
DatalogRA : Datalog with Recursive Aggregation in the
Spark RDD Model

Marek Rogala
Institute of Informatics

University of Warsaw, Poland
marrogala@gmail.com

Jan Hidders
Vrije University Brussel,

Belgium
jan.hidders@vub.ac.be

Jacek Sroka
Institute of Informatics

University of Warsaw, Poland
sroka@mimuw.edu.pl

ABSTRACT
Distributed computations on graphs are becoming increas-
ingly important with the emergence of large graphs such as
social networks and the Web that contain huge amounts of
useful information. Computations can be easily distributed
with the use of specialised frameworks like Hadoop with
MapReduce, Giraph/Pregel or GraphLab. Yet, declarative,
query-like, but at the same time efficient solutions are lack-
ing. Programmers are needed to code all computations by
hand and manually optimise each individual program.
This paper presents an implementation of a tool which ex-

tends a distributed computations platform, Apache Spark,
with the capability of executing queries written in a vari-
ant of a declarative query language, Datalog, especially ex-
tended to better support graph algorithms.
This approach makes it possible to express graph algo-

rithms in a declarative query language, accessible to a broader
group of users than typical programming languages, and
execute them on an existing infrastructure for distributed
computations.

Keywords
Spark, Datalog, RDD, Resilient Distributed Datasets, So-
cialite, graph processing, declarative

1. INTRODUCTION
Data analysis tasks on real-world web-scale datasets of-

ten involve analysing properties of the graphs represented
by those datasets. This includes computing graph queries
such as Shortest Path, PageRank, Mutual Neighbours (find-
ing mutual neighbours of two nodes), Connected Compo-
nents, Triangles, Clustering Coefficients and Betweenness
Centrality. Much effort is being put into developing frame-
works that allow users to compute these efficiently, specif-
ically on top of frameworks for parallelised execution of
computations on clusters of computational nodes such as
Hadoop/MapReduce, extensions of MapReduce for itera-
tions such as Haloop [1], vertex-oriented systems like Pregel
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GRADES 2016, June 24 2016, Redwood Shores, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4780-8/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2960414.2960417

[4] and Giraph, or in-memory systems like Spark [12]. These
frameworks typically do their computations in several iter-
ations, where each iteration consists of a computation dis-
tributed over different nodes. When an algorithm requires
many iterations, an important distinction is whether be-
tween the iterations the nodes can keep the intermediate
result in memory or have to store them on disk. In the first
case the computation can become faster but may also require
checkpointing to deal with failing nodes. Where MapReduce
is assuming the second case, the other frameworks focus
more on the first case.
Programming graph analytics with those frameworks re-

quires considerable skill and knowledge of the distributed al-
gorithms, e.g., [7]. For more value-oriented analytics declar-
ative languages have been developed and implemented, such
as for example Pig [6], which allow the user to efficiently
specify and execute certain analytical tasks without deep
algorithmic knowledge. Ideally there should for graph ana-
lytical tasks be also such a high-level declarative program-
ming language that has the expressive power to specify the
previously mentioned graph queries, but also can be effec-
tively optimised.
A promising approach for such a language is the extension

of Datalog with recursive aggregation and certain arithmetic
operators, as discussed in earlier work by Shkapsky et al. [10]
and Lam et al. [3], which both in turn are based on earlier
research on allowing aggregation and multisets in Datalog
by Mumick et al. [5]. The resulting language is concise and
powerful, and at the same time leverages existing work on
optimising its execution [11]. Moreover, the parallelised ex-
ecution of Datalog has been well studied in the past, for
example by Ganguly et al. in [2] and by Zhang et al. in [13].
The extension of Datalog proposed by Lam et al. pro-

posed in [3], called Socialite, is provided with a parallelised
implementation in [8]. It applies certain forms of paral-
lelised Datalog execution optimisation such as range-based
and hash-based sharding, and message batching. Moreover,
it performs optimisations specific for its type of aggregation
semantics such as Delta Stepping.
In this work we take essentially the same extension of Dat-

alog and provide an alternative implementation on top of the
Spark framework. This is an open and mature framework
that is aimed at iterative computations and based on the
notion of Resilient Distributed Dataset (RDD) which offers
an abstract model for distributed data. It offers extensions
such as Spark SQL, which lets one efficiently query struc-
tured data, and GraphX which unifies Extract-Transform-
Load processes, exploratory analysis, and iterative graph

computation within a single system. Next to providing a
platform that easily integrates with other types of data an-
alytic processing, we believe it offers an interesting environ-
ment to investigating and comparing different types of opti-
misations, more so then the implementation in [8] which is
built from scratch and implements for example its own form
of checkpointing.
Next to an alternative implementation, we present in this

paper also a more refined definition of the syntax and se-
mantics of the language we implement, and specifically we
give a precise definition of which programs with recursive
aggregation are considered to be well-defined. Moreover, we
show that the performance of the system is competitive with
comparable systems.
The remainder of this paper is organised as follows. In

Section 2 we recall Datalog and semi-naive evaluation. In
Section 3 we introduce the syntax and semantics of Datalo-
gRA. In Section 4 we discuss the implementation of Data-
logRA in Spark, and finally in Section 5 we describe some
experiments to evaluation the relative performance of the
implementation.

2. PLAIN DATALOG AND ITS EVALUATION
Datalog programs express queries over relational databases

which we will define here as a finite sets of facts where facts
are of the form r(v1, . . . , vn) where r is a relation name and
(v1, . . . , vn) a vector of domain values. We will assume that
the set of domain values is always finite. An example of such
a relational database would be {a(1, 2), a(2, 3), b(3, 1)}, as-
suming that the set of relation names is {a, b} and the set
of domain values is {1, 2, 3}.
Basic Datalog programs consist of a set of rules where a

rule is an expression of the form:

r(x̄) :- s1(ȳ1), . . . , sn(ȳn).

where n ≥ 1, r, s1, . . . , sn are relation names and x̄, ȳ1, . . . ȳn

are tuples of variables and constants (i.e., domain values).
We call r(x̄) the head of the rule, while s1(x1), . . . , sn(xn) is
called the body of the rule and each element of the body is
called a subgoal of the rule. Every rule in a Datalog program
must be safe, which means that each variable appearing in
the head appears in at least one of the subgoals.
The meaning of a rule can be described as a first-order

logic formula of the form:

∀z̄ : r(x̄)⇐ s1(ȳ1) ∧ · · · ∧ sn(ȳn)

where z̄ is a vector containing exactly all variables in the
vectors x̄, ȳ1, . . . , ȳn. We say that a rule holds for a relational
database if the corresponding formula holds for (the first-
order model represented by) the database. The result of
applying a Datalog program P to a relational database D,
denoted as P (D), is then defined as the minimal superset of
D for which all rules in P hold. It can be shown that such
a superset always exists and is indeed unique.
A more operational way of defining the semantics of a pro-

gram P is based on fixed points of a consequence function.
We define the result of a rule r for a database D, as

r(D) = {r(x̄) | s1(ȳ1) ∈ D, . . . , sn(ȳn) ∈ D}.

Observe that this is a well-defined set if r is a safe rule.
Intuitively it describes all the facts that are implied directly
by the rule r given the database D.

Then we define the immediate consequence of a program P
for database D, as TP (D) = D∪

⋃
r∈P

r(D). It is not hard to
see that for every database D it holds that all rules in P hold
for D iff D is a fixed point of TP . It can also be observed that
TP is monotonic, i.e., if D1 ⊆ D2 then TP (D1) ⊆ TP (D2).
Moreover, since we assume that the set of domain values is
finite, there are only a finite number of possible databases.
It therefore follows that we can compute the minimal fixed
point of TP that is a superset of D by repeatedly applying TP

to D until the result no longer changes, i.e., by determining
the smallest natural number i such that T i+1

P (D) = T i
P (D).

There are many ways to implement Datalog, but we will
focus here on bottom-up evaluation techniques where we
more or less iteratively compute the applications of TP , and
in particular on semi-naive evaluation of Datalog. The ba-
sic idea of semi-naive evaluation is that when computing
the result of a rule we take into account which relations
where extended in the preceding iteration and what the
newly added tuples where. For example, if we have a rule
r(x, y) :- s(x, y, z), r(z, 2), r(y, z) and we know that r′ con-
tains the recently added tuples, then we can compute the
tuples added only by this rule by computing the union of
the query {(x, y) | s(x, y, z)∧r′(z, 2), r(y, z)} and the query
{(x, y) | s(x, y, z) ∧ r(z, 2) ∧ r′(y, z)}. Observe that the re-
sulting r after adding the tuples computed by these queries
will be the same as for the evaluation of the rule under
the conventional bottom-up evaluation. When adding these
records, it can be checked which ones were not already in
r, to compute the relation r′ for the next step. In general
the evaluation of a rule is split into a union of m queries,
where each query is defined by the rule as usual but with the
mth subgoal replaced by the relation that contains the newly
added tuples in the preceding iteration. Note that this ap-
proach indeed often prevents recomputing a large part of the
result in r, although it can stil happen that the same tuple
is computed more than once.

3. DatalogRA
DatalogRA is founded on SociaLite [3, 8], which in turn

is a graph query language based on Datalog which provides
several optimisations and extensions to Datalog for express-
ing and executing basic graph algorithms. The key extension
in SociaLite over Datalog are recursive aggregate functions.
This extension allows for correctly solving many graph prob-
lems, e.g., finding shortest paths from single source without
finding all possible paths first and avoiding infinite execution
when a cycle exists in the graph.
Like Socialite, DatalogRA allows aggregation to be com-

bined with recursion under some conditions. A DatalogRA
program is essentially a Datalog program where optionally
for a relation an aggregation function is defined for the last
column. Figure 1 presents a DatalogRA program for com-
puting the shortest paths from node 1 to all nodes in a graph
defined by the Edge relation.
As in Socialite, the rules are preceded by a declaration sec-

tion that declares all the involved relations, their names and
types and names of their columns. The name is only added
as a comment to illustrate the intended meaning. In addi-
tion it is also indicated if the last column is aggregated or
not, and if so what aggregation function is used for it. This
is different from Socialite where the aggregation functions
are indicated within the rules. However, recursive aggrega-
tion only makes sense when it is applied to whole relations,

so we propose defining it in relation declarations as a more
intuitive approach.

Edge(int src, int sink, int len)
Path(int target, int dist aggregate Min)

Path(t, d) :- t = 1, d = 0.

Path(t, d) :- Path(s, d1), Edge(s, t, d2), d = d1 + d2.

Figure 1: DatalogRA query for computing the
shortest paths from node 1 to other nodes.

As a consequence, a program P in DatalogRA does not
only consist of a set of rules but also an indication of in which
relations the last column is being aggregated and what the
aggregation operator is. The restriction of aggregation to
the last column is only there to keep the current implemen-
tation simple and has no deeper fundamental reason nor
does it essentially change the expressive power. In addition
to aggregation, DatalogRA also allows stratified negation
and arithmetic equations in the usual way.
The semantics of a DatalogRA program P without nega-

tion can be described as the minimal fixed point of an imme-
diate consequence operator which is the composition ΓP ◦T̂P

where T̂P computes the direct consequences of rules in P
while ignoring aggregation, and ΓP is a function that aggre-
gates as specified in P .
We first define T̂P which is similar to TP except that it

returns a bag where facts are duplicated if they are derived in
multiple ways, similar to how multiplicity is defined in [5] in
terms of number derivation trees. For this purpose we define
the notion of result bag of a rule r for a database D, denoted
as r̂(D), as the bag over the set r(D) where the multiplicity
of each element r(x̄) is equal to the number of valuations
f , i.e., functions from the variables in ȳ1, . . . , ȳn to domain
values, such that s1(f(ȳ1)) ∈ D, . . . , sn(f(ȳn)) ∈ D. Based
on this we define the bag of immediate consequences of a
program P for database D, as T̂P (D) = D]

⊎
r∈P

r̂(D)
where] is the additive bag union.
The aggregation operator ΓP maps bags of facts to sets

of facts in the following way. If a relation R is aggregated in
P then for each vector x̄ such that there is at least one fact
of the form R(x̄, y) in the input, it replaces these facts with
R(x̄, G(Ȳ)) where G is the aggregation function indicated in
P for the relation and Ȳ is the bag of domain values where
the multiplicity of an element y is the multiplicity of R(x̄, y)
in the input. If a relation R is not aggregated in P then it
removes duplicate facts for this relation, i.e., for each vector
x̄ such that there is at least one fact of the form R(x̄) in the
input, it replaces all these facts with a single fact R(x̄). Note
that the final result of ΓP is always without duplicates for
both aggregated and non-aggregated relations and therefore
indeed a set.
Having defined the semantics of a program P applied to

database D as the first fixed point of ΓP ◦ T̂P the next ques-
tion is if this always exists and if it is minimal in some sense.
Since the set of possible databases is finite, because we as-
sume a finite set of domain values, it is sufficient to show
that there is some partial ordering over databases for which
ΓP ◦ T̂P is monotonic. However, programs with aggregation
will no longer be monotonic with respect to the subset or-
dering. Fortunately, as is discussed in [3] it is sometimes
possible to define an alternative ordering for which the pro-

gram is monotonic on the basis of the chosen aggregation
operators. We explain this in what follows.
We consider aggregation operators, say G, that are based

on a binary operator, say ⊕G, that is commutative and as-
sociative. The result of applying G to a non-empty bag
{{a1, . . . , an}} is defined as a1⊕G . . .⊕G an. Based on this we
can define a pre-order vG over the set of domain values for
the aggregation such that a vG b iff a = b or there is a c such
that a ⊕G c = b. For example, for the Max operator that
ordering is ≤, for Min it is ≥ and for Sum over nonnegative
integers it is also ≤. Note that not for all aggregation oper-
ators this pre-order is a partial order. For example, for Sum
over all integers it holds that both −1 vSum 1 and 1 vSum −1
since −1⊕Sum 2 = 1 and 1⊕Sum −2 = −1. We will consider
only those aggregation operators where the associated or-
dering is a partial order.
This allows us now to define a partial order over facts and

databases, given a program P . For facts we define vP for
comparing facts concerning relation R such that (1) if re-
lation R has aggregation operator G in P then R(x̄, y) vP

R(x̄′, y′) iff x̄ = x̄′ and y vG y′ and (2) if R has no aggrega-
tion operator in P then R(x̄) vP R(x̄′) iff x̄ = x̄′. We then
define for databases the ordering such that D1 vP D2 holds
iff for all R(x̄) ∈ D1 there is a fact R(x̄′) ∈ D2 such that
R(x̄) vP R(x̄′). It can be verified that this defines a partial
order. It is now for this ordering that we will require that
programs are monotonic, i.e, that ΓP ◦ T̂P is monotonic un-
der vP , which will ensure that there is a well-defined notion
of minimal fixed point.
The requirement for monotonicity for ΓP ◦ T̂P can be sim-

plified if we restrict ourselves to aggregation operators G
for which ⊕G is idempotent, i.e., a ⊕G a = a for all a in
the domain of ⊕G, such as holds for example for Min and
Max. In that case the aggregation operator is essentially
operating on sets, rather then bags, and so it holds that
ΓP ◦ T̂P = ΓP ◦ TP . Since ΓP is always monotonic under
vP , it is then sufficient to require that TP is monotonic un-
der vP . So, for example, for the program in Figure 1 we only
need to verify that the rules, while ignoring the aggregation,
are monotonic under ≤, which they indeed are. Note that
this is only a sufficient condition; the exact characterisation
and complexity of deciding the monotonicity property for a
program is a subject for further research.
For a program with only idempotent aggregation opera-

tors, i.e., where ⊕G is idempotent, it is possible to straight-
forwardly implement a semi-naive evaluation strategy. We
only need to maintain after each iteration the current con-
tent of a relation as produced by applying ΓP ◦ TP . After
each iteration we determine the “new facts” where a new fact
is defined as a fact R(x̄) for which there was not already a
larger fact, i.e., a fact R(x̄′) such that R(x̄) vP R(x̄′). As
usual in semi-naive evaluation we can then compute which
other new facts are implied by these new facts and add them
to the database. This can be done by determining this for
TP in the usual way, and then adding the additional facts to
the database and reapplying ΓP (which can remove facts).
Because the aggregation operator is idempotent, this will for
monotonic P produce the same result as applying ΓP ◦ T̂P .
The restrictions mentioned above on the usage and type

of aggregation operators only apply when the aggregation is
used in a recursive manner. We can make this more precise
as follows. Every program P defines a dependency graph of
the relation names where there is an edge from R to R′ if R′

is mentioned in the body of one of the rules in P where R
is in the head. We then require that for every cycle in this
graph it holds that all the relations in the cycle either have
no associated aggregation operator or one that is restricted
as above, which in the current implementation are only the
Min and Max operators. In the same way we also allow
negation in a restricted fashion such that the program is
stratified: for every cycle it holds that none of the relations
in the cycle depends negatively on a relation in the cycle,
i.e., there is not a rule that mentions one relation in the head
and the other in the tail such that it is there immediately
preceded by a negation.
These restrictions on using arbitrary aggregation and nega-

tion allow us to stratify a program, i.e., partition the rela-
tions into a sequence of sets of relations (the strata) such
that within each stratum the relations depend only on re-
lations within that stratum or a stratum earlier in the se-
quence. As usual this allows us to give a well-defined seman-
tics to the total program, assuming that the rules associated
with each stratum have a well-defined semantics.

4. IMPLEMENTATION IN SPARK
The key concept in Spark is Resilient Distributed Dataset

(RDD), which is an abstraction of distributed memory and
lets the programmer perform distributed computations. They
are stored in a way that is transparent to the user and as-
sures fault tolerance. RDDs provide a coarse-grained in-
terface, i.e., operations that apply to the whole dataset,
such as map, filter and join. This allows for achieving fault-
tolerance by storing only the history of operations that were
used to build a dataset, called its lineage, instead of repli-
cating the data to be able to recover it. An additional ad-
vantage is that the RDDs do not need to be materialised,
unless it is actually necessary. Since parallel computations
generally apply some transformation to multiple elements of
a dataset, they can in most cases be expressed easily with
coarse-grained operation on datasets.
The main component DatalogRA provides is the Database

class which represents a set of relations which can be cre-
ated from regular RDDs. Database objects are equipped
with a method datalog, which performs a Datalog query on
this database. The result of the query is a new Database,
from which individual relations can be extracted as RDDs.
This allows for the construction of data processing pipelines
intermixing several Spark components, e.g., adding pre- and
post-processing around DatalogRA computation. Figure 2
shows an example of a DatalogRA query in a Spark pro-
gram using DatalogRA which is implemented in the form of
a Datalog API for Spark.
When a Datalog query is performed on the Database ob-

ject, it needs to be translated into a sequence of Spark trans-
formations which eventually produce a new Database object
containing the result of the query. In this section, we show
how this translation is made.
Each Relation object has a name and an RDD of Facts,

which in turn are represented as arrays. All Facts in a re-
lation are required to have the same arity, which is ensured
when the Relation object is created. In the current imple-
mentation we only allow facts over integers, but this can be
easily extended.
To execute a DatalogRA program we first analyse it to

produce an AST representation of the program. All cor-
rectness requirements are verified at this stage. Then, the

1 val edgesRdd = ... // Read from HDFS or computed using Spark
2
3 val database = Database(Relation.ternary("Edge", edgesRdd))
4 val resultDatabase = database.datalog("""
5 declare Path(int v, int dist aggregate Min).
6 Path(x, d) :- s == 1, Edge(s, x, d).
7 Path(x, d) :- Path(y, da), Edge(y, x, db), d = da + db.
8 """)
9 val resultPathsRdd = resultDatabase("Path")

10
11 ... // Save or use resultPathsRdd as any RDD.

Figure 2: Example of Datalog query for computing
single source shortest paths embedded in a Spark
program.

program’s rules are stratified, i.e., divided into a sequence
of strata, which can be evaluated one by one. Finally, each
stratum is evaluated iteratively until a fix-point is reached.
In each step of the evaluation, all rules in the stratum are
applied to the current state of the database. In this section,
we describe how a single step is performed.
A single rule consists of a head and a sequence of subgoals.

The task is to evaluate this rule given an RDD representing
the current state of the database, i.e., to compute an RDD
of all facts that can be inferred from the current state. This
is done in two steps: first, all valuations satisfying the rule
body are computed, and then each such valuation is con-
verted to a fact based on the head of the rule. To represent
mappings of variables to their values during query evalua-
tion we use Valuation objects, which are not available to the
end user. To find all valuations satisfying a rule body, we
process all its subgoals one by one from left to right. To
deal with arithmetical goals, where we have input and out-
put positions, we sort the subgoals such that all inputs of
a goal are available before it is evaluated. We start with
an RDD of valuations containing an empty valuation, i.e.,
a valuation containing no variable assignments. Next, the
subgoals are applied sequentially. Each subgoal is evaluated
on the current RDD of valuations. This returns a new RDD
of valuations all of which satisfy this subgoal. This new
RDD is then used for the next subgoal, until all subgoals
are processed.
How a subgoal is evaluated depends on its type, which is

either relational subgoal, arithmetic comparison or assign-
ment subgoal. In case of relational subgoals, the relation is
first converted into valuations of variables in the subgoal us-
ing a map transformation. The resulting RDD is then joined
with the starting valuations on the matching variables us-
ing the join transformation on RDDs and converted to a
new RDD of valuations using another map transformation.
Arithmetic comparison subgoals are translated into a filter
transformation on the valuations RDD. Finally, assignment
subgoals are translated into map transformations on the val-
uations RDD, which adds the newly computed value to each
valuation.
Each rule head consists of a relation name and a sequence

of variable names, e.g., P ath(v, d). Language constraints
ensure that each valuation satisfying the rule body contains
values for all variables appearing in the head. A map trans-
formation is used to convert an RDD of valuations into an
RDD of facts.
The procedure described above finds all facts that can

be inferred using a single rule. This can be done for each
rule within a stratum. The next step in one iteration of
evaluation is to merge the results obtained from the rules
with the database from the previous step.
For relations without aggregation, this is achieved by per-

forming a union transformation on the RDDs containing
new facts for a given relation and the corresponding relation
in the current database. Then, a distinct transformation is
applied to remove duplicated facts.
For aggregated relations, this is slightly different. After

performing a union of the new facts and the current relation
contents, the facts are grouped by the qualifying parameters
and the aggregated value is computed. This is done by the
following three transformations:

1. map to split the facts into qualifying parameters and
the aggregated values,

2. reduceByKey to group facts by qualifying parameters
and apply the aggregation function to the set of aggre-
gated values in each group,

3. map to merge the qualifying parameters and the com-
puted value in each group back into facts.

The main built-in optimisation is the semi-naive evalua-
tion. In all steps starting from the second one, the delta
database is used, which contains only the new facts in-
ferred in the previous step. We evaluate each rule body
several times, each time using the delta database in place
of a subsequent relational subgoal, and the full database for
the other subgoals. The delta database for the next step
could be naively computed as the difference between full
databases from the current step and the previous step. In-
stead, it is more efficiently computed by marking the new
facts when the facts inferred in a step are merged into the
current database.
Other optimisations include detecting non-recursive strata

and caching intermediate results. Non-recursive strata re-
quire only one iteration and need no check to see if the fixed
point has been reached. For caching intermediate results we
proceed as follows. If a relation is used in a subgoal, it needs
to be converted into an RDD of valuations for joins to be
performed. Within a given stratum, however, only the rela-
tions defined in this particular stratum can change. There-
fore, for each subgoal referring to a relation from another
stratum the corresponding valuations are found once and
persisted. This makes it possible to avoid repeated work.
A practical implementation of the above procedure re-

quires some RDD-specific issues to be handled:

• The new full database and delta database are marked
to be cached so that they are stored in memory and
not recomputed each time they are used,

• Results obtained from an iteration are materialised,
i.e., actually computed. This allows for the results of
the previous iteration to be unpersisted, i.e., removed
from cache. This helps reduce memory usage and in-
creases performance,

• If many iterations are performed, the procedure can
create RDDs with a very long lineage. Lineage is
stored in RDDs so that they can be restored after a
failure of a worker. Too long lineage can cause errors,
so every several iterations all results are checkpointed

to persistent storage, which causes the lineage to be
cropped,

• Unlike most RDD transformations, the join changes
the partitioning of data, i.e., the way the data is dis-
tributed between worker nodes, increasing the num-
ber of partitions. The number of partitions is reduced
when it exceeds a certain limit using the coalesce ac-
tion, as performance is negatively affected when there
are too many partitions compared to the size of data.

5. EXPERIMENTS AND EVALUATION
The performance of the tested implementation was com-

pared with plain Spark programs solving the same problem.
We were unfortunately unable to reliably run the equiva-
lent programs in SociaLite to compare results with it. In
addition, we compared the complexity of each solution as
measured by the number of lines in each program.
DatalogRA was implemented as a fully working proto-

type. We evaluated it for several classic graph problems
and compared it against plain Spark implementations which
were written using Spark core methods and the GraphX ex-
tension. For each problem, both solutions were evaluated on
Amazon EC2 clusters consisting of n = 2, 4, 8 and 16 worker
nodes and one master node. Each node was a 2-core 64-bit
machine with 7.5 GiB of RAM memory. In all experiments,
a social graph of Twitter circles, which has 2.4M edges was
used.
DatalogRA is not limited to a specific domain and can

be used to express various types of distributed computa-
tions, but it is primarily intended for computations on large
graphs such as social networks. Therefore, we have selected
three common graph problems for performance tests of the
prototype implementation: finding and counting triangles,
dividing the graph into connected components, computing
the shortest paths from a single source to all other vertices.
The results of the experiments are shown in Figure 3.

Figure 3: Results of experiments.

In the Triangles Count test case the execution time in
SparkDatalog is very similar to dedicated Spark. The Spark-
Datalog versions are slower than dedicated Spark programs
in both Shortest Paths and Connected Components, by a
factor of approximately 8.5 to 3.5 in Shortest Paths and 4
to 1.7 in Connected Components. The speedups achieved
were similar for both versions of each program. This shows
that although the implemented solution is slower by some
factor, it does parallelise. The speedups were slightly better
for the SparkDatalog versions. This is probably because the
additional overhead in SparkDatalog could also get paral-
lelised. In Connected Components and Shortest Paths, the
difference in execution times is the least with the greatest
number of worker nodes.
An important goal for SparkDatalog is to provide pro-

grammers and non-programming analysts with the possibil-
ity to perform computations by writing declarative queries
instead of implementing complicated, lengthy algorithms us-
ing the Pregel model or standard RDD transformations.
Datalog versions are 1.4 to 3 times shorter than dedicated
Spark. Most importantly, they are conceptually simpler
since they only require a few declarative rules instead of
expressing the problem in the vertex-centric Pregel model.

plain Spark SparkDatalog
Connected Components 11 6
Shortest Paths 12 4
Triangles 7 5

Table 1: Number of lines of code in programs, ex-
cluding data loading and comments.

We close with a brief discussion of related work. This
work is directly based on that of distributed Socialite [8] but
we were unfortunately not able to do a direct performance
comparison. On the other hand our system does not have as
its main goal to provide a faster implementation but rather
to illustrate that it is possible to have a robust implemen-
tation on top of a well-known and well-tested framework.
Other closely related work is the semi-naive implementation
of unextended Datalog on Haloop [9] which optimises the
execution of iterations by intelligent caching and specialised
join and difference implementations. In DatalogRA similar
optimisations are applied, but require less or no work since
they are largely already provided by the Spark framework.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have presented DatalogRA, a version of

Datalog extended with recursive aggregation, implemented
in Spark’s RDD model. This language allows end-users to
query large graphs in a declarative fashion and in a well-
studied language with well-defined semantics.
An advantage of the chosen architecture is the separa-

tion of concerns between managing distributed computation
in a cluster as offered by Spark and Datalog-specific opti-
misations which, as we show, can be implemented in the
Spark’s RDD model. This combination makes it easy to
study the effectiveness of further Datalog optimisation tech-
niques. Moreover, the framework distributing the computa-
tions is mature and well tested. In addition its popularity
guarantees easy integration with other tools from the open-
source distributed computation stack. Finally, Spark pro-
grams can be readily executed on the main cloud platforms.

Acknowledgements: JS was sponsored by NCN based
on DEC-2012/07/D/ST6/02492.

7. REFERENCES
[1] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst.

Haloop: Efficient iterative data processing on large
clusters. Proc. VLDB Endow., 3(1-2):285–296, 2010.

[2] S. Ganguly, A. Silberschatz, and S. Tsur. A framework
for the parallel processing of datalog queries. In
Proceedings of the 1990 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’90,
pages 143–152, New York, NY, USA, 1990. ACM.

[3] M. S. Lam, S. Guo, and J. Seo. Socialite: Datalog
extensions for efficient social network analysis. In
Proceedings of the 2013 IEEE International
Conference on Data Engineering (ICDE 2013), ICDE
’13, pages 278–289, Washington, DC, USA, 2013.
IEEE Computer Society.

[4] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: A
system for large-scale graph processing. In Proceedings
of SIGMOD 2010, pages 135–146, New York, NY,
USA, 2010. ACM.

[5] I. S. Mumick, H. Pirahesh, and R. Ramakrishnan. The
magic of duplicates and aggregates. In Proceedings of
the 16th International Conference on Very Large Data
Bases, VLDB ’90, pages 264–277, San Francisco, CA,
USA, 1990. Morgan Kaufmann Publishers Inc.

[6] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: A not-so-foreign language for
data processing. In Proceedings of SIGMOD 2008,
pages 1099–1110, USA, 2008. ACM.

[7] S. Salihoglu and J. Widom. Optimizing graph
algorithms on pregel-like systems. PVLDB,
7(7):577–588, 2014.

[8] J. Seo, J. Park, J. Shin, and M. S. Lam. Distributed
socialite: A datalog-based language for large-scale
graph analysis. Proc. VLDB Endow., 6(14):1906–1917,
Sept. 2013.

[9] M. Shaw, P. Koutris, B. Howe, and D. Suciu.
Optimizing large-scale semi-naïve datalog evaluation
in hadoop. In Proceedings of the Second International
Conference on Datalog in Academia and Industry,
Datalog 2.0’12, pages 165–176, Berlin, Heidelberg,
2012. Springer-Verlag.

[10] A. Shkapsky, K. Zeng, and C. Zaniolo. Graph queries
in a next-generation datalog system. Proc. VLDB
Endow., 6(12):1258–1261, Aug. 2013.

[11] K. T. Tekle, M. Gorbovitski, and Y. A. Liu. Graph
queries through datalog optimizations. In Proceedings
of PPDP’12, pages 25–34, USA, 2010. ACM.

[12] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and
I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing. In Proceedings of the 9th USENIX
Conference on Networked Systems Design and
Implementation, NSDI’12, pages 2–2, Berkeley, CA,
USA, 2012. USENIX Association.

[13] W. Zhang, K. Wang, and S.-C. Chau. Data partition
and parallel evaluation of datalog programs. IEEE
Trans. on Knowl. and Data Eng., 7(1):163–176, 1995.

