirable for high-performance graph loading.

3.2.2 Iterative Identifier Parsing

A more optimized and commonly used way of parsing dec-
imal identifiers is by iterating their digits to sum the final
value. For a character iterator iter and a delimiter that
ends the identifier, we thus parse decimal identifiers as fol-
lows.

1 int id = 0 ;
2 while (∗ i t e r != d e l im i t e r)
3 id = id ∗ 10 + (∗ (i t e r++) − ’ 0 ’) ;

1In case the endianness of the input binary does not match
the one used by the CPU, an additional but very efficient
change of the identifiers’ byte order is necessary.

Single-Pass

List of vertices
available?

Parse vertex data and
create initial relabeling
(Load Vertices) Parse edge data,

apply initial relabeling
and store in thread-
local neighbor lists
(Parse and Map Edges)

Synchronize thread-local data
to find unique vertices
and build global relabeling
(Merge Mappers)

Sum Neighbor
Counts

Apply relabeling to
local neighbor list
and write final graph
(Write Graph)

yes

no

Two-Pass

List of vertices
available?

Parse vertex data and
create initial relabeling
(Load Vertices)

Parse edge data,
create initial relabeling
(Parse and Map Edges)

Synchronize thread-local data
to find unique vertices
and build global relabeling
(Merge Mappers)

Sum Neighbor
Counts

Parse edge data,
apply relabeling
and write final graph
(Write Graph)

yes

no

Figure 1: Graph loading process

For each read digit we subtract the ’0’ character to effi-
ciently translate its ASCII value to the binary representa-
tion. Compared to the previously described standard library
parsing, such optimized decimal parsing can lead to more
than an order of magnitude speedup in this phase.

3.2.3 Vectorized Identifier Parsing

Using the wide vector instructions available in modern
CPUs, iterative decimal identifier parsing can be vectorized.
We utilize techniques presented in [9, 5] which show slight
speedups over iterative parsing for long identifiers.

3.3 Code Generation
For general-purpose graph analytics systems it is useful

to let the user specify the format of the external graph data
through configuration files. This approach is for example
used by PGX [4]. The downside of such flexibility is that
the graph loading code is more complex especially in terms
of branches, which negatively impacts the graph loading per-
formance. To avoid performance impacts, runtime code gen-
eration [11] can be used to construct a specialized loading
pipeline for each input format. In our evaluation, each load-
ing pipeline is specifically compiled for the scenario at hand.
However, for a lack of space we did not further explore run-
time code generation techniques.

4. IDENTIFIER RELABELING
When graph data is loaded from files or from the results of

database queries, the contained vertex identifiers v ∈ V are
usually sparse, i.e., V 6= [0, |V | − 1] where |V | is the number
of distinct vertices. Directly using these potentially sparse
identifiers in the system-internal graph representation avoids
overhead from assigning new identifiers to vertices during
loading. However, it makes necessary an additional mapping
when accessing vertex-related data such as neighbor lists and
vertex properties. To avoid these runtime overheads, many
graph analytics systems instead relabel the original dataset’s
vertex identifiers to dense v′ ∈ [0, |V | − 1] such that there is
a bijective mapping between corresponding v and v′. In the
following we discuss relabeling strategies that can be used
during graph loading. They differ in what data is stored per
worker thread and when the relabeling is created.

4.1 Global Mapping
In the global mapping strategy, one global relabeling is

shared by all worker threads. When a new, i.e., not yet rela-
beled, external vertex identifier is found, a new dense iden-
tifier is requested from a global atomic counter and inserted
into the global mapping. Using this mapping strategy, the

temporary data structures of the single-pass graph loading
process can directly store relabeled vertex identifiers. When
assigning identifiers in parallel, two threads may try to al-
locate an identifier for the same vertex. This case can be
avoided through additional locking, or by a post-processing
step that removes the resulting holes, i.e., allocated but un-
used ids.

In addition, we evaluate a global mapping strategy that
uses a local cache to avoid lookups in the frequently modified
global mapping.

4.2 Local Mapping
Similar to global mapping, the local mapping strategy di-

rectly creates a relabeling for vertex identifiers while the
input data is read. Hence, it also allows initial identifier
relabeling. In contrast, the local mapping strategy creates
thread-local mappings. As a result, no data is shared be-
tween threads. To avoid collisions among the newly-assigned
identifiers, workers request ranges of dense identifiers from
a global pool before using them. Depending on the distri-
bution of edges in the input data and the numbers of edges
per vertex, an input vertex may be relabeled differently in
many local mappings. Once all input data is processed, the
thread-local mappings are merged, creating a global identi-
fier mapping that is used in the final relabeling step.

4.3 Global Collection
In contrast to the previously described strategies that di-

rectly create mappings, the global collection strategy first
collects the input data’s unique vertex identifiers in a global
set. Once all edges have been parsed, a relabeling for the
vertex identifiers is created. As the global collection strat-
egy works similarly to a separate vertex list, they should
not be used together. Also, the global collection strategy
does not allow initial relabeling. Thus, the single-pass load-
ing process must store the potentially larger external vertex
identifiers in its internal data structures.

4.4 Local Collection
The local collection strategy combines local mapping and

global collection. It collects the used external vertex identi-
fiers in thread-local sets, which are merged and used to cre-
ate the global mapping once all edges have been read. The
local collection strategy shares the previously mentioned
limitations of global collection.

5. GRAPH DATA STRUCTURES
Depending on the requirements of an algorithm or system,

various graph data structures are used in practice. For this

paper we focus on read-optimized in-memory graph struc-
tures that are well-suited for analytics. Depending on the de-
cision whether or not vertex identifiers are mapped to dense
ranges, commonly used data structures are the compressed
sparse row (CSR) and maps of neighbor lists, respectively.

5.1 Compressed Sparse Row
The CSR format comprises two parts: an array containing

the concatenated neighbor lists of all vertices in the graph,
and an array of offsets at which each neighbor list begins in
the first array. Accessing a vertex v’s neighbors in the CSR
only needs a single indirection: The vertex’s neighbor list
offset is read in the offset array at position v, and used as
indirection into the concatenated neighbor lists. The neigh-
bor count of v is the difference of the offsets of v and the
vertex with the subsequent identifier v + 1.

From a graph loading perspective, this format is challeng-
ing because multiple workers must be able to write into the
same array, preferably without synchronization. We solve
this challenge differently depending on the loading process.

For single-pass loading, all neighbor information is in mem-
ory, partitioned by worker. To write the neighbors array, we
then assign disjoint vertex ranges [u, v] to the workers, and
let them write all partitions’ neighbors for each n ∈ [u, v].
The initial offset of the ranges’ first vertex u is easily calcu-
lated as Σm<u|neighbors(m)|.

In the two-pass loading process, the edge list is iterated a
second time, directly writing the CSR’s neighbor array. For
non-partitioned edge lists in which the neighbors of a vertex
may be located anywhere, multiple workers thus even need
to be able to write to the same neighbor list concurrently.
We allow this in a synchronization-free manner by comput-
ing per-vertex offsets in the neighbors array from which each
worker can safely write.

5.2 Map of Neighbor Lists
The CSR data structure relies on dense relabeling of the

vertex identifiers. It can, thus, not be used when the exter-
nal vertex identifiers are directly used in the internal data
structures. Instead, a map of neighbor lists can be used.
The two major disadvantages of this format are that (a)
finding a vertex’s neighbors involves an additional indirect
map lookup, and that (b) neighbor counts must be stored
explicitly. For a fair comparison we use the same array of
concatenated neighbor lists as in the CSR. Consequently,
the data structure creation process is similar.

5.3 Optimization: Sorted Neighbor Lists
For many algorithms it is beneficial if the neighbor lists

are sorted by identifier. Hence, we measure how sorting
each vertex’s neighbor list affects the overall graph loading
performance. As an example, consider the triangle count-
ing algorithm which relies on efficient neighbor list inter-
sections. Instead of requiring a generic set intersection, for
sorted neighbor lists the algorithm can use an efficient merge
join.

6. EVALUATION
In this section we evaluate how the the presented building

blocks influence graph loading times. There are hundreds of
possible permutations in which the building blocks can be
combined to a graph loading process. Hence, we limit our
evaluation to the most significant results.

LDBC Twitter

0

100

200

300

C++ stre
am

C++ strto
l

Ite
rativ

e

Vectoriz
ed

Binary

C++ stre
am

C++ strto
l

Ite
rativ

e

Vectoriz
ed

Binary

Parser variant

T
im

e
 p

e
r

e
d
g
e
 i
n
 n

a
n
o
s
e
c
o
n
d
s

Figure 2: Parsing time per edge, varying parsers and graphs.

6.1 Experiment Setup
We implemented the presented graph loading techniques

in C++14 and compiled them using GCC 5.2.1. All mea-
surements were made on a dual-socket machine with two
Intel Xeon E5-2660 v2 CPUs (2 × 20 logical threads at
2.2GHz) and 256GB of memory. As operating system we
used Ubuntu 15.10 with kernel 4.2.0.

We evaluated the graph loading process using two pub-
licly available small-world networks: the LDBC SNB graph
[2] at scale factor 1000 and the Twitter graph [7]. The LDBC
graph contains 3.6M vertices and 447M edges, and has a file
size of 12GB. The Twitter graph has over ten times more ver-
tices but only three times as many edges; it contains 41.6M
vertices and 1.5B edges in a 25GB dataset.

The datasets exist in two variants: with their edges par-
titioned by source, and with randomized edge order. For
our experiments we stored them in a ramdisk to avoid disk
access and caching overheads.

6.2 Parsers
In Section 3 we introduced several parsing techniques:

general parsing operations, specialized iterative and vector-
ized identifier parsing, and reading binary data. We evaluate
their performance for parsing the edges list of each dataset.
All parser measurements are done single-threaded to avoid
effects from insufficient memory bandwidth. Figure 2 shows
our results. We normalized the runtimes for the datasets
by dividing them by the number of parsed edges; hence, the
parsing time is given in nanoseconds per edge.

Using the C++ Standard Library’s optimized number pars-
ing strtol exhibits a 2-3x speedup over general stream input
parsing. The optimized identifier parsing functions exhibit
an additional 8-11x speedup. For our scenario, we did not
find a significant difference between iterative and vectorized
parsing. Also, when only parsing of partitioned edge lists is
considered, the overhead of caching the parsed source ver-
tex, did not pay off in our experiments. We use the iterative
parser for all subsequent measurements.

We found a significant difference in the parsing time per
edge between the datasets. On average, it was 50% lower
for the Twitter dataset. This is explained by the datasets’
difference in average identifier length of 13 and 8 characters
per identifier for LDBC and Twitter, respectively.

When binary files are used, no parsing is necessary. This
variant is additional 8x faster than iterative parsing.

6.3 Relabeling Strategies
We evaluated how the identifier relabeling strategies intro-

duced in Section 4 influence the runtime of the parallel graph

Identity Global Mapping Cached Global M. Global Collect Local Collect

0

25

50

75

100

LDBC
Twitte

r
LDBC

Twitte
r

LDBC
Twitte

r
LDBC

Twitte
r

LDBC
Twitte

r

Dataset

L
o

a
d

in
g

 t
im

e
 i
n

 n
a

n
o

s
e

c
o

n
d

s
 p

e
r

e
d

g
e

Parse and Map Edges Merge Mappers Sum Neighbor Counts Write Graph

Figure 3: Loading time for varying mappers and stages.

loading process. Figure 3 depicts the—again normalized—
runtimes for creating the final in-memory graph representa-
tion from the input dataset’s non-partitioned edge list. It
further shows how the various stages contribute to the load-
ing time. The stages’ names follow Figure 1. We only show
results for the single-pass loading process as the two-pass
results exhibit the same trends. Note that the runtime per
edge can be lower than the parsing times in the previous
section because we use all 40 CPU cores in this experiment.

It can be seen that the identity relabeling strategy which
does not perform any relabeling performs best. Its main
cost factor is determining all unique vertex identifiers in the
Merge Mappers phase, e.g., to get the number of vertices
in the graph. The global mapping strategy is less than two
times slower and ensures that the internal graph data struc-
tures use dense identifiers, which greatly improves the per-
formance of analytics algorithms on this data, as we show
in Section 6.5. The cached global mapping strategy which
adds a thread-local cache for already assigned identifiers
performs worse because of the additional pollution of the
CPU’s shared L3 caches. Also using a shared data structure,
the global collection strategy exhibits similar performance
as global mapping in the Parse and Map Edges phase. It
has, however, additional overhead from creating the rela-
beling and applying it in the later phases. While the local
collection strategy provides performance benefits in the ini-
tial edge parsing phase, as no synchronization between the
threads is necessary, it performs worst overall because of
the expensive merging of all locally stored external iden-
tifiers step. Both the local and global collection strategy
involve expensive relabeling when the final graph is written
because all vertex identifiers are relabeled to dense identi-
fiers at this point. The local mapping strategy has similar
disadvantages as the local collection strategy; we omit its
detailed evaluation because of a lack of space.

6.4 Process and Properties of Input Data
In Section 2 we introduced the single-pass graph load-

ing process which builds a temporary representation of the
graph in memory and then creates the final graph from it,
and the two-pass process that iterates over the input data
twice, first preparing statistics about the graph and then
writing it directly to the final data structure. Now, we eval-
uate how these two processes perform for graph datasets
that (a) have edge lists partitioned by source vertex, or are
non-partitioned, and (b) have explicit lists of all vertices in
the dataset, or not. We performed each measurement us-
ing the two best-performing relabeling strategies from the

Identity

Partitioned

No List

Identity

Partitioned

Vertex List

Identity

Unpartit.

No List

Identity

Unpartit.

Vertex List

Global M.

Partitioned

No List

Global M.

Partitioned

Vertex List

Global M.

Unpartit.

No List

Global M.

Unpartit.

Vertex List

0

50

100

0

50

100

S
in

g
le

P
a
s
s

T
w

o
P

a
s
s

LDBC
Twitte

r
LDBC

Twitte
r

LDBC
Twitte

r
LDBC

Twitte
r

LDBC
Twitte

r
LDBC

Twitte
r

LDBC
Twitte

r
LDBC

Twitte
r

Dataset

L
o
a
d
in

g
 t
im

e
 i
n
 n

a
n
o
s
e
c
o
n
d
s
 p

e
r

e
d
g
e

Load Vertices Parse and Map Edges Merge Mappers Sum Neighbor Counts Write Graph

Figure 4: Graph loading times when having vertex files and
partitioned edge lists.

previous section: identity and global mapping.
We show our results in Figure 4. As is to be expected, the

more beneficial properties a graph dataset has, the faster it
can be loaded. Thus, when there is an explicit list of ver-
tices in the graph and the edge list is partitioned, the graph
can be loaded fastest, independent of the used process or
relabeling strategy. For edge lists that are non-partitioned,
the presented results are equal to the ones presented in the
previous section.

The single-pass process exhibits lower runtimes than the
two-pass loading process because the latter must parse the
input data a second time to write the final graph. This addi-
tional parse iteration is especially disadvantageous when the
edge list is not partitioned, as indicated by the blue bars.
However, we found that the two-phase approach consumes
around 50% less memory during graph loading. Hence, it
allows loading larger datasets given a fixed amount of mem-
ory.

6.5 Graph Data Structure and Algorithms
In this section we evaluate how the generated graph data

structure and its internal ordering influence loading and an-
alytics runtimes. To that end we loaded the Twitter dataset
and ran two well-known algorithms: PageRank (PR, 20 it-
erations) [12], and triangle counting (TC) [13]. We stored
the graph in a densely relabeled CSR, as well as in a map of
neighbor lists that uses identity mapping. Furthermore, we
created each data structure twice; once with sorted and once
with unsorted neighbor lists. Because set intersections are
inefficient on unsorted neighbor lists, no TC results are given
for this case. In Table 1, we report the graph loading time
from a non-partitioned edge list, the algorithm runtime, and
the resulting overall workload runtime.

Our results show that while identity mapping exhibits the
best runtimes for loading alone, its benefits are quickly out-
weighed by the additional mapping overhead at algorithm
runtime. Furthermore, we show that sorting the neighbor
lists in the graph is a relatively cheap operation. It is a pre-

Table 1: Twitter loading time and algorithm runtimes.

Alg. CSR Map

Load+Run=Total Load+Run=Total

Sorted
PR 37s 33s 70s 25s 194s 219s

TC 37s 49s 86s 25s 66s 91s

Unsorted PR 34s 33s 67s 21s 193s 214s

requisite for our TC implementation, but does not provide
a performance significant benefit for PR.

Even using our highly-tuned loading process, the initial
graph loading can take as long as, or even longer than the
actual algorithm. Thus, optimizing graph loading times
can significantly improve the overall runtime of exploratory
workloads.

6.6 Overall Loading Times
This paper aims at inspiring graph analytics systems de-

signers to improve their systems’ loading times. To do so,
we compared the edge list loading times of the approaches
presented in this paper with two publicly available state-of-
the-art competitors: the in-memory graph analytics system
PGX 1.2.1 [3, 4], and the benchmarking framework Graph-
Big 3.2 [10]. Table 2 shows our measurements.

Table 2: System graph loading times.

System Twitter LDBC

PGX 2153s 632s

GraphBig out of memory 1682s

Ours Non-partitioned 89s 24s

Ours Partitioned 34s 7s

PGX can load both the non-partitioned LDBC and Twit-
ter dataset within the memory limits of our evaluation ma-
chine. Its loading times are about 25x slower than our non-
partitioned results. However, it must be noted that the
system created two CSRs that store in-edges a out-edges,
respectively. In contrast, GraphBIG only utilized a single
CPU core during loading, and was only able to load the
LDBC graph. For this dataset it was about 70x slower than
our parallel approach. The system was not able to load the
Twitter dataset with the 180GB of main memory we allowed
it to consume.

7. CONCLUSIONS
In this paper we gave an overview of various graph loading

strategies and evaluated them experimentally. We demon-
strated that there is potential for existing graph analytics
systems to dramatically reduce loading times by leveraging
the input datasets’ properties and fully utilizing the parallel
compute resources of modern machines.

8. ACKNOWLEDGMENTS
Manuel Then is a recipient of the Oracle External Re-

search Fellowship.

9. REFERENCES

[1] The graph 500 benchmark.
http://www.graph500.org/specifications. Accessed:
2016-01-10.

[2] O. Erling, A. Averbuch, J. Larriba-Pey, H. Chafi,
A. Gubichev, A. Prat, M.-D. Pham, and P. Boncz.
The ldbc social network benchmark: Interactive
workload. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’15, pages 619–630, New York, NY, USA,
2015. ACM.

[3] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun.
Green-marl: a dsl for easy and efficient graph analysis.
In ACM SIGARCH Computer Architecture News,
volume 40, pages 349–362. ACM, 2012.

[4] S. Hong, S. Depner, T. Manhardt, J. Van Der Lugt,
M. Verstraaten, and H. Chafi. PGX.D: a fast
distributed graph processing engine. In Proceedings of
the International Conference for High Performance
Computing, Networking, Storage and Analysis,
page 58. ACM, 2015.

[5] M. Kaufmann, T. Mühlbauer, M. Then, A. Gubichev,
A. Kemper, and T. Neumann. Hochperformante
analyse von graph-datenbanken. In Datenbanksysteme
für Business, Technologie und Web (BTW), 16.
Fachtagung des GI-Fachbereichs ”Datenbanken und
Informationssysteme” (DBIS), 4.-6.3.2015 in
Hamburg, Germany. Proceedings, pages 311–330, 2015.

[6] J. Kunegis. Konect: The koblenz network collection.
In Proceedings of the 22nd international conference on
World Wide Web companion, pages 1343–1350.
International World Wide Web Conferences Steering
Committee, 2013.

[7] H. Kwak, C. Lee, H. Park, and S. Moon. What is
Twitter, a social network or a news media? In WWW
’10: Proceedings of the 19th international conference
on World wide web, pages 591–600, New York, NY,
USA, 2010. ACM.

[8] J. Leskovec and A. Krevl. SNAP Datasets: Stanford
large network dataset collection.
http://snap.stanford.edu/data, June 2014.

[9] T. Mühlbauer, W. Rödiger, R. Seilbeck, A. Reiser,
A. Kemper, and T. Neumann. Instant loading for
main memory databases. Proceedings of the VLDB
Endowment, 6(14):1702–1713, 2013.

[10] L. Nai, Y. Xia, I. G. Tanase, H. Kim, and C.-Y. Lin.
Graphbig: Understanding graph computing in the
context of industrial solutions. In Proceedings of the
International Conference for High Performance
Computing, Networking, Storage and Analysis,
page 69. ACM, 2015.

[11] T. Neumann and V. Leis. Compiling database queries
into machine code. IEEE Data Eng. Bull., 37(1):3–11,
2014.

[12] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: bringing order to the web.
1999.

[13] M. Sevenich, S. Hong, A. Welc, and H. Chafi. Fast
in-memory triangle listing for large real-world graphs.
In Proceedings of the 8th Workshop on Social Network
Mining and Analysis, page 2. ACM, 2014.

[14] N. Sundaram, N. Satish, M. M. A. Patwary, S. R.
Dulloor, M. J. Anderson, S. G. Vadlamudi, D. Das,
and P. Dubey. Graphmat: High performance graph
analytics made productive. Proc. VLDB Endow.,
8(11):1214–1225, July 2015.

