
A Hybrid Solution for Mixed Workloads on Dynamic
Graphs

Mahashweta Das
∗

Hewlett Packard Labs
Palo Alto, CA, USA

mahashweta.das@hpe.com

Alkis Simitsis
Hewlett Packard Labs

Palo Alto, CA, USA
alkis.simitsis@hpe.com

Kevin Wilkinson
Hewlett Packard Labs

Palo Alto, CA, USA
kevin.wilkinson@hpe.com

ABSTRACT
The scale and significance of graph structured data today
has led to the development of graph management systems
that are optimized either for graph navigation requests or
graph analytic requests. We present a general purpose graph
system that provides high performance concurrently for both
navigation and analytic requests. In addition, it supports
highly dynamic graphs wherein vertices and edges are added
or deleted and properties are modified. Our solution em-
ploys a hybrid architecture comprising two graph engines,
one for each workload, with a synchronization unit to man-
age updates and a federation layer to present the hybrid
system as a single API to graph applications. We develop a
proof-of-concept, describe its implementation in details, and
present experimental results that demonstrate its potential.

Keywords
graph management; mixed workload; hybrid architecture

1. INTRODUCTION
Graphs are ubiquitous - from websites to social networks

to bioinformatics applications to telcos providing person-
alized customer services to transportation network to cy-
ber security to workforce management in business organiza-
tion - we encounter graph structured data every day with-
out realizing it. Naturally, recent times have witnessed the
emergence of many new specialized graph management sys-
tems for storing, querying, processing, and analyzing graphs.
However, these graph engines provide tailored optimizations
for different kinds of workloads, algorithms, and executions.
Existing graph systems can be broadly classified into two
categories [8]: (i) navigation or online; and (ii) analytic or
offline. Navigation graph management systems provide high
throughput and low latency for short requests that access
relatively few graph vertices and edges, e.g., nearest neigh-
bor, reachability query, etc. Typical examples of such sys-

∗Authors are listed alphabetically.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copiesbear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior special permission and/or a fee.

Proceedings of the Fourth International Workshop on Graph Data Management Ex-
perience and Systems (GRADES 2016), June 24, 2016, Redwood Shores, USA.

c© 2016 ACM. ISBN X-XXXXX-XX-X/XX/XX ... $15.00.

DOI: http://dx.doi.org/XX.XXXX/XXXXXXX.XXXXXXX

tems include graph databases (such as HypergraphDB [2]
and Neo4j [3]) and RDF stores (such as Jena and Alle-
groGraph). Analytic graph management systems support
long, resource-intensive, analytical computations and itera-
tive batch processing that access a significant fraction of a
graph, e.g. PageRank computation, social network analysis,
etc. Examples of graph systems of this type are GraphLab [9],
Pregel [10], and Giraph [1].

Graphs are a natural way to represent many kinds of en-
terprise data and analysis of enterprise data is often more
easily expressed as a graph computation rather than in SQL.
This has led to interesting work [6][14] on graph analytics
using relational databases. However, an adaptive enterprise
requires both types of workloads, e.g., large numbers of short
requests for daily business operations and, to be reactive,
longer analytic requests for trend detection, campaign an-
alytics, etc. In addition, there are periodic analytic and
reporting needs. Currently, graph engines that perform well
on navigation tend not to perform well on analytic, and vice
versa. There are several reasons for this:

Graph navigation engines allow updates to the graph and
support many concurrent users. Their internal data struc-
tures are designed for high throughput requests, accessing
and updating a small portion of the graph and these oper-
ations conflict with analytic requests that are long-running,
consuming most resources on the graph engine. Graph an-
alytic engines store a graph using highly tuned data struc-
tures that enable fast traversal of large numbers of vertices
and edges. Typically, these data structures are either im-
mutable or have limited support for updates such that the
data structures must be completely rebuilt for the best per-
formance. Thus analytic graph engines work best with im-
mutable or slowly changing graphs. Moreover, enterprise
data is dynamic. Updates are frequent and bursty, and must
not interfere with the analytic requests. No existing graph
management system is known to provide high performance
concurrently for mixed workloads. A recent graph engine
called Trinity [12] support online and offline graph procesing
over a distributed memory cloud. However, it is tuned for
offline analytics and does not handle updates.

We present a general purpose graph data management sys-
tem calledMAGS that provide efficient and concurrent pro-
cessing of graph navigation and graph analytic queries, i.e.,
mixed workloads for enterprise applications. Each engine
stores its own copy of the graph using data structures op-
timized for a specific workload. Navigation requests and
graph updates are directed to one engine, while analytic re-
quests are directed to the second. Periodically, updates are

GenGP

graph navigation,
mining requests

NaviGP MineGPSyncP

generic graph processor
(federation layer)

navigation request,
update request

mining
request

transactional
graph updates

HDFS

batched
graph updates

UnixFS SQL Other GDMS

graph ingestgraph ingest

graph export, update

control

Application

ViewPViewPViewP

view
update

MAGS
System

view lookup
requests

historical
graph

real-time
graph

view
create

application-specific
models and graph views

Figure 1: Overview of the hybrid architecture of MAGS System

forwarded from the navigation engine to the analytic engine
to keep them in sync. A federation layer presents a unifying
API to applications. The key novelty is that by segregating
the short navigation requests and updates on the real-time
graph from long analytic requests on the historical graph,
we can separately tune the two engines to provide the best
performance for each workload and prevent updates from
interfering with analytic operations. We develop a proof-of-
concept that uses the LDBC SNB mixed workload (details
later) to demonstrate the potential of the proposed solution.

Sections 2 and 3 describe MAGS architecture and imple-
mentation respectively. Section 4 presents an experimental
study. Sections 5 and 6 discuss related and future work.

2. THE HYBRID ARCHITECTURE
The hybrid architecture of the our MAGS system is illus-

trated in Figure 1. It comprises five main modules:

• GenGP: A federation module that provides a unify-
ing interface to all graph applications and orchestrates
navigation/analytic/update request processing.

• NaviGP: A navigation graph engine that processes
updates and short navigation requests accessing few
vertices and/or edges of the active graph.

• MineGP: An analytic graph engine that processes
long analytic requests and performs an iterative batch
processing over the entire graph until the computation
satisfies a stopping criterion.

• SyncP: A synchronization module that forward up-
dates from the navigation engine to the analytic graph
engine in a transactionally consistent manner.

• ViewP: A graph view engine that enables application-
specific views of the underlying graph.

MAGS provides applications with different views of the
underlying base graph. The first is a real-time view of the
graph that reflects transactionally-consistent updates. The
second is a historical view that reflects the graph at previous
points in time. The third are derived views of the graph that
are used to support application-specific purposes.

Next, we discuss the generic details of each module.

Application Interface: The GenGP module is a federa-
tion layer that exposes a single API to all graph applications.
The data model is a directed, labeled property graph, i.e.,
vertices and edges may have properties (key-value pairs),
edges are directed and vertices and edges may be labeled
(have types). This is a general model as it can be used to
implement other graph models.

MAGS is intended to accept application requests in a wide
variety of interface languages, but currently only SQL is
supported (details later). Upon receiving a request, GenGP
determines which engine to send it for processing. Short
navigation and update queries are sent to NaviGP while an-
alytic requests are sent to MineGP. Currently, a request is
processed entirely on one engine. However, that engine may
request data remotely from the other engine. GenGP does
not itself federate request processing across engines. It em-
ploys several techniques in order to orchestrate request pro-
cessing. The simplest method tags all requests from a partic-
ular application or user as one type, or the other (much like
database workload managers). In addition, we prototyped a
sophisticated classifier that compares features of the input
query against a set of rules derived from previously executed
queries in order to identify its class, e.g., short navigation,
long navigation, analytic, update, etc. The classifier accu-
racy can be improved by simulating the input query on a
small synthetic graph. GenGP is also responsible for system
management tasks, e.g., invoking synchronization, dropping
old versions of data, view maintenance, etc.

Navigation Requests Processor: The NaviGP module
processes short graph requests, i.e., those that access a small
fraction of the entire graph. Examples of such queries in-
clude nearest neighbor, reachability query, etc. that require
very fast response time. It also processes all update requests.
In that sense, it is the real-time active graph since it contains
the latest version. This engine is tuned for low-latency and
high throughput. Popular graph databases like Neo4j [3] and
OrientDB [4] are known to support such queries effortlessly.

Analytic Requests Processor: The MineGP module pro-
cesses all graph requests that are not classified as short or up-

NaviGP

MineGP

Update Transaction Analytic Query

ins vertexi

commit

del vertexj
ins edgek

t1 t2 t3 tc

log

bulk load
batch of changes

table vertex_delta
table edge_delta

table vertex
table edge

refresh

view
vertex_now

read
newest

read
history

1

4
3

2

tc td tflatency
freshness

Figure 2: Synchronization unit propagating updates
(pd: load frequency, pf : refresh frequency)

date. Typically, these are long, possibly iterative and batch
requests that access a large fraction of the entire graph. Ex-
amples of such queries include Page Rank computation, so-
cial network analysis, etc. It may also include requests that
cannot be classified as short with high confidence. MineGP
operates over the historical graph. If an analytic request
requires the most recent graph, MineGP may fetch the lat-
est updates from NaviGP before processing it. Examples of
graph engine optimized for analytic requests include Graph-
Lab [9], Pregel [10], Giraph [1], etc.

Synchronization: The SyncP module periodically collects
the latest updates in the real-time graph in NaviGP, as-
sembles them into a batch, and bulk loads the changes into
MineGP. Log-sniffing is used to collect the NaviGP changes.
The bulk load is done transactionally by using versioned
tables in MineGP. In this way, synchronization does not
interfere with concurrent request processing in NaviGP or
MineGP (see Figure 2, which we explain in the next sec-
tion). The historical graph in MineGP is always behind the
real-time graph in NaviGP. However, this delay is tunable
and can be relatively short if desired (order of 5-10 seconds),
which we believe is sufficient for most applications. This
module is also responsible for sending transactionally con-
sistent batched updates to the application-specific derived
views of the graph.

View Processor: A common use case in predictive analyt-
ics is application-specific models or views where a computa-
tion generates a new data structure optimized for fast access
later by an application, i.e., the application gets fast access
by querying the view rather than the underlying graph en-
gine. An example computation is Page Rank computation.
If the viewed data in ViewP is modified in the underlying
graph in MineGP, the optimized data structure must either
be updated or regenerated. The ViewP module supports this
use case. It creates instances of graph-based, application-
specific views through an analytic graph request. That view
is then informed of changes to the underlying graph as they
occur. Alternatively, the view instance may be re-generated
by re-executing the original computation.

A possible criticism of our approach is that replicating the
entire graph in two engines is wasteful of memory. In fact,
complete replication is not necessary. For high performance,
only the working set of the graph is needed in the navigation
engine. If a NaviGP request needs data outside the current
working set, that data can be loaded on-demand from the
complete graph in MineGP. So, in a sense, the real-time
graph in NaviGP is a cache for MineGP.

Finally, we note that the vast majority of enterprise data
resides in relational databases. It is not feasible to replicate
all that data in a graph data management system. How-
ever, it is important that new graph-based applications have
access to this legacy data. MAGS supports this by creat-
ing graphical views of relational data using semi-automated
mappings, e.g., foreign keys are edges, primary keys identify
vertices, etc. When possible, the mappings are bi-directional.
In this way, graph applications can seamlessly access and
even update relational enterprise data. Hence, our system
includes connectors to external systems to import graph
data represented in different storage systems or even other
graph engines (see the bottom layer of Figure 1).

3. OUR IMPLEMENTATION
In order to study the feasibility of our approach, we built a

proof-of-concept using off-the-shelf database systems, along
with some custom glue code. In order to choose among
candidate systems for NaviGP and MineGP, we conducted
a performance analysis of candidate systems using queries
from the LDBC Social Network Benchmark (SNB) [5]. The
LDBC SNB data generator creates a synthetic graph that
mimics a social network. The synthetic data models a Face-
book like application with persons, message posts and likes,
etc. and includes simple read requests, complex read queries,
and batch inserts encoded in SQL. We employ the LDBC
SNB interactive workload that has short read, complex read,
and updates (in the form of trickle inserts), and add addi-
tional bulk load queries and analytic queries (Page Rank
computation and single source shortest path computation).
Experiments are conducted on a single machine with In-
tel Xeon E5-2660v2 (40 cores) and 128GB memory using
a LDBC SNB graph at scale factor 1, i.e., 3M nodes, 20M
edges for 10K persons and 1GB size.

Figure 3 compares the performance of a native graph data-
base, relational database MySQL, and analytic database
management system Vertica. Vertica is known to be opti-
mized for processing long iterative analytic queries [6]. Fig-
ure 3 shows that it is a good fit for analytic workload, and
hence is our MineGP engine. From Figure 3, we also see that
MySQL performance for short read queries and updates was
adequate and on par with that of graph database. Relational
databases as NaviGP and MineGP would enable querying
using a common language, i.e., SQL. In addition, we have
existing code to read the MySQL log that we can leverage
for SyncP. Hence, MySQL is our NaviGP engine. GenGP
exposes a RESTful web API to all graph applications and
accepts queries in SQL. Figure 3 also validates our hybrid
approach, i.e., there does not exist one single best engine
optimized for different kinds of workloads.

One important aspect of our implementation is the de-
sign of SyncP that propagates updates from NaviGP (i.e.,
MySQL) to MineGP (i.e., Vertica). We use a table version-
ing technique as illustrated in Figure 2. Suppose, the real-
time active graph in NaviGP receives short update trans-
actions that do one or more of changing an existing ver-
tex, edge or property in the graph. Example queries in
the context of LDBC SNB workload are insert new ver-
tex (i.e., new person who just joined the social network),
delete existing edge (i.e., person removed a friend in the
social network), etc. Figure 2 shows a transaction making
three graph changes that commits at time tc. At this point,
the changes are visible in the real-time graph. Periodically,

1

100

10000

short read complex read analytic

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Workloads

Graph Database MySQL Vertica

1

100

10000

1000000

bulk load update

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Workloads

Graph Database MySQL Vertica

Figure 3: Performances of graph database, in-memory relational database MySQL, and analytic database
Vertica for different types of workload

0

25

50

75

100

125

150

MySQL Vertica MAGS

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

navigation analytic1338

0

4

8

12

16

navigation analytic mixed

Th
ro

ug
hp

ut
 P

er
 S

ec
on

d

Workloads

MySQL Vertica MAGS

0.03

Figure 4: (left): Latency of individual best-of-class engines (MySQL, Vertica) and hybrid engine (MAGS) for
mixed workloads; (right): Throughput of individual best-of-class engine (MySQL, Vertica) and hybrid engine
(MAGS) for different types of workload

0

5

10

15

20

25

30

35

40

45

0 5 50 500

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Updates per sec

navigation analytic

0

1

2

3

4

5

6

7

5 50 500

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Updates per sec

latency (avg)

0

2

4

6

8

10

12

14

16

5 50 500

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Updates per sec

freshness (avg)

Figure 5: (left): Contention in mixed workloads with varying number of updates for MAGS; (center): Average
latency on mixed workloads with a varying number of updates for MAGS; (right): Average freshness on mixed
workloads with a varying number of updates for MAGS

SyncP wakes up and batches all graph changes since its last
invocation into a single batch load command for MineGP.
This is known as the load frequency. These changes are
appended to delta tables in MineGP (which completes at
time td in Figure 2). We define the latency of a change as
the time difference between its commit and the load time,
i.e., td - tc. Periodically, the delta tables are merged with
the full historical tables (which completes at time tf in Fig-
ure 2). This is known as the refresh frequency. We define the
freshness of a change as the time difference between its com-
mit and the refresh completion, i.e., tf - tc. Both load and
refresh frequencies may be varied. Note that applications
that require fresher data may read the delta tables (through
views provided by MAGS) or may request invocation of a
new load/refresh cycle. Experimental results in Section 4
validates how this synchronization model has low impact on
workload.

SyncP is responsible for sending transactionally consistent
batched updates to the ViewP module too, while MineGP
updates the application-specific derived views of the graph
at regular intervals. Existing graph query processing sys-
tems such as GraphLab is a potential candidate for ViewP.
To connect a relational database (Vertica) and a graph en-
gines (GraphLab), we need to either replicate all the rela-
tional data in the graph engine or transfer data as needed
per request. For a number of reasons related to stability,
robustness, performance, scalability, and support for legacy
applications, the former does not seem practical, i.e., a graph
engine should not replicate all data and functionality of an
enterprise. We need to have both engines and a connection
between them. But this is not trivial either since it requires
moving the data from the relational database to the graph
engine, computing the result, and moving it back to the re-
lational database. As a proof-of-concept, we implemented

a fast, in-memory, bi-directional connector between Vertica
and GraphLab that uses a shared memory to greatly reduce
the data shipping and function shipping overhead between
the two engines [7].

4. MIXED WORKLOAD EVALUATION
We have introduced our experimental set up in Section 3.

Using the same hardware configuration, same LDBC SNB
graph data, and LDBC SNB interactive workload comple-
mented with additional analytic queries, we demonstrate
MAGS performance for mixed workload in Figure 4. Our
mixed workload comprises 1041 queries of which 1022 are
short requests, e.g., short read in LDBC SNB interactive
workload and 23 are long requests, e.g, complex reads in
LDBC SNB interactive, Page Rank, etc. Since the workload
in a social network is usually read-dominated, the mixed
workload has a dominance of short query requests. Figure 4
(left) reports the execution time, i.e., latency while Figure 4
(right) reports the number of queries executed per second,
i.e., throughput. We observe that MAGS performs better
than each individual best-of-class engines, i.e. MySQL (the
navigation engine) and Vertica (the analytic engine). Note
that, MySQL has very high latency and very low throughput
for analytic queries while Vertica has high latency and low
throughput for navigation queries. Since MAGS is a hybrid
system and encompasses the best of both worlds, MAGS has
the lowest latency for mixed workload (Figure 4 left) and
highest throughput for mixed workload (Figure 4 right).

Next, we measure contention, latency, and freshness of the
synchronization procedure illustrated in Section 3 and Fig-
ure 3. Recall that MAGS objective is to run mixed workload
efficiently and concurrently. While mixed workload com-
prises of navigation and analytic queries, it may also include
updates in the form of inserts and deletes. We refer to it as
the update workload (so that mixed workload continues to
consist of navigation and analytic queries). The LDBC SNB
interactive workload has been extended to include these ad-
ditional queries, the details of which are described in the Ap-
pendix. In addition to the mixed workload of 1041 queries,
we employ a update workload of insert/delete queries where
each transaction does 15 insert or 15 delete. Keeping in
mind the reality of social network, the insert/delete queries
comprise message posts and associated likes and tags.

Figure 5 (left) demonstrates that the synchronization pro-
cedure has low impact on the execution of the mixed work-
load, i.e., there is no contention. We compare the time taken
by MAGS for mixed workload when there is no update work-
load (i.e., 0 updates per second) with the time taken when
there is an update workload in the background. MAGS
takes only 10 additional seconds to execute the mixed work-
load when there are 500 updates/second in the background.
In order to evaluate the latency and freshness of the syn-
chronization procedure, we consider that SyncP periodically
propagates updates every 10 seconds and refreshes every 20
seconds. Figure 5 (center) demonstrate average latency on
mixed workloads with a varying number of updates where
latency is defined as the time between commit to NaviGP
and commit the batch of delta changes to MineGP. and Fig-
ure 5 (right) demonstrate average freshness on mixed work-
loads with a varying number of updates where freshness is
defined as the time between commit to NaviGP and refresh
historical data in MineGP.

5. RELATED WORK
State of the art graph management systems are optimized

for different kinds of workloads. Graph analytic engines
like GraphLab [9], Pregel [10], Giraph [1], etc. support
analytic computations that batch process a large fraction
of the entire graph while graph databases like Neo4j [3],
HypergraphDB [2], etc. support navigation computations
that access fewer nodes and/or edges in the graph. Exter-
nal memory graph processing systems like FlashGraph [15]
and in-memory graph processing systems like GEMS [11] fo-
cus only on graph algorithms for large graphs. Teradata’s
graph engine Aster [13] enables native processing of large-
scale graph analytic queries, but does not support naviga-
tion short query requests. Recently, a distributed in-memory
graph system Trinity [12] has been developed that supports
low-latency online query processing and high-throughput of-
fline analytics on large graphs. However, Trinity is tuned for
offline analytics, does not handle updates, and does not sup-
port the workloads concurrently as MAGS does.

6. CONCLUSION AND FUTURE WORK
A significant portion of big data today is graph struc-

tured data that captures our daily activities, intents, and
interactions. Currently, enterprises use two or more systems
to manage their real-time graph, their historical graph, and
their derived graphs (views, i.e., application-specific mod-
els). MAGS provides a unified framework for managing the
different graphs and processing the different graph queries
concurrently and efficiently. We present a flexible hybrid
architecture that utilizes existing graph navigation engines
and graph analytic engines for executing mixed workload ef-
ficiently and concurrently. Our intention in this work is not
to focus on how specific graph engines perform. Rather we
aim at demonstrating that a hybrid solution has its merit.

There are several directions going forward. A next step is
to work on a scale-out architecture for the hybrid graph data
management system and exploit next-generation hardware
for improved latency and throughput. Instead of employing
state of the art third party graph engines, designing graph
engines optimized for analytic and/or navigation workload
and tuned for next generation computing resources may be
useful. The system can be extended to handle multiple work-
loads coming from multiple graph applications. The federa-
tion layer that exposes a generic graph API to applications
can benefit from a generic graph query language independent
of the underlying navigation and analytic engine specifica-
tions. Finally, a bi-directional connector between the ana-
lytic graph engine and the view processor engine can greatly
reduce the data shipping and function shipping overhead be-
tween the two engines.

7. REFERENCES
[1] Apache Giraph. http://giraph.apache.org/.

[2] HypergraphDB. http://www.hypergraphdb.org/.

[3] Neo4j. www.neo4j.org.

[4] OrientDB. http://orientdb.com/orientdb/.

[5] O. Erling, A. Averbuch, J. Larriba-Pey, H. Chafi,
A. Gubichev, A. Prat-Pérez, M. Pham, and P. A.
Boncz. The LDBC Social Network Benchmark:
Interactive Workload. In ACM SIGMOD, 2015.

[6] A. Jindal, S. Madden, M. Castellanos, and M. Hsu.
Graph Analytics using Vertica Relational Database. In

IEEE Big Data, 2015.

[7] A. Kalinin, A. Simitsis, K. Wilkinson, and M. Das.
VGL: Enabling Graph Computation over Enterprise
Data. Technical report, Hewlett Packard Labs, 2016.

[8] A. Khan and S. Elnikety. Systems for Big-Graphs.
PVLDB, 2014.

[9] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson,
C. Guestrin, and J. M. Hellerstein. Graphlab: A New
Framework for Parallel Machine Learning. In UAI,
2010.

[10] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C.
Dehnert, I. Horn, N. Leiser, and G. Czajkowski.
Pregel: A System for Large-Scale Graph Processing.
In ACM SIGMOD, 2010.

[11] A. Morari, V. G. Castellana, O. Villa, J. Weaver,
G. T. Williams, D. J. Haglin, A. Tumeo, and J. Feo.
GEMS: Graph Database Engine for Multithreaded
Systems. In Big Data - Algorithms, Analytics, and
Applications., 2015.

[12] B. Shao, H. Wang, and Y. Li. Trinity: A Distributed
Graph Engine on a Memory Cloud. In ACM
SIGMOD, 2013.

[13] D. E. Simmen, K. Schnaitter, J. Davis, Y. He,
S. Lohariwala, A. Mysore, V. Shenoi, M. Tan, and
Y. Xiao. Large-scale Graph Analytics in Aster 6:
Bringing Context to Big Data Discovery. PVLDB,
2014.

[14] A. Welc, R. Raman, Z. Wu, S. Hong, H. Chafi, and
J. Banerjee. Graph Analysis: Do we have to Reinvent
the Wheel? In GRADES co-loated with ACM
SIGMOD/PODS, 2013.

[15] D. Zheng, D. Mhembere, R. C. Burns, J. T.
Vogelstein, C. E. Priebe, and A. S. Szalay. Flashgraph:
Processing Billion-Node Graphs on an Array of
Commodity SSDs. In FAST, 2015.

APPENDIX
The LDBC Social Network Benchmark (SNB) [5] comprises
simple read-only queries, complex read-only queries, and
transactional update requests. The update requests (pre-
generated by SNB data generator) add a user account, add
friendship, add a forum to the social network, create forum
membership for a user, add a post/comment, and add a like
to a post/comment. They do not actually delete or update
content. A graph update is typically defined as changes
made to an existing vertex, edge or property in the graph.
We extend the LDBC SNB workload to incorporate true
graph updates. We prototyped this change by running our
true updates as a background process while the standard
LDBC workloads are executing, and we compare the im-
pact on performance to the baseline where updates are not
performed (see Section 4).

An example of a true graph update is a real world social
network scenario where people periodically clean-up their
online presence by deleting old posts along with their asso-
ciated likes and tags. The code snippet for generating the
above update is shown below in the OldPost method. Note,
to keep the database size constant during our experiments,
it was necessary to run a corresponding NewPost transac-
tion at the same frequency as OldPost. This method is not
shown. It simply inserts a new post along with associated

likes and tags. In the update workload that we consider
in Section 4, we have NewPost and OldPost requests where
each request does, on average, 15 inserts and 15 deletes,
respectively.

public class OldPost extends LDBCProcedure {

 public final SQLStmt stmtDeletePostSQL = new SQLStmt(
 "DELETE FROM " + LDBCConstants.TABLENAME_POST +
 " where ps_postid = ?");

 public final SQLStmt stmtDeleteLikesSQL = new SQLStmt(
 "DELETE FROM " + LDBCConstants.TABLENAME_LIKES +
 " WHERE l_postid = ?");

 public final SQLStmt stmtDeletePostTagSQL = new SQLStmt(
 "DELETE FROM " + LDBCConstants.TABLENAME_POSTTAG +
 " WHERE pst_postid = ?");

 // OldPost Transactions
 private PreparedStatement stmtDeletePost = null;
 private PreparedStatement stmtDeleteLikes = null;
 private PreparedStatement stmtDeletePostTag = null;

 public ResultSet run(Connection conn, LDBCWorker w) throws SQLException {

 long postIdMin = xxx; // delete posts starting here
 // w.oldPostCount is the number of successful post deletes in this run
 long postId = postIdMin + w.oldPostCount;

 try
 {
 stmtDeletePost = this.getPreparedStatement(conn,

stmtDeletePostSQL);
 stmtDeleteLikes = this.getPreparedStatement(conn,
 stmtDeleteLikesSQL);

stmtDeletePostTag = this.getPreparedStatement(conn,
 stmtDeletePostTagSQL);

 stmtDeleteLikes.setLong(1,postId);
 int result = stmtDeleteLikes.executeUpdate();

 stmtDeletePostTag.setLong(1,postId);
 result = stmtDeletePostTag.executeUpdate();

 stmtDeletePost.setLong(1,postId);
 result = stmtDeletePost.executeUpdate();

 } catch(UserAbortException userEx)
 {
 LOG.debug("Caught an expected error in New Post");
 throw userEx;
 }
 finally {
 }
 return null;
 }

}

It is important to track latency of propagating updates
from the navigation engine to analytic engine. To measure
this, we use an auxiliary table, Fresh, that is replicated on
both engines. After every 50 requests (any combination of
NewPost or OldPost), we execute a method to insert a new
row in the Fresh table on NaviGP. The code snippet is shown
below in the Fresh method. We then measure the delay until
that row appears in MineGP (as propagated by SyncP).

public class Fresh extends LDBCProcedure {

 public final SQLStmt stmtInsertFreshSQL = new SQLStmt(
 "INSERT INTO "+ LDBCConstants.TABLENAME_FRESH +
 " (id) VALUES (0)");

 // Fresh Transaction
 private PreparedStatement stmtInsertFresh = null;

 public ResultSet run(Connection conn, LDBCWorker w) throws SQLException {

 stmtInsertFresh = this.getPreparedStatement(conn, stmtInsertFreshSQL);

 try
 {
 int result = stmtInsertFresh.executeUpdate();
 } catch(UserAbortException userEx)
 {
 LOG.debug("Caught an expected error in Fresh");
 throw userEx;
 }
 finally {
 }
 return null;
 }
}

